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We investigate the Gamow-Teller strength distributions in the electron-capture direction in nuclei having mass
A = 90–97, assuming a 88Sr core and using a realistic interaction that reasonably reproduces nuclear spectroscopy
for a wide range of nuclei in the region as well as experimental data on Gamow-Teller strength distributions.
We discuss the systematics of the distributions and their centroids. We also predict the strength distributions
for several nuclei involving stable isotopes that should be experimentally accessible for one-particle exchange
reactions in the near future.
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I. INTRODUCTION

New frontiers of nuclear structure experiments to probe
the Gamow-Teller distributions in medium-mass nuclei are
currently being pursued. These experiments will be able
to measure Gamow-Teller data in the mass A = 90–100
region. Extensive theoretical studies have been devoted to
Gamow-Teller total strengths and strength distributions in
1s-0d shell nuclei (mass A = 16–40 nuclei) [1] and the
0f -1p shell (mass A = 40–80 nuclei) [2–4]. Because of
an excellent agreement between shell-model results and the
available experimental data, the calculated results have been
used extensively to predict numerous Gamow-Teller strength
distributions in nuclei that have not yet become experimentally
accessible [5].

In addition to their relevance to nuclear structure, an
appropriate description of Gamow-Teller transitions in nuclei
directly affects the early phases of type II supernova core
collapse since electron capture rates are partly determined by
them. The effects of the improved rate estimates are rather
dramatic, as was recently discussed in Refs. [6,7]. In addition
to the standard Gamow-Teller transitions, first- and second-
forbidden transitions contribute to the electron capture rates
in the supernova environment. For terrestrial experiments, the
primary focus is on the Gamow-Teller transitions.

Recently, Zegers et al. [8] proposed measuring the Gamow-
Teller distributions using stable Zr and Mo isotopes as targets
in (t, 3He) reactions [9]. Estimates indicate that the Gamow-
Teller strength is sufficiently large to be measured. In this
paper, we will investigate these transitions using standard
shell-model diagonalization techniques for 36 nuclei in the
mass number range 90 � A � 97 (Z = 40–47, N = 50–57).
To validate the interaction, we also studied excitation spectra
in those and other nuclei in the region. Since our model
space does not contain all spin-orbit partners (i.e., it is not
a complete 0h̄ω calculation) the total Gamow-Teller strength
will be overestimated in our calculations. We adopt a single
quenching factor similar to the one discussed in Ref. [10].
We estimated this factor based on recent experimental data on
97Ag [11]. We used this measurement to gauge our calculation
for two reasons. First, it used the total absorption spectrometry,
which accounts also for the weak γ -ray cascades that follow

the β+ decay. Second, almost all total Gamow-Teller strength
is inside the Q window. We note that this factor need not
be universal as it is simply a phenomenological tool at this
point.

The remainder of this paper is organized as follows. In
Sec. II, we present results on the nuclear spectra, generated
with an effective interaction that uses 88Sr as a core, and com-
pare them to the experiment. In Sec. III, we present our shell-
model diagonalization results for the Gamow-Teller strength
distributions and compare these to experimental results when
available. We also present systematics of the Gamow-Teller
centroids. In Sec. IV, we discuss the distributed-memory
shell-model computer code that we developed and used for
these calculations. Finally, we conclude and give a perspective
in Sec. V.

II. CALCULATED SPECTRA USING THE 88SR CORE

We perform our shell-model diagonalization calculations
in a model space taking 88Sr as the core nucleus and
allowing excitations within the valence space of 1p1/2

and 0g9/2 proton shells and 1d5/2, 2s1/2, 1d3/2, 0g7/2, and
0h11/2 neutron shells. Although our diagonalization cannot
be used for calculations of β decays, it appears suitable
for Gamow-Teller distributions in the electron-capture di-
rection. The effective interaction [12] was derived from a
CD-Bonn potential [13] using the machinery of many-body
perturbation theory [14]. We use the following single-particle
energies: ε(p1/2) = 0.0 MeV and ε(g9/2) = 0.9 MeV for pro-
tons; and ε(d5/2) = 0.0 MeV, ε(s1/2) = 1.26 MeV, ε(d3/2) =
2.23 MeV, ε(g7/2) = 2.90 MeV, and ε(h11/2) = 3.50 MeV for
neutrons. A slightly different version of this interaction was
used to describe Sr and Zr isotopes [15]. We have not attempted
to adjust the interaction to obtain a better fit to experimental
data [16].

We calculated low-energy spectra of more than 50 nuclei
with masses in the range 90 � A � 98, with 38 � Z � 48
and 50 � N � 58. General agreement between the calculated
lowest states and experimentally observed states is satisfactory.
We judged the agreement based on reproduction of low-lying
states up to a chosen excitation energy. For odd-odd isotopes,
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which have a higher density of states, the upper limit was
chosen to be 1 MeV. For even-even nuclei the limit was up to
3 MeV. Not all observed states were found in the model space,
as would be expected from a restricted calculation, and for
some nuclei our calculations suggested some low-lying states
that have not yet been observed.

The interaction generally reproduces the correct spin for the
lowest states of both parities as well as their ordering, though
there are cases where some levels are interchanged. The energy
splitting between the lowest states with different parities is
reproduced with varying success, although this is difficult to
judge for some nuclei because of the lack of experimental
information.

For representative spectra that indicate the overall quality
of the interaction, we show nuclei having mass A = 96 in
Figs. 1 and 2. The maximum energy range shown in the plots
is varied following the density of states. From these figures
we observe that the spectra of even-even nuclei (96Pd, 96Ru,
96Mo, 96Zr, and 96Sr) are reproduced well. For 96Pd there are
more calculated states than are experimentally known. In some
nuclei the model space is insufficient to describe all observed
states. Odd-odd nuclei (96Rh, 96Tc, 96Nb, and 96Y), having
more states, are also more difficult to describe although, even
here, the interaction performs reasonably well. The position of
the 8+ isomer in 96Y is not known experimentally [17]. This
state appears in the calculation at a relatively high excitation
energy, 1.1 MeV above the lowest positive-parity state, which
is calculated to be 5+. The nucleus 96Tc reflects a situation
where the lowest states are experimentally very close (there
are six states in the energy range of 50 keV), whereas the
calculation reproduces the states but not their energies (with
the calculated range being 310 keV). A similar situation occurs
in 92,94Nb.

These A = 96 nuclei reflect the situation in other cases as
well, with a general conclusion that the interaction reproduces
excitation spectra reasonably well, though fine-tuning includ-
ing monopole corrections might increase the accuracy. We do
not discuss them in any detail, since the focus of our paper is
Gamow-Teller distributions.

III. GAMOW-TELLER STRENGTH DISTRIBUTIONS

Our study focuses on the Gamow-Teller transitions from
the lowest positive-parity states, which is natural for the most
nuclei in the region above 88Sr, with the exception of the Y
isotopes where the odd proton in the p1/2 shell is responsible
for low-lying negative-parity states. Since our model space is
not sufficient to reasonably reproduce negative-parity states
in Sr isotopes where no valence protons are available, we do
not calculate the transitions between these two isotope chains.
Among the calculated nuclei, there are three cases where we
chose the lowest experimental state to be the initial state for
Gamow-Teller excitations rather than using our calculated
lowest energy state. This affected two N = 51 nuclei, 92Nb
and 94Tc, where the calculation places 2+ to be the lowest
state, and the nucleus 96Tc.

The Gamow-Teller strength is calculated using the formula

GT+ = 〈στ 〉2 = 1

2Ji + 1

∑
f

∣∣∣〈�f |
∣∣∣∑

k

σ (k)τ+(k)
∣∣∣|�i〉

∣∣∣2
.

(1)

To obtain the strength distribution, we used the method of
moments [18]. We performed 33 iterations for each Jf in
all nuclei except for the decays of 97Mo, where we did
24 iterations per final state, and 97Ag, where a complete
convergence was achieved. The GT+ strength inside the
experimental QEc window [19] is marked as BEc. This value is
only an estimate, since we did not strive to achieve the
convergence of states inside the Q window.

As previously discussed, our calculation overpredicts the
Gamow-Teller strength; thus we include a hindrance factor,
h, so that S(GT+) = GT+/h. This factor is found by com-
paring experimental data to the calculated Gamow-Teller total
strength. For nuclei around 100Sn, the single-particle estimate
of the Gamow-Teller strength is commonly used, since the
main contribution comes from a transition of a g9/2 proton
into a g7/2 neutron. The estimate is given by the following
formula (see, e.g., [20]):

�GT+ = N9/2

10

(
1 − N7/2

8

)
GT+(100Sn), (2)

where N9/2 is the occupation of the g9/2 shell by protons,
N7/2 is the occupation of the g7/2 shell by neutrons in the
initial state of a parent nucleus, and GT+(100Sn) = 17.78 is
the single-particle estimate of the total Gamow-Teller strength
for 100Sn. In the simplest noninteracting shell model, the
occupation numbers are replaced by the numbers of valence
particles in the corresponding shells. This simplest estimate
does not exactly reproduce our calculated strength even though
the values are close. We illustrate this in Fig. 3, where the ratio
of the Gamow-Teller strength obtained in the two models,
GT+/�GT+, is plotted versus the ratio of protons in the g9/2

shell in these models. The latter ratio cannot drop below 1,
because we do not include proton j shells above the g9/2

shell. However, correlations can increase the occupation of
this shell, resulting in a GT+/�GT+ ratio greater than 1. At
the same time, neutron excitations into the g7/2 shell have
the opposite effect, since the probability to enter this j shell
during the Gamow-Teller transition decreases. There is no
such blocking in the noninteracting model, since the number
of neutrons is too small to start filling this shell. As can be
seen from Fig. 3(a), the increase in the occupation of the
g9/2 shell by protons is directly proportional to the increase
in the shell-model Gamow-Teller strength. These additional
proton excitations, π̃ (g9/2) ≡ π (g9/2) − (Zv − 2), are affected
by both the number of protons and the number of neutrons [see
Fig. 3(b)]. If either of these two numbers increase, the proton
excitations out of the p1/2 shell are reduced. The value of
π̃ (g9/2) is smaller if there already are more protons in the g9/2

shell. In addition, the increased number of neutrons reduces
proton excitations because of a strong (πp1/2, νd5/2) attraction
in the residual interaction. The latter effect has to compete
with a strong (πg9/2, νg7/2) attraction, which increases the
occupation of the νg7/2 shell as the number of protons increases

024306-2



GAMOW-TELLER GT+ DISTRIBUTIONS IN NUCLEI . . . PHYSICAL REVIEW C 72, 024306 (2005)

0.0

1.0

2.0

3.0

4.0

5.0

E
x (

M
eV

)

Exp
0

+

2
+

4
+

6
+8
+

(5
−
)

10
+

12
+

0
+

2
+

4
+

6
+

4
+
, 8

+2
+6
+

5
+0
+
, 7

+
, 3

+
, 4

+
6

+0
+8
+

10
+
, 9

+

2
+

12
+

4
+

6
+

8
+

5
−

41,2
−

31,2
−

7
−
, 6

−
21,2, 5

−−

96
Pd

0.0

1.0

2.0

E
x (

M
eV

)

Exp
(6

+
)

(3
+
)

(7
+
)

(2
+
)

(8
+
)

(2
+
)

1
+

1
+

(9
+
)

(8
+
) & 1

+

1
+

(10
+
)

(11
+
)

(8
−
) & (9

−
)

6
+3
+4
+

2
+
, 5

+7
+

5
+

3
+

4
+2
+

4
+1
+
, 0

+
5

+
, 6

+7
+

1
+

1
+

1
+

2
−

3
−

0
−

4
−1
−

2
−3
−

5
−
, 4

−
1

−

96
Rh

0.0

1.0

2.0

3.0

E
x (

M
eV

)

Exp
0

+

2
+

4
+

2
+

0
+
 & 6

+
2

+

4,5
+

5
−2
+
,3

−
6

+8
+

0
+

2
+

4
+

6
+
, 2

+
4

+

2
+

6
+
, 4

+
8

+

7
+

5
−4
−3
−

96
Ru

0.0

1.0

E
x (

M
eV

)

Exp
7

+
4

+
 & (2)

+
 & 3

+5
+
 & 6

+
2

−
5

+
3

−
 & 4

+3
+
 & (2)

+

3
−
 & 6

+
 & 3

−
3

−

[3
+
]
2

3
+
 & 5

+
4

+
 & (4)

−5
+
 & (3) & 4

−3
+
 & 5

+
 & (3)

−
 & 7

+
4

+
3

−
 & 4

+
 & 3

−4
−

6
+
 & 4

−
(3)

−
 & 6

+

2
+

0
+
, 4

+

3
+6
+

5
+

7
+4
+

5
+
, 3

+

1
+

2
+

1
+
, 5

+6
+4
+3
+2

−
1

−
3

−

2
−

96
Tc

0.0

1.0

2.0

3.0

E
x (

M
eV

)

Exp
0

+
1

2
+
1

0
+
2

0
+
3

2
+
2

2
+
3, 4

+
1

4
+
2

3
+

2
+
4

4
+
3 & 3

−

2
+
5 & 5

+
 & 6

+4
+
4

(5
−
)

0
+
1

2
+
1

2
+
2

4
+
1,2

3
+

2
+
3

1
+
, 6

+

0
+
2,3, 4

+
2

+
4

5
+

5
−4
−

96
Mo

0.0

1.0

2.0

E
x (

M
eV

)

Exp

6
+

(5
+
)

(4
+
) & (3

+
)

(7
+
)

(2
−
)

(2
+
)

(3
−
)

(3
−
)

(3
−
,2

−
)

(4,3)
(0

−
,2)

(3)
(4)

(0,3) & (3,0)

6
+

5
+

4
+
, 3

+

7
+

5
+

4
+
, 1

+2
+

3
+
, 6

+

3
+
, 2

+

4
+
, 5

+

2
−

3
−

1
−
, 2

−
0

−1
−

4
−

3
−4
−3
−

96
Nb

FIG. 1. Experimental [17] and calculated spectra in 96Pd, 96Rh, 96Ru, 96Tc, 96Mo, and 96Nb. Experimental levels are shown in the left
column; the middle and right columns display calculated negative- and positive-parity states, respectively. Experimental positive-parity states
are shown using dashed lines; negative-parity states are shown using dotted lines; states with known spin and uncertain parity are shown using
dash-dotted lines; the states having both undetermined spin and parity are shown using a shorter dashed line. The sign “&” indicates that
assignments refer to different experimental states, with the second one lying at a higher excitation energy. Since there is no spin ambiguity in
the calculation, a comma is used in the middle and right columns in a similar situation. In some cases a subscript number is used to distinguish
levels having the same spin and parity. At most, 10 calculated negative-parity states are shown for each nucleus. Only 1+ calculated states are
shown in 96Rh above Ex ≈ 1.1 MeV. Only negative-parity states and positive-parity states with J > 5 are shown for 96Ru above Ex = 2.5 MeV
in the experimental spectrum. Experimental positive-parity states are cut off in 96Mo after Ex = 2.5 MeV.
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FIG. 2. Experimental and calculated spectra in 96Zr, 96Y, and 96Sr.
For notation, see caption of Fig. 1. The excitation energy of the
isomeric state in 96Y with J π = 8+ is not known [17].

[see Fig. 3(c)]. The increased blocking by the g7/2 neutrons
results in decreasing shell-model Gamow-Teller strength along
the isotope chain, as Fig. 3(a) shows. The figure also highlights
that pairing effects influence the occupation of the πg9/2 and
νg7/2 shells [see Fig. 3(b) and (c)]. The occupation of the g7/2
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FIG. 3. (Color online) (a) The ratio of the total shell-model
Gamow-Teller strength and the prediction from the noninteracting
particle model plotted versus the ratio of the g9/2 proton number
in these two models. (b) Isotopic dependence of the additional
proton excitations into the g9/2 shell. (c) Isotopic dependence of the
calculated number of neutrons in the g7/2 shell.

shell by neutrons as well as proton excitations out of the p1/2

shell gets smaller if the neutron number is odd. The value of
π̃9/2 is affected by the number of empty time-reversed proton
orbits. The odd proton in the g9/2 shell has a smaller effect
on neutron excitations into the g7/2 shell than an addition of a
proton, which makes even the number of the g9/2 protons in
the noninteracting model.
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Since our calculated total strength is reasonably close to
the single-particle estimates, we could use the experimental
hindrance factor quoted relative to the single-particle estimate:
hexp = GTsp/GTexp. Unfortunately, in this region, experimen-
tal information on hexp is limited. Some of the calculated nuclei
naturally decay from the ground state by β− decay instead
of electron capture, whereas in other nuclei, the Q window
contains only a small fraction of the total strength. Thus the
total GT+ strength could be obtained only by (n, p) or similar
one-particle exchange reactions. An additional uncertainty in
deriving the hindrance factor, even for nuclei where the Q
window is large, comes from recent observations that γ -ray
spectroscopy misses a significant fraction of the Gamow-Teller
decay strength owing to sensitivity limits of detectors, a
low population of nuclear levels close to the Q limit, and
weak intensity of their decays [10,21]. This limitation can
be overcome by combining a high-resolution γ -ray detector
with total absorption spectrometry (TAS), as was done in a
number of recent experiments on nuclei in the 100Sn region. For
example, a study of 97Ag decay [11] showed that only 2/3 of
the total Gamow-Teller strength is obtained by high-resolution
γ -ray spectrometry, whereas the same number for 102In was
about 1/8 [21].

One nucleus, 97Ag, has almost 98% of the total Gamow-
Teller strength inside the QEc window. We can use this nucleus
to estimate the experimental hindrance factor. Hu et al. [11]
reported

∑
B(GT ) = 3.00(40) based on TAS measurements,

which leads to the hindrance factor hexp = 4.24+0.65
−0.50. Another

nucleus where this window is large, and for which a TAS
measurement is available, is 98Ag [22]. Hu et al. reported the
total strength in 98Ag to be 2.7(4), giving the hindrance factor
hexp = 4.27+0.74

−0.55, since the calculated BEc is 11.53 (which is
92% of the total Gamow-Teller strength inside the QEc =
8.24 MeV window). Thus the hindrance in two Ag isotopes,
97Ag and 98Ag, is of the order of 4.25, and we adopt this value
for the total hindrance factor h. A similar value was used in
Ref. [10]. We note that h consists of two factors, h = hgahms.
The modification of gA/gV = 1 in the nuclear medium yields
an hga = 1.6, which implies that hms = 2.65. This value is
commensurate with what one would obtain in highly truncated
pf-shell calculations of the GT+ total strength relative to
the full pf shell-model diagonalization values. We did not
consider heavier nuclei for the hindrance estimate, because
they are further away from our region of interest, and the
possible Z dependence of this factor is not clear [11].

In this region, the only available total Gamow-Teller
strength measured using the (n, p) reaction is for 90Zr.
Raywood et al. [23] deduced a value of 1.0 ± 0.3 for the
total strength. Our calculated total strength for this isotope is
S(GT+) = 0.34, owing to the excitation of about 0.8 protons
from the p1/2 to the g9/2 shell. We should note, however, that
in our restricted model space there is only one 1+ state in
90Y. These values can also be compared to recently reported
measurements of 3.0 ± 1.9 for the total strength by Sakai and
Yako [24]. If, however, the noninteracting particle picture is
assumed with only g9/2 protons contributing and no hindrance
considered, then Eq. (2) would suggest 0.6 or 1.7 protons in
the g9/2 shell for the two mentioned experiments, indicating
that 90Zr is not a good closed-shell nucleus. Studies in
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FIG. 4. (Color online) Gamow-Teller strength distributions from
the ground states of N = 50 isotones as a function of the excitation
energy in the daughter nucleus. Two experimental sets are plotted
for the decay of 95Rh (with values taken from [10,26]). The gray-
shaded area is the calculated strength, the histogram represents the
experiment. The experimental data suffer from detector sensitivity
limits near the Q limit (indicated by an arrow), with the exception
of 97Ag, where the data were obtained using TAS [11]. We show the
strength in 97Ag scaled by a factor of 2. The bin size is 0.2 MeV.

Ref. [15] indicated that 88Sr is a preferable model-space core
in comparison to 90Zr. The authors of Ref. [15] found that
the addition of two valence protons outside of 88Sr actually
served to stabilize the core in their calculations. In contrast, the
discrepancy between our calculated Gamow-Teller strength
and the experimental strength indicates that, for 90Zr, more
channels should be open (i.e., the core should be broken) to
obtain a larger Gamow-Teller strength. This situation is similar
to calculations of the B(E2, 0+ ← 2+) in 44Ti, which requires
breaking of the 40Ca core and allowing excitations from the sd
to the pf shell to be properly described [25].

We turn now to strength distributions. Our calculated
Gamow-Teller distributions in the decay of nuclear systems
with a few valence protons, such as Zr or Mo isotopes, have
the strength concentrated in a narrow energy range (less than
0.5 MeV) or sometimes in only one transition. The strength
in systems with Z

p
v > 4 (Tc and above) is distributed over

the energy range of about 4 MeV. The Nb isotope chain is
intermediate in this respect, because in the lowest configuration
Nb has only one valence proton in the g9/2 shell, whereas
decays to Zr isotopes are distributed over several states. We
show these systematics using a few examples in the following.

In Figs. 4–6, we compare the calculated Gamow-Teller dis-
tributions with available data collected from several sources.
All measurements were done in spontaneous decays. Data for
N = 50 and 51 isotones were obtained from Refs. [10,26,27].
The GT distribution in 97Ag [11] was obtained with a TAS
measurement. We note that, in comparisons to experimental
data, we do not include the sensitivity limits of experimental
detectors. This sensitivity artificially cuts off the Gamow-
Teller strength near the Q window so that calculated states
are often not observed even 2 MeV below the Q window (see,
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FIG. 5. (Color online) Gamow-Teller strength distributions from
the ground states of two N = 51 isotones: 95Ru and 97Pd (values
taken from [27]). See also the caption of Fig. 4.

e.g., [10,11,21]). For this reason, comparisons to experiments
are somewhat difficult to make, and one should focus on
unambiguous regions of low-lying strength. In Table I we
list fractions of the calculated Gamow-Teller strength that lie
inside the Q window and compare them to the experimental
values. The agreement with more recent experiments (the
97,98Ag nuclei) and heavier nuclei (where the Q window is
larger) is better than in other cases. To evaluate whether
the calculation underestimates the strength accessible in the
β-decay experiments is difficult, because this question is
directly related to the actual value of the hindrance factor.
A comparison to the calculation by Brown and Rykaczewski
[10] reveals some interaction dependence in the values. For
example, they estimated fEc = 29% and 99% in the decays of
94Ru and 96Pd, respectively, whereas our estimates are only
19% and 72%, respectively. Johnstone [26,27], following a
different approach, estimated significantly higher fractions of
the strength inside the Q window for most cases except 95Ru.

From Figs. 4–6 we note that the calculated strength
distributions follow the trend observed in experiments. Most
odd-Z N = 50 isotones and N = 51 isotones have little
strength at low excitation energies (Ex <∼ 2–3 MeV), with the
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FIG. 6. (Color online) Gamow-Teller strength distributions from
the ground state and the first excited state of 96Rh (values are taken
from [27]). See also the caption of Fig. 4.

strength distributed among many states at a higher excitation
energy, some of which are above the Q window. The strength in
even-even nuclei, represented here by even-Z N = 50 isotones,
is concentrated in a few states.

The Gamow-Teller distribution in 97Ag shown in Fig. 4
is converged (around 60 iterations per Jf was required);
thus the calculated shape is as good as it can be for the
interaction. The centroid of the experimental Gamow-Teller
strength distribution in 97Ag is lower than the calculation
predicts: E

exp
centr = 4.3 MeV versus Ecalc

centr = 4.7 MeV. This is
one of the indicators that the interaction may require some
fine-tuning.

We already showed and discussed parts of the calculated
Gamow-Teller distributions in Figs. 4–6. Having in mind
upcoming experiments [9] on Mo isotopes, we show the
calculated distributions for the decays of Mo isotopes with
masses A = 93–97 in Fig. 7. The main contributions to the
total strength are located within a 1-MeV energy range around
the centroid. The decays of Tc isotopes (see Fig. 8) have the
strength distributed within a 4-MeV range. These two isotope
chains display the difference in the decays of even-even and
odd-odd nuclei that we already discussed.

TABLE I. Fraction of the calculated Gamow-Teller strength inside the
QEc window, fEc = BEc/GT+, and experimental �B(GT ) strength.

Parent GT+ BEc fEc BEc/h �B(GT ) Ref.
nucleus %

93Tc 6.12 0.13 2 0.03 0.13 [26]
94Tc 5.74 0.13 2 0.03 —
94Ru 7.89 1.53 19 0.36 1.0 [10]
95Tc 5.43 0.08 1 0.02 —
95Ru 7.49 0.59 8 0.14 0.8 [27]
95Rh 9.41 6.35 67 1.49 1.3, 2.5 [26]
96Tc 5.36 0.04 1 0.01 —
96Rh 9.05 5.14 57 1.21 0.2 [27]
96Pd 11.18 8.08 72 1.90 2.4 [10]
97Rh 8.53 2.60 30 0.61 —
97Pd 10.90 7.38 68 1.74 0.9 [27]
97Ag 12.71 12.49 98 2.34 3.0 [11]
98Ag 12.47 11.53 92 2.71 2.7 [22]
98Cd 14.48 14.40 99 3.39 3.5 [26]
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We also show the distributions for Nb isotopes (see
Fig. 9). There we observe the strength migration from higher
energies to lower energies as the neutron number increases.
Simultaneously, the Gamow-Teller distribution gets narrower,
until the entire strength is gathered in one transition.

We turn now to a discussion of the calculated total Gamow-
Teller strength and the centroids. The isotopic dependence
of the total strength is smooth with the strength decreasing
together with the increasing number of neutrons and/or the
decreasing number of valence protons in the g9/2 shell [see
the discussion after Eq. (2)]. Assuming no mass dependence,
we can derive an approximate formula: GT+ = 0.086(Zv −
1.5)(20 − Nv). [The factor (20 − Nv) is due to the relative
unimportance of the h11/2 shell because of its negative
parity.] This form is somewhat similar to the dependence
Zv(20 − Nv)/A observed in the pf-shell nuclei (see, e.g., [28]).
The difference may be related to the active j shells. In the
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FIG. 8. Calculated Gamow-Teller distributions in Tc isotopes
with masses A = 94–97. See also the caption to Fig. 7.
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FIG. 9. Calculated Gamow-Teller distributions in Nb isotopes
with masses A = 92–96. See also the caption to Fig. 7.

pf-shell nuclei, discussed in Ref. [28], protons predominantly
occupy the f7/2 shell; thus its occupation is proportional to the
number of valence protons. In contrast, in our model space, the
occupancy of the g9/2 proton shell increases due to excitations
out of the p1/2 shell via configuration mixing. This increase
is greater for isotopes closer to the core nucleus (around 0.6)
and is 0.2 for A = 97 nuclei with Zv > 2. The formula’s χ2

per degree of freedom is 0.05.
Another systematic relates to the centroids of the GT+

distribution. If plotted with respect to the lowest positive-parity
state of the daughter nucleus, the centroids of Gamow-Teller
distributions show a characteristic odd-even staggering (see
Fig. 10). They are low in even-even nuclei, high in odd-odd
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FIG. 10. Excitation energy of the centroid in the calculated nuclei.

For Zr
β+
→ Y decay, the excitation energy was calculated from the

lowest positive-parity state in Y.
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FIG. 11. (Color online) Energy of the GT+ centroid with respect
to the calculated ground-state energy of the parent nucleus as a
function of (N − Z)/A.

nuclei, and average in odd-A nuclei. A similar trend was
observed in the mid-pf-shell nuclei [29].

Langanke and Martı́nez-Pinedo [5] interpreted this odd-
even staggering as a result of pairing energy contributions
to the mass splitting between the parent and daughter nuclei
(see also [30]). The pairing structure effect goes away if the
centroids are measured with respect to the parent nucleus. We
plotted the centroid energies calculated in this way in Fig. 11.
We also included the Coulomb energy difference, calculated
using the formula [31] Ec = 0.72(Z2/A1/3)(1 − 1.69/A2/3),
but ignored the proton-neutron mass difference and the
splitting between the proton and neutron single-particle orbits,
which would be present if the lowest single-particle energies
would be taken with respect to the core nucleus, 88Sr. The figure
shows that centroid energies indeed lose information about the
pairing structure. It is interesting to note that there seems to
be a crossover behavior, which we highlighted by connecting
the points corresponding to the decays of Zr isotopes. These
centroid energies follow a linear dependence as well, but the
inclination is different from that in other nuclei. This behavior
is probably related to the fact that GT+ strength in Zr isotopes
is due to the proton excitations out of the p1/2 shell.

IV. DISTRIBUTED-MEMORY SHELL-MODEL CODE

Our calculations were performed using a new parallel
shell-model code ORPAH (Oak Ridge parallel shell model
code), which is still under development. The basic ideas are
similar to those employed in the serial m-scheme computer
code ANTOINE [32,33]. However, there are differences in
the approach, since the code was developed by targeting the
distributed-memory computational paradigm. Although the
distributed-memory approach sets no limits on the available
memory or the number of processors involved in the com-
putation, a natural limitation occurs because of the need to

communicate data from one processor to another, a process that
for collective operations scales as N2

p, where Np is the number
of processors. However, even in cases when communication
becomes unfavorable, there is still a possible trade-off because
of a greater amount of available memory.

The most time-consuming part of the shell-model problem
is the operation of the Hamiltonian on a vector, H�, producing
a new vector. Long computation time demands a good
load-balancing at this step, since each processor should be
assigned a similar amount of work for an effective use of
computational resources. One Lanczos iteration consists of
two substeps: a production of a new vector and its subsequent
reorthogonalization to previous ones. We parallelize each
substep in a different way. First, to speed up vector-vector
operations we assign a fixed, approximately equal number of
the basis vectors to each processor. Owing to the orthogonality
of the basis states, the amplitudes are independent, and
vector-vector operations can be performed on each processor
in parallel with a collective addition of the partial results
to obtain values of the scalar products. This distribution of
amplitudes creates the need to send them to other processors
when a new vector is created during the H� operation. Second,
for a time-efficient parallel H� operation the amplitudes are
grouped into smaller portions, as we discuss in the following.
Each processor works on a set of pairs of these groups,
which are assigned in a time-balanced way before the Lanczos
iterations start. The goal is that each processor would spend
an approximately equal amount of time producing pieces of
the final vector. These pieces are then sent to the appropriate
processors after each iteration, where they are added up.
When all pieces are collected, the second substep of Lanczos
procedure, reorthogonalization, starts.

In the following we give some more details of the code.
Similar to ANTOINE, the code numerically builds “blocks”
of identical-particle Slater determinants having the same
quantum numbers and sets up tables allowing construction of
the elements of the Hamiltonian matrix [33]. Differences arise
from the need to split blocks for a more efficient computation.
If the model space dimension is D, and there are Np processors,
then the part of amplitudes that reside on a particular processor
has size D/Np. For a sufficiently large number of processors,
D/Np can get smaller than the size of the largest block
sl . (In general, the original blocks have greatly varying
sizes.) This would limit the maximum reasonable number of
processors, because additional processors would keep track of
only a small amount of amplitudes. An additional limitation
would come from the H� computation. Operations involving
this largest block are also the most time-consuming, since
for a dense matrix the number of matrix-vector operations
scales like s2

l , whereas the sparsity affects all groups. To
avoid these limitations we decided to split the blocks, which
also allows a better work balance of the H� operation.
If gi is a group of initial amplitudes, then the operation
with a complete Hamiltonian produces amplitudes (Hgi)
belonging to several final groups gf . Smaller groups take less
computation time and allow a better-balanced assignment of
tasks (gi, gj ): (gini

i , gini
j ) → (gfin

i , gfin
j ), where gfin

i (gfin
j ) is a

part of Hgini
j (Hgini

i ) amplitudes belonging to the amplitude
group gi (gj ).
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During the operation of the Hamiltonian acting on a
vector, the amplitudes are requested from other processors
as needed, according to the assigned task list. Some of the
amplitudes are buffered in the processor’s memory, allowing
the processor to compute while simultaneously waiting for
additional amplitudes to arrive. To make this possible each
processor runs one computation and one communication
thread. Having calculated the assigned contributions to the
final Lanczos vector, the processor sends those amplitudes
to the appropriate processor, where they are added up. The
final Lanczos vector is reorthogonalized to previous vectors.
Because of the orthogonality of the basis, each processor
can produce a partial sum of the scalar product, and (global)
communication is needed only to obtain the total sum. When
the vector overlaps are available, the final orthogonal vector is
produced and is stored on processors by the assigned pieces.

There is no coded-in restriction on the number of pro-
cessors, with the exception that the minimum number of
processors is two, because of the manager-worker algorithm
employed in the Hamiltonian table setup procedure. The
current version of the code can calculate eigenvalues and
eigenvectors of the Hamiltonian, the total angular momentum
and isospin, as well as GT± properties. Some computations
were done on a 2–4 CPU computer running Linux; others
were done at the NERSC computer Seaborg using up to
80 processors. To test the limitations of the code, we tried
different problems. The largest dimension that we were able
to solve was the ground-state energy of 52Fe (D = 110 × 106)
on 48 processors. The current setup did not allow us to reach
such dimensions in the region of our study, where proton and
neutron spaces are very asymmetric.

The performance of a parallel code is usually assessed by
plotting the speed-up time as a number of processors. The need
to deliver amplitudes as well as summation of partial overlaps
creates a communication overhead on top of the time needed
to produce the final Lanczos vector. The latter operation is
well balanced (i.e., is inversely proportional to the number of
processors), whereas the overhead depends on the number of
processors involved in the calculation. Theoretically, this time
is proportional to the number of processors squared. However,
we were unable to obtain a consistent value of the time
per iteration within one multiprocessor run, and so we delay
the speed-up evaluation until further improvement in the
code performance. In spite of this difficulty, we consider the
distributed-memory computation to be a promising venue to
solve large-scale shell-model problems.

V. SUMMARY

We calculated nuclei above 88Sr having masses A = 90–97
using a realistic effective interaction derived from the CD-
Bonn potential. The agreement between the calculated and
measured spectra is satisfactory. Improvements to the inter-
action through fine-tuning of the matrix elements could be
useful to obtain the finer spectroscopic details, including the
level ordering or the placement of negative-parity states in
several nuclei, but this is beyond the scope of this exploratory

work, which focuses on the Gamow-Teller properties in the
selected region of nuclei.

We also calculated the total Gamow-Teller strength and
strength distributions for the decays in the electron-capture
direction. We found that the total strength follows the single-
particle estimate based on the πg9/2 and νg7/2 occupation
numbers obtained from the ground-state wave functions of
the parent nucleus, although the values differ slightly from a
naive single-particle shell-model picture. Calculated strength
distributions appear to reasonably recover experimental distri-
butions in regions that are unaffected by detector sensitivity
limits. From TAS data on 97Ag, we were able to obtain an
estimate of the phenomenological quenching factor relative
to single-particle estimates. Furthermore, our Gamow-Teller
distribution for 97Ag reproduces the measured data (see Fig. 4).
By analyzing the centroids of the Gamow-Teller distributions,
we found that the odd-even staggering behavior disappears
if the centroids are measured from the parent ground state,
as was suggested by Langanke and Martı́nez-Pinedo [5]. We
also observed that the centroids measured in this way have
a quasilinear dependency on the parametrization (N − Z)/A,
with a different inclination for nuclei where no protons are
present in the g9/2 shell in the noninteracting picture. Finally,
we made several predictions of the strength distributions for the
measurements that may soon be available in mass A = 92–97
nuclei. To resolve the question of the Gamow-Teller strength
quenching in this region both the updated experimental
information as well as improved 0h̄ω theoretical calculations
are required.

The description of low-lying Gamow-Teller strength distri-
butions in a large range of nuclei (from roughly mass A = 50
to mass A = 150) is one important ingredient in understanding
type II supernova explosions, since electrons get captured by
nuclei through these levels. Of course, this is not the whole
story since first- and second-forbidden transitions (which
are typically difficult to access in the laboratory) also play
an important role in the cross-section and rate calculations
relevant for supernovae. For low-energy capture, the Gamow-
Teller transitions will dominate. They also dominate the
neutrino-nucleus scattering that may occur at later times in
the supernova event. Theoretical calculations can provide rate
estimates for these processes. However, measurements are
necessary to validate the estimates. Additional experimental
data for the nuclear region discussed in this paper are required
to put constraints on the theoretical predictions and to help
improve them.
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