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One-particle resonant levels in a deformed potential

Ikuko Hamamoto
Division of Mathematical Physics, Lund Institute of Technology at the University of Lund, Lund, Sweden and

The Niels Bohr Institute, Blegdamsvej 17, Copenhagen Ø, DK-2100, Denmark
(Received 13 May 2005; published 1 August 2005)

Solving the Schrödinger equation in coordinate space with the appropriate asymptotic boundary conditions,
neutron one-particle resonant levels in Y20-deformed Woods-Saxon potentials are studied. These resonance levels
are the natural extension of one-particle bound levels to the continuum and are defined in terms of eigenphase. For
one-particle bound levels with �π �= 1/2+ the corresponding one-particle resonant levels can be always found for
small positive energies. For one-particle bound levels with �π = 1/2+ the corresponding one-particle resonant
levels are either absent or disappearing quickly as energy increases, when we use well-deformed potentials
with a realistic size of diffuseness. The possible presence of �π = 1/2+ one-particle resonant levels, in which
� = 0 components in the wave functions play a crucial role, is further studied using a simplified model without
spin-orbit potential.
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I. INTRODUCTION

The properties of nuclei far from the β stability line,
especially close to the neutron drip line, provide a challenge to
the conventional theory of nuclear structure. A characteristic
feature unique in the system with some weakly bound neutrons
is the importance of the coupling to the nearby continuum of
unbound states, as well as the impressive role played by weakly
bound neutrons with low orbital angular momenta �. Weakly
bound small � neutrons have an appreciable probability to
be outside the core nucleus and are thereby insensitive to
the strength of the potential provided by the well-bound core
nucleons, while the wave functions of weakly bound large
� neutrons stay mostly inside the nuclear potential. Since
the Fermi level of drip line nuclei in the mean-field approxima-
tion is very close to the continuum, the many-body correlation
in the ground state necessarily receives contributions by some
of the infinite number of one-particle levels in the continuum.
The role of low-lying positive-energy one-particle levels in the
representative many-body correlations, deformation and pair
correlation, is currently of major interest [1].

In Ref. [2] we have studied the many-body pair correlation
of spherical neutron-drip-line nuclei, while in Ref. [3] the
structure of weakly bound neutron orbits in deformed poten-
tials is investigated in the absence of pair correlation. Thus,
we are almost ready to proceed to studying the structure of
neutron-drip-line nuclei in the presence of both deformation
and pair correlation. While the effective pair gap of weakly
bound neutrons in deformed nuclei has been investigated
in Ref. [4], we have realized the absolute necessity for
having a good knowledge of one-particle resonant levels in
deformed potentials, before we can fully understand both
deformation and many-body pair correlation in neutron-drip-
line nuclei. In the present work we are not interested in the
one-particle resonances in general, which may play a role,
for example, in the neutron scattering on deformed nuclei.
Instead, we concentrate on studying the one-particle resonant
levels in deformed potentials, which can be regarded as a
natural extension of one-particle bound levels in the same
potentials. These resonant levels will play a crucial role in

neutron-drip-line nuclei, when the many-body pair-correlation
is taken into account on top of deformation.

When we examine a weakly bound system, it is of basic
importance not to limit the system to a finite box, since we are
particularly interested in the behavior of one-particle resonant
levels to which �= 0 neutrons contribute. We must solve the
Schrödinger equation in coordinate space with appropriate
boundary conditions [5,6]. Searching for the behavior of
resonant wave functions sufficiently outside the deformed
potential we find it appropriate to define one-particle resonant
levels in terms of eigenphase, which increases through 1

2π as
energy increases. The eigenphase is defined as the phase shift
which is obtained by diagonalizing the S matrix. See Ref. [7]
for eigenphase, and references quoted therein.

In Sec. II our model and formulas are presented, while
numerical results and discussions are given in Sec. III.
Conclusions and perspectives are given in Sec. IV.

II. MODELS AND FORMULAS

In the present paper we study the structure of one-particle
orbits in axially symmetric quadrupole-deformed Woods-
Saxon potentials, solving the Schrödinger equation in coordi-
nate space with appropriate asymptotic boundary conditions.
While one-particle bound levels in deformed potentials are
obtained by solving the eigenvalue problem, we look for
one-particle resonant levels, which can be regarded as a natural
continuation of weakly bound neutron levels in the same
deformed potentials.

Except for a slight change of the expression of k(r) we use
the same model Hamiltonian as that used in Ref. [3], in which
one-particle bound orbits are studied. Our one-body potential
consists of the following three parts:

V (r) = VWSf (r),

Vcoupl(�r) = −βk(r)Y20(r̂), (1)

Vso(r) = −VWSv

(
�

2

)2 1

r

df (r)

dr
(�σ · ��),
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where � is the reduced Compton wavelength of the nucleon
h̄/mrc,

f (r) = 1

1 + exp
(

r−R
a

) (2)

and

k(r) = rVWS
df (r)

dr
. (3)

In the following, if it is not specifically mentioned, we employ
a = 0.67 fm, VWS = −51 MeV, and v = 32, which are the
standard parameters used in β stable nuclei [8]. The nuclear
radius R is varied so as to vary the strength of our one-body
potential. In other words, we vary the mass number A of the
system with R = r0A

1/3 where r0 = 1.27 fm is used. This
manner of viewing the changing potential strength has the
disadvantage of changing the height of the centrifugal barrier,
which can be crucial especially to the discussion of the widths
of one-particle resonances. An alternative way is to vary the
values of VWS for a given radius R. However, then, different
�π = 1/2+ levels belonging to a given major shell cannot be
compared for realistic values of VWS. In any case, we have
confirmed that our findings described in the present article can
be obtained also by varying VWS values. In the expression (1)
we have included only the lowest-order term in deformation
parameter β of the deformed Woods-Saxon potential. This is an
approximation, but this simple form of the deformed potential
is sufficient for the present purpose of exhibiting the possible
continuation of one-particle bound levels into the one-particle
resonance spectrum. Writing the single-particle wave function
as

��(�r) = 1

r

∑
�j

R�j�(r)Y�j�(r̂), (4)

which satisfies
H�� = ε���, (5)

where � expresses the component of one-particle angular
momentum �j along the symmetry axis, which is a good
quantum number, and

Y�j�(r̂) ≡
∑

m�,ms

C

(
�,

1

2
, j ; m�,ms,�

)
Y�m�

(r̂)χms
. (6)

The coupled equations for the radial wave functions are written
as {

d2

dr2
− �(� + 1)

r2
+ 2m

h̄2 [ε� − V (r) − Vso(r)]

}
R�j�(r)

= 2m

h̄2

∑
�′j ′

〈Y�j�|Vcoupl|Y�′j ′�〉R�′j ′�(r), (7)

where

〈Y�j�|Vcoupl|Y�′j ′�〉
= −βk(r)〈Y�j�|Y20(r̂)|Y�′j ′�〉

= −βk(r)(−1)�−1/2

√
(2j + 1)(2j ′ + 1)

20π

× C(j, j ′, 2; �,−�, 0)C

(
j, j ′, 2;

1

2
,−1

2
, 0

)
. (8)

The eigenvalues ε�(<0) of the coupled equations (7) for
a given value of �, which is equivalent to � appearing in
the asymptotic quantum numbers [Nnz��], are obtained by
solving the equations in coordinate space for a given set of
potential parameters, with both the condition, R�j�(r) = 0 at
r = 0, and the asymptotic behavior of R�j�(r) for r → ∞
as

R�j� ∝ rh�(αbr), (9)

where h�(−iz) ≡ j�(z) + in�(z), in which j� and n� are
spherical Bessel and Neumann functions, respectively,
and

α2
b ≡ −2mε�

h̄2 . (10)

The normalization condition is written as
∑
�,j

∫ ∞

0
|R�j�(r)|2dr = 1. (11)

For the levels in the continuum ε� > 0 we solve the coupled
equations (7) in coordinate space for a given set of potential
parameters, requiring

R�j�(r) = 0 at r = 0 (12)

and the asymptotic behavior of R�j�(r) for r → ∞ as

R�j�(r) ∝ cos(δ�)rj�(αcr) − sin(δ�)rn�(αcr), (13)

where

α2
c ≡ 2m

h̄2 ε�. (14)

The coupled equations (7) are integrated both outward from
r = 0 and inward from a large r value. Then, we look for the
eigenphase δ� so that at r = Rm we can match a combination
of inward-integrated (�, j ) wave functions and that of their
derivatives with a combination of the outward-integrated (�, j )
wave functions and that of their derivatives, respectively. The
way of solving the coupled channel equations (7) is taken from
Ref. [9]. We note that the eigenphase is common to all the
open channels, (�, j ), for given �. For given ε� and potential
we have several solutions for δ�. The number of solutions is
equal to that of wave function components with different (�, j )
values. The value of δ� determines the relative amplitudes of
different (�, j ) components. The total normalization of the
positive-energy deformed one-particle wave functions can be
at present left arbitrary.

As one-particle resonant levels we look for the ε� values,
for which the eigenphase δ� increases through 1

2π as ε�

increases. Furthermore, at present we are interested only in
those one-particle resonant levels, for which the energies
are smoothly connected to eigenenergies of weakly bound
one-particle levels. Inside the nuclear potential the relative
amplitudes of wave function components of those one-particle
resonant levels with very small positive energies are very
similar to those of weakly bound one-particle levels, though
the normalization of bound states is totally different from that
of positive-energy states. When we find one-particle resonant
levels in terms of eigenphase, we calculate the width of the
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FIG. 1. Neutron one-particle levels in axially-symmetric
quadrupole-deformed Woods-Saxon potentials as a function of the
potential strength. The radius of the Woods-Saxon potential is
expressed by R, while r0 = 1.27 fm is used. The asymptotic quantum
numbers [Nnz��] assigned traditionally to those levels are denoted
for the [211 3/2] and [330 1/2] levels, while those of three �π = 1/2+

levels plotted are, from left to right, [220 1/2], [211 1/2], and
[200 1/2]. The width of one-particle resonant levels with ε� > 0
denoted by thin vertical lines is calculated in terms of eigenphase,
which is defined by Eq. (15). See the text for details.

resonance using the formula

� ≡ 2
dδ�

dε�

, (15)

where the denominator is calculated at the resonance energy.

III. NUMERICAL CALCULATIONS AND DISCUSSIONS

Since we have presented in Ref. [3] the structure of
weakly bound one-neutron orbits in Y20-deformed Woods-
Saxon potentials taking examples of sd-shell nuclei, in the
present work we keep the same mass number region showing
numerical results. In Sec. III A we examine one-particle levels
for realistic parameters, while in Sec. III B we simplify the
deformed potential by switching off the spin-orbit potential so
that the deformation couples only two channels, s and d.

A. One-particle levels with realistic parameters

In Fig. 1 we show calculated neutron energy levels in
axially-symmetric quadrupole-deformed Woods-Saxon poten-
tials as a function of the potential strength, as described by the
radius of the potential. The chosen deformation parameter
β = 0.5 may appear a bit large; however, we consider it
realistic, since the example involves a light deformed nucleus
and, moreover, we have included only a linear term of
deformation in Eq. (1). In order to have an easily readable
figure, we have included only the [211 3/2] and [330 1/2]
levels in addition to all three �π = 1/2+ levels in the sd shell.

In the calculation of positive-parity levels we have included
s1/2, d3/2, and d5/2 orbits, while p1/2, p3/2, f5/2, and f7/2 are
coupled for negative-parity levels. All bound energies ε� < 0
are calculated in the same way as those shown in Fig. 1 of
Ref. [3]. The only difference from Ref. [3] is the expression
used for k(r) in Eq. (3). Though the resulting numerical
difference is small, the presently adopted expression (3)
appears more reasonable when a stretching of length scale
rather than a displacement of the surface is considered.

The major component of the well-bound [330 1/2] level is
f7/2, while the p component, especially p3/2, becomes larger
as the binding energy approaches zero as shown in Fig. 4
of Ref. [3]. As the resonant energy for ε� > 0 increases,
the width rapidly increases. Consequently, the resonance is
not identified above 2 MeV, which is approximately the
energy characteristic of the disappearance of �= 1 one-particle
resonances having the centrifugal barrier height for �= 1
orbits. The [211 3/2] level has no �= 0 component and the
possible lowest � component is �= 2. Therefore, as seen in
Fig. 1, the continuation as a resonant level into the region of
ε� > 0 can be seen up to about 10 MeV. Among the three �π =
1/2+ levels, which can be identified as [220 1/2], [211 1/2] and
[200 1/2] from the left to the right in Fig. 1, we find no
one-particle resonant states as a continuation of the bound [220
1/2] and [211 1/2] levels. The vanishing slope of one-particle
eigenvalues for |ε| → 0 is a characteristic feature of � = 0
orbits in spherical finite-well potentials. The tendency of
the vanishing slope is clearly seen in the [220 1/2] and
[211 1/2] eigenvalues of Fig. 1. The absence of the resonant
states can be easily confirmed by examining the eigenphase
for the potentials, of which the strength is slightly weaker than
that of the potential producing almost zero-binding energy. In
those weaker potentials in which no weakly bound state exists
any longer, the eigenphase steeply increases from zero (or mod
nπ ) as energy increases from zero; however, the phase starts
to decrease before reaching π/2. For illustration, in Fig. 2(a)
the eigenphase as a function of ε� is exhibited for the potential
producing a weakly bound level, while in Fig. 2(b) the one for
the slightly weaker potential.

For the [200 1/2] level a continuation by one-particle
resonant levels is found, as plotted in Fig. 1. However, the
large width becomes increasingly larger and the resonant states
disappear before reaching ε� = 0.8 MeV. The existence of
resonant states is realized by the admixed �= 2 components,
while the large width is due to the admixed �= 0 component.
See Fig. 5 and discussions in Sec. III B. For comparison
between the wave functions of one-particle bound and resonant
states inside the potential range, in Fig. 3(a) we plot the
components of the radial wave function with ε� = −0.1 keV,
while in Fig. 3(b) those with ε� = +100 keV are shown. In
Fig. 3(a) we have artificially normalized the bound-state wave
function by integrating only up to rmax = 60 fm, in order to keep
a finite size of the amplitudes inside the potential. We should
compare only the relative amplitudes of various components
in Fig. 3(a) with those in Fig. 3(b), since the normalization of
resonant states is arbitrary and furthermore continuum wave
functions have a dimension different from that of bound states.
It is seen that the relative amplitudes of various components
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The potential has a weakly bound state at εΩ= − 0.023 MeV. 
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VWS = − 51 MeV   and   ( R0/1.27 )3 = 11.30 

No weakly bound state exists for the potential. 
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FIG. 2. (a) Eigenphase as a function of energy, for the potential producing a weakly bound state at ε� = −0.023 MeV. The value of π/2 is
denoted by the thin horizontal line. (b) The same as in (a), but for the potential, which is slightly weaker and consequently produces no weakly
bound state. Note that the eigenphase starts to decrease before reaching π/2.

inside the potential range in Fig. 3(b) are very similar to
those in Fig. 3(a). A prominent difference between Figs. 3(a)
and 3(b) is the behavior of the s1/2 radial wave function,
since the absence of the centrifugal barrier for �= 0 orbits
affects the s1/2 wave function already for very small values of
ε� > 0.

The statement that the major component of �π = 1/2+
bound levels in a Y20-deformed finite-well potential becomes
s1/2 as the binding energy approaches zero [3,10] comes from
the huge s1/2 tail outside the potential seen in Fig. 3(a). Namely,
it comes from the normalization unique in bound states and,
in this sense, the statement is valid for all �π = 1/2+ levels
without exception. Nevertheless, this predominance of s1/2

component in the weakly-bound wave functions does not
control the structure of possible one-particle resonant levels
just above zero energy. A critical element to provide the

characters of resonant states is the relative amplitudes of
various components inside the potential range, which are the
characterization of respective one-particle levels and are the
smoothly-varying quantities as energy increases from negative
to positive values. Since the presence of three components,
s1/2, d3/2, and d5/2, produces an interesting but complicated
structure, in the following section we study a simplified model
switching off the spin-orbit potential.

B. A simple model without spin-orbit potential

For a typical deformation the one-particle levels usually
have several appreciable components with different � values. In
other words, the component of a given �= 0 orbit in one major
shell is mixed into several one-particle levels with �π = 1/2+.
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Rd5/2(r) 

(a) 

One-particle bound radial wave function of [200 1/2] 

R0 = 3.338 fm  and  (R0/1.27)3 = 18.15 

VWS = − 51 MeV,    β = 0.5,    εΩ = − 0.1 keV 

Radial wave function is normalized with  rmax= 60 fm. 
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One-particle resonant radial wave function of [200 1/2] 

R0 = 3.334 fm  and  (R0/1.27)3 = 18.0854 

VWS = − 51 MeV,      β = 0.5,      εΩ = + 0.1 MeV 

Total normalization of radial wave function is arbitrary. 
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FIG. 3. (a) Components of the bound radial wave function of the [200 1/2] level as a function of radial coordinate. The eigenenergy is
−0.1 keV. In order not to have almost vanishing amplitudes for finite values of r, the components are shown, which are obtained by integrating
the total wave function only up to rmax = 60 fm and normalizing it to unity. (b) Components of the resonant radial wave function of the
[200 1/2] level as a function of radial coordinate. The resonance energy is +100 keV, in which the resonance is defined using the eigenphase.
Only the relative amplitudes of various components are meaningful, since the total normalization of the resonant wave function is arbitrary.
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Since the admixed �= 0 component leads to either absence
of one-particle resonant levels or rapidly growing width of
possible resonant levels, we wish to examine the role of the
�= 0 component simplifying the model as much as possible.
In the present subsection we study a model consisting of
the two orbits, �= 0 and 2, without spin-orbit potential. The
absence of spin-orbit potential implies that in this subsection
� expresses the component of one-particle orbital angular
momentum along the symmetry axis. Furthermore, in order to
control the mixture of the two components, we examine a very
small deformation, β = 0.1.

In Fig. 4(a) we plot �π = 0+ neutron one-particle levels for
β = 0.1 keeping all other parameters the same as before. For
the spherical Woods-Saxon potential with standard parameters
[8] the 1d level lies lower for deeply-bound orbits, while the 2s
level lies lower for weakly-bound orbits. Therefore, the solid
curves in Fig. 4(a) exhibit a slightly complicated behavior. For
reference, switching off the deformation coupling between the
�= 0 and 2 channels, we plot the eigenvalues with s and d by
the dotted and dashed curves, respectively, where the diagonal
term of the deformed Hamiltonian with β = 0.1 is already
included. First of all, from the comparison between the solid,
dotted, and dashed curves around the crossing point of the
latter two, (R/r0)3 ≈ 17.2, we see that the sd-coupling matrix
element is slightly less than 1 MeV for the present β = 0.1.
For the lower-lying �π = 0+ level, which for convenience we
may call [220], we find no continuation of resonant levels. The
absence of resonant levels may be expected, since the wave
function at small binding energy consists predominantly of
� = 0 component. In contrast, the higher-lying �π = 0+ level,
which may for convenience be called by [200] though the wave
function is very different from that given by the asymptotic
quantum numbers [200], has a very short continuation of
resonant levels with rapidly growing widths.

In Fig. 5 the calculated eigenphase as a function of energy
ε� > 0 is shown taking the potential, in which the [200]
one-particle resonant level is obtained at εres

� = 0.6 MeV with
� = 1.35 MeV. If the potential strength is weaker, namely if
a slightly smaller value of (R/r0)3 is chosen, the eigenphase
starts to decrease before reaching π/2 and thus the one-particle
resonant state is not obtained. The energy dependence of the
eigenphase obtained at very low energy is different from that
of the �= 0 phase shift which should increase proportional
to

√
ε�. Instead, it comes clearly from the �= 2 component.

It is also well known that the �= 0 phase shift alone never
increases through π/2 as energy increases. On the other hand,
if the �= 0 component is responsible for the width of the
one-particle resonance, we may expect for very small energy,

��=0 ∝ √
εP (� = 0), (16)

where P (� = 0) is an appropriate measure of the rela-
tive probability of the s component in the interior region
of the potential. We can, for example, obtain P (� = 0)
using the s and d components of the calculated resonant state
and the expression

P (� = 0) = 〈s|V (r)|s〉
〈d|V (r)|d〉 + 〈s|V (r)|s〉 . (17)
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FIG. 4. (a) �π = 0+ neutron one-particle levels in the absence
of spin-orbit potential, as a function of the potential strength. For
convenience, we call the higher-lying level [200], while the lower-
lying one [220]. The radius of the Woods-Saxon potential is expressed
by R, while r0 = 1.27 fm is used. A very small deformation β = 0.1
is used as a reference example. The width of one-particle resonant
levels with ε� > 0 denoted by thin vertical lines is calculated in terms
of eigenphase, which is defined by Eq. (15). The dotted and dashed
curves express the eigenvalues of 2s and 1d orbits, respectively, which
are obtained when the deformation (namely, s-d) coupling is switched
off. (b) The same as in (a), but a very small diffuseness a = 0.2 fm is
used in the Woods-Saxon potential. (c) The same as in (a), except for
a larger deformation β = 0.5.
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FIG. 5. Eigenphase as a function of one-particle energy is plotted
for the potential, which produces the [200] one-particle resonance at
ε� = 0.6 MeV in Fig. 4(a). The value of π/2 is denoted by the thin
horizontal line.

Indeed, we have found that the energy dependence of the width
of the [200] one-particle resonance shown in Fig. 4(a) is well
expressed by Eq. (16) together with Eq. (17), up to the energy
of a few hundred keV. From the above considerations we may
conclude that the resonance width comes essentially from
the admixed �= 0 component, while the resonant states are
realized thanks to the presence of the �= 2 component.

It is known that for a finite square-well potential the 1d
level lies lower than the 2s level all the way up to zero binding.
Therefore, the potentials with diffuseness much smaller than
the realistic one would give us a good opportunity for studying
the weakly bound levels in deformed potentials, where the 1d
level lies lower than the 2s level in the spherical limit. In
Fig. 4(b) we show neutron one-particle levels for potentials
with the same parameters as those used in Fig. 4(a) except
for the small diffuseness, a = 0.2 fm. Indeed, due to the
smaller diffuseness the 1d level denoted by the dashed curve
lies lower than the 2s level expressed by the dotted curve,
when the coupling between the s and d channels is switched
off. The solid curves show the result of including the s-d
deformation coupling. The higher-lying solid curve, of which
the predominant component has �= 0, has no continuation
at resonant levels. The lower-lying solid curve continues into
the positive-energy region by resonant levels. The analysis
of the resonance widths from zero to the energy of a
few hundred keV shows that the energy dependence of the
widths is well reproduced by formulas (16) and (17). In
contrast to the one-particle resonances smoothly connected
to the [200] level in Fig. 4(a) where the unperturbed bound
�= 0 level lies 1–2 MeV below the resonant levels, no
�= 0 levels to be admixed with lie energetically nearby.
The small probability of the �= 0 component defined by
Eq. (17) is found to decrease rapidly in one-particle res-
onant states at higher energies. Consequently, the reso-
nant levels become purer �= 2 states continuing up to
10 MeV.

For reference, in Fig. 4(c) we show �π = 0+ neutron one-
particle eigenvalues for potentials with the same parameters as

those used in Fig. 4(a) except for a larger deformation β = 0.5.
At this deformation no continuation by one-particle resonant
levels is found in either of those two levels denoted by solid
curves.

IV. CONCLUSIONS AND PERSPECTIVES

We have shown that one-particle resonant levels defined in
terms of eigenphase are the natural extension of one-particle
bound levels to the continuum in deformed potentials. These
resonant levels will be especially useful and play an important
role when the many-body pair correlation is taken into account
in deformed neutron-drip-line nuclei. For �π �= 1/2+ one-
particle levels in which �= 0 component is absent a smooth
extension to the continuum by resonant levels can always
be found for small positive energies. The energy, at which
the resonance disappears, depends primarily on the minimum
value of � of possible components, but for a given �π value
it may appreciably depend on the structure of respective
wave functions. In contrast, for �π = 1/2+ one-particle bound
levels whether or not the relevant resonant levels are present
depends on deformation, the magnitude of the admixed �= 0
component, the location of nearby �= 0 bound levels, and
the diffuseness of the potential. For well-deformed Woods-
Saxon potentials with a realistic size of diffuseness either
no one-particle resonant levels are found or resonant levels
disappear quickly obtaining an increasingly large width as
energy increases.

Considering that one-particle resonant levels with energies
less than a few MeV may have important contributions to the
many-body pair-correlation in neutron-drip-line nuclei, the
properties of the �π = 1/2+ one-particle resonance are of
particular interest. Thus, we have studied a simplified model
consisting of s and d orbits by switching off the spin-orbit
potential, in order to learn more about the role of the �= 0
component in one-particle resonant levels with �π = 1/2+.
We have confirmed that the width of those resonant levels
at low energy comes from the admixed �= 0 component,
while the possible presence of the resonance is made by
the �= 2 component. However, it is a future task to find a
proper parameter which determines the presence or absence of
one-particle resonant levels as a continuation of one-particle
bound levels.

For some parameter sets of potentials we have indeed found
certain one-particle resonant levels, which are obtained using
the present definition in terms of eigenphase and are not
directly connected with one-particle bound levels. The role
and the meaning of those one-particle resonant levels will be
studied in the future.
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