
PHYSICAL REVIEW C 72, 024004 (2005)

Partial-wave analysis of �p �p → ppπ 0 data
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We present a partial-wave analysis of the polarization data for the reaction �p �p → ppπ0, based solely on the
recent measurements at the Indiana University Cyclotron Facility for this channel. Methods for an improved
analysis are discussed. We compare the extracted values to those from a meson exchange model. The fit leads to
a χ 2 per degree of freedom of 1.7.
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I. INTRODUCTION

Understanding pion production in nucleon–nucleon (NN)
collisions near threshold is of high theoretical interest for
various reasons. As the first strong inelasticity for the NN
system, its phenomenology is closely linked to that of elastic
NN scattering (for recent reviews on the subject of near-
threshold pion production see Refs. [1,2]). In addition, as
the pion is a Goldstone boson of the chiral symmetry of
strong interactions, its dynamics is strongly constrained by
this symmetry (see Ref. [3] and references therein). Recently
a scheme was discussed that is said to lead to a convergent
effective field theory even for large momentum transfer
reactions such as NN → NN π [4,5]. Confirmation of this
claim is the precondition for a successful analysis of the
isospin-violating pion production reactions measured recently,
namely, the forward–backward asymmetry in pn → dπ0 [6]
and the total cross-section measurement for dd → απ0 [7].

A complete set of polarization observables for the reaction
�p �p → ppπ◦ was measured for the first time in 2001 [8]. Of
the two existing advanced models of pion production in NN
collisions [9,10] that include higher partial waves and therefore
allow predictions for polarization observables, only the model
of the Jülich group [9,11] has been thoroughly confronted
with those data. It turned out that this model failed to provide
an overall satisfactory reproduction of these polarization
observables [8,12]. On the other hand, the (less complete) data
for �p �p → pnπ+ [13] as well as those for �p �p → dπ+ [14]
were described very well by the same model. So far the
reasons for the shortcoming of this phenomenological model
in describing the neutral pion production—while being rather
successful for the charged pions—is not yet understood.1

The presence of spin leads to contributions of many partial-
wave amplitudes, even close to threshold, which is the regime
of interest here. It is thus difficult to draw any more concrete
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1Note, however, that effective field theory studies revealed many
conceptual problems in this approach, as discussed in [2]; it is up to
now unclear how much impact those have on the description of the
observables.

conclusion from a comparison of the model results directly
with the data. It is well known that a partial-wave analysis
is an important intermediate step toward an understanding of
hadronic reactions: being in principle equivalent to the full
data set, the partial–wave amplitudes can be much more easily
interpreted in terms of their physics content. As a consequence,
a comparison of the theoretical results with the partial-wave
amplitudes is expected to reveal the strengths or weaknesses
of the theory much more clearly than a direct comparison with
the data.

In this paper we present a first step toward a full partial-wave
decomposition of the reaction pp → ppπ0. In our work we
use as input only data from the recent Indiana University
Cyclotron Facility (IUCF) measurement [8]. However, as will
be stressed below, a combined analysis of both the production
data and the data on elastic pp scattering is certainly desirable
for the future. In [8], the various angular-dependent structures
of the polarization observables were fitted under particular as-
sumptions about the partial-wave content of the data as well as
about the energy dependence of some of the amplitudes. Since
we consider these assumptions, which were necessitated by the
limited statistical accuracy of the data, to be reasonable and
plausible, we adopt them for our analysis, too. This also has the
advantage that we can use the extracted coefficients of Ref. [8]
directly in our fitting procedure. In any case, starting from the
same limited number of partial-wave amplitudes, we would
expect to arrive at the same values for the extracted parameters.

This paper is organized as follows: in the next section we
will describe the theoretical formalism that allows one to relate
the observables to the partial-wave amplitudes. In Sec. III
the method of extraction as well as that for determining the
uncertainties are explained. Then, in Sec. IV we discuss the
results and compare them with those of a microscopic model
[9]. The paper closes with a short summary and a discussion
of further steps.

II. THEORETICAL FORMALISM

The T matrix for pp → ppπ0 may be expressed in the
form [15]

T =
1∑

sf ,si=0

si+sf∑
λ=|si−sf |

[Sλ(sf , si) · T λ(sf , si)], (1)
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where si, sf denote the initial and final channel spins,
respectively. We use the same notation as in [16], where
the irreducible channel-spin transition operators Sλ

mλ
(sf , si)

of rank λ are defined. If in the c.m. �pi, �p denote the relative
momenta of the two protons in the initial and final states and �q
the momentum of the pion, the irreducible tensor reaction
amplitudes T λ

mλ
(sf , si) in Eq. (1) can be expressed in the

form [15]

T λ
mλ

(sf , si) =
∑

Lp,L,lq

∑
j,J,Lf

(−1)Lf [j ][Lf ][J ]2[sf ]−1

×
{

sf Lf J

L si λ

}{
sf Lp j

lq J Lf

}
T J

lq (Lpsf )j ;Lsi

×{[YLp
(p̂) ⊗ Ylq (q̂)]Lf ⊗ YL(p̂i)}λmλ

(2)

to separate the energy and angular dependences of the
amplitudes. In Eq. (2), we use the shorthand notation [j ] =√

2j + 1, and (T1 ⊗ T2)Lm indicates the coupling of the two
irreducible tensors T1 and T2 to total angular momentum L
with projection m. The partial-wave amplitudes T J

lq (Lpsf )j ;Lsi

are functions of both the c.m. energy Ec.m. and ε, the relative
kinetic energy of the nucleon pair in the final state (in contrast
to a two-body reaction, where the partial-wave amplitudes are
characterized by a single energy variable).

If �P , �Q denote, respectively, the beam and the target po-
larizations, the differential cross section in a double-polarized
experiment may be written as [15]

dσ

d�pd�qdε
= 1

4

1∑
k1,k2=0

k1+k2∑
k=|k1−k2|

[(P k1 ⊗ Qk2 )k · Bk(k1, k2)],

(3)
in terms of the irreducible tensors

Bk
ν (k1, k2) = 2(−1)k1+k2 [k1][k2]

1∑
sf =0

(2sf + 1)

×
1∑

si ,s
′
i=0

∑
λ,λ′

(−1)s
′
i+sf [si][s

′
i][λ][λ′]

×
{

s ′
i si k

λ λ′ sf

} 


1
2

1
2 si

1
2

1
2 s ′

i

k1 k2 k


 [T λ(sf , si)

⊗ T †λ′
(sf , s ′

i)]
k
ν, (4)

which are bilinear in the irreducible tensor amplitudes
T λ

mλ
(sf , si), whose complex conjugates T λ

mλ
(sf , si)∗ define

T
†λ

mλ
(sf , si) = (−1)mλT λ

−mλ
(sf , si)∗ . If

σ0(ξ ) = 1
4B0

0 (0, 0) (5)

denotes the unpolarized differential cross section with ξ

collectively standing for {p̂, q̂, ε}, the Bk
ν (k1, k2) are related to

the independent (Cartesian) spin observables Aij (ξ ), defined
in [8], through

σ0(ξ ) Ay0(ξ ) = −1
2
√

2
�[

B1
1 (1, 0)

]
, (6a)

σ0(ξ ) Axz(ξ ) = 1
4

{	[
B1

1 (1, 1) − B2
1 (1, 1)

]}
, (6b)

TABLE I. Partial-wave amplitudes that could contribute to �p �p →
ppπ 0 near threshold. Only contributions arising from the first
12 amplitudes were considered in the present analysis.

No. Type Our notation Notation of Meyer et al. [8]
T J

lq (Lpsf )j ;Lsi

2si+1LJ → 2sf +1Lpj , lq

1 Ss T 0
0(00)0;11

3P0 → 1S0, s

2 Ps T 0
0(11)0;00

1S0 → 3P0, s

3 T 2
0(11)2;20

1D2 → 3P2, s

4 Pp T 0
1(11)1;11

3P0 → 3P1, p

5 T 2
1(11)1;11

3P2 → 3P1, p

6 T 2
1(11)2;11

3P2 → 3P2, p

7 T 2
1(11)1;31

3F2 → 3P1, p

8 T 2
1(11)2;31

3F2 → 3P2, p

9 T 1
1(11)0;11

3P1 → 3P0, p

10 T 1
1(11)1;11

3P1 → 3P1, p

11 T 1
1(11)2;11

3P1 → 3P2, p

12 T 3
1(11)2;31

3F3 → 3P2, p

13 Sd T 2
2(00)0;11

3P2 → 1S0, d

14 T 2
2(00)0;31

3F2 → 1S0, d

15 Ds T 2
0(20)2;11

3P2 → 1D2, s

16 T 2
0(20)2;31

3F2 → 1D2, s

σ0(ξ ) A
(ξ ) = −1
2
√

3

[
B0

0 (1, 1) + 1√
2
B2

0 (1, 1)
]
, (6c)

σ0(ξ ) Azz(ξ ) = −1
4
√

3

[
B0

0 (1, 1) −
√

2B2
0 (1, 1)

]
, (6d)

σ0(ξ ) A�(ξ ) = 1
2	[

B2
2 (1, 1)

]
, (6e)

σ0(ξ ) Az0(ξ ) = 1
4B1

0 (1, 0), (6f)

σ0(ξ ) A�(ξ ) = −1
2
√

2
�[

B1
0 (1, 1)

]
. (6g)

III. EXTRACTION OF PARTIAL-WAVE AMPLITUDES

A priori, a set of 16 partial-wave amplitudes can be expected
to contribute to the reaction. We list them in Table I, explicitly
both in our notation and the notation of Meyer et al. [8]. But
we consider only contributions from the first 12 amplitudes,
since final states with orbital angular momentum greater than 1
were ignored in the analysis of Meyer et al. [8]. Thus there are
24 real unknowns (12 complex amplitudes) to be determined.
However, as overall phases are unobservable and as sf = 0 and
sf = 1 NN final states do not mix with each other in any of
the spin observables measured in [8] (final state polarizations
were not measured), we have the freedom to choose the first
two amplitudes to be real. This leaves 22 real numbers to be
determined. Equations (11a)–(11h) of Ref. [8] represent the
general angular dependence of σ0(ξ ) and σ0(ξ )Aij (ξ ) in terms
of the real coefficients E, Fk, G

ij

k ,H
ij

k , I, K, I ij , and Kij .
The quantities E, Fk, G

ij

k , and H
ij

k denote the weighted sums
of bilinears in the partial-wave amplitudes corresponding,
respectively, to (Ss)2, (Ps)2, (PsPp) and (Pp)2 interference
terms, while I, I ij and K, Kij represent, respectively, the
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FIG. 1. The observables A
(θq ) and Azz(θq ) as a function of the pion angle at several bombarding energies. The data and the nomenclature
for the observables are taken from Meyer et al. [8]. The solid curves represent our results.

contribution of (SsSd) and (SsDs) interference terms, which
were ignored in the analysis of [8] and therefore also here.
Using Eqs. (4) and (2), we obtain explicit expressions for all
the observables in Eqs. (6a)–(6g), including the unpolarized
differential cross section, defined in Eq. (5), in terms of the first
12 partial-wave amplitudes listed in Table I. These expressions,
when compared with Eqs. (11a)–(11h) of [8], allow us to obtain
explicitly the partial-wave decomposition of the coefficients
E, Fk, G

ij

k , and H
ij

k .
Note that all values given in Table IV of Ref. [8] for

the various coefficients are integrated with respect to the
outgoing two-nucleon energy, ε. Thus, they are expressed as
weighted sums of numerous Bκκ ′ , bilinear in the partial-wave

amplitudes, as (we use nonrelativistic kinematics)

Bκκ ′ (Ec.m.) =
∫ εmax

0
Tκ (Ec.m., ε)T ∗

κ ′(Ec.m., ε) q(Ec.m., ε)p(ε) dε,

(7)

where Tκ, κ = 2, . . . , 12, denotes the κth partial-
wave amplitude listed in Table I (for example,
T5(Ec.m., ε) ≡ T 2

1(11)1;11), p(ε) = √
MNε, and q(Ec.m., ε) =√

2µ(Ec.m. − 2MN − mπ − ε), with the reduced mass of
the outgoing three-body system µ = 2mπMN/(mπ + 2MN ),
where MN and mπ are the nucleon and pion masses,
respectively. Thus, to proceed further we need to make an
assumption regarding the ε dependence of the Tκ . In the
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FIG. 2. The observables A
(θp) and Azz(θp) as a function of the proton angle at several bombarding energies. Same description of data
and curves as in Fig. 1.
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FIG. 3. The observables A
ϕq

y0(θq ), A
ϕq
xz (θq ), and A

ϕq

� (θq ) as a function of the pion angle at several bombarding energies. Same description of
data and curves as in Fig. 1.

present first analysis of the IUCF data we use the most naive
ansatz possible: we assume that the entire energy dependence
of the amplitudes stems solely from the centrifugal barrier.
This gives

Tκ (Ec.m., ε) ∝ q(Ec.m., ε)lq (κ)p(ε)Lp(κ), (8)

which should hold as long as the outgoing momenta are small
compared with the inverse of the production radius [17] and the
effects of the final state interaction (FSI) are negligible. (This
is obviously wrong for the NN S waves; they are discussed
separately below.) Note that the same assumption was also
used in the fitting procedure of Ref. [8] in order to determine
some of the coefficients E, Fk, G

ij

k , and H
ij

k from the data, for
the statistical accuracy of the data did not allow for a separate
fit of these coefficients at each energy. From the ansatz of
Eq. (8), one easily derives [18]

Bκκ ′ (Ec.m.) = zκ z∗
κ ′ ηlq (κ)+lq (κ ′)+Lp(κ)+Lp(κ ′)+4. (9)

Thus, we find the energy dependence of the Bκκ ′ , κ, κ ′ =
2, . . . , 12, to be of the form ηx , with x equal to 6, 7, and 8
for the PsPs, PsPp, and PpPp interference terms, respectively.
Here η = qmax/mπ , with qmax being the largest possible value
of pion momentum for a given incident energy. By assumption,
zκ, κ = 2, . . . , 12, in Eq. (9) are energy-independent complex
quantities to be determined from the data.

Since the transition amplitude with the Ss final state does
not interfere with any of the other partial waves and since its

FSI does not show a power-law behavior [19], we parametrize
it as

B11(Ec.m.) =
∫ εmax

0
|T1(Ec.m., ε)|2 q(Ec.m., ε) p(ε) dε = |z1|2

(10)

and extract it at each of the four bombarding energies
individually; B11(Ec.m.) is directly proportional to the bilinear
coefficient E in Table IV of Ref. [8].

The values of the coefficients H 00
1 , Hzz

1 , F2, H

2 , Hzz

2 ,

Gz0
1 , G�

1 , Hz0
1 , Hz0

2 , H

4 , H


5 , Hzz
4 , and Hzz

5 were deter-
mined by Meyer et al. [8] by assuming their energy dependence
to be of the form given in Eq. (9). Therefore, in order to be
consistent with Ref. [8], we do the following. We plot each
of these 13 coefficients as a function of their appropriate
η dependence and extract the slope and the corresponding
error, using the values and errors in Table IV of Ref. [8].
For example [σtot(η)F2(η)]/(8π2) is plotted against η6. The
values and errors so obtained are then used in our fitting
procedure. This gives us a set of 13 equations for the
amplitudes zκ, κ = 2, . . . , 12. The remaining 26 coefficients,
viz., F1, H


0 , Hzz
0 and the 23 coefficients from G

y0
1 to H�

5 ,
in Table IV of [8] lead to 26 × 4 = 104 equations for the
amplitudes zκ, κ = 2, . . . , 12, as they were extracted by [8]
without any assumption about their energy dependence. Both
the values and errors for these 104 coefficients, taken from
Table IV of Ref. [8], were multiplied by σtot(η)/(8π2) for

024004-4



PARTIAL-WAVE ANALYSIS OF �p �p → ppπ 0 DATA PHYSICAL REVIEW C 72, 024004 (2005)

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

A
p

y
0
(

p)
A

p xz
(

p)
A

p
(

p)
325 MeV 350 MeV 375 MeV 400 MeV

cos p

FIG. 4. The observables A
ϕp

y0 (θp), A
ϕp
xz (θp), and A
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� (θp) as a function of the proton angle at several bombarding energies. Same description
of data and curves as in Fig. 1.

consistency. In total, we have 117 equations with 21 real
unknowns (since z2 is assumed to be real). In addition, the
coefficient E depends only on z1. Since this amplitude is
assumed to be real and we know the explicit dependence of E
on z1, it is directly determined (up to a sign). The uncertainty
in z1 is determined by that in E.

This nonlinear overdetermined system of 117 equations
can only have approximate solutions, which were obtained
by a χ2 minimization by using the software MATHEMATICA.
The resulting χ2 per degree of freedom was 1.7. This
value was the best that we could obtain after using all
four methods of minimization available with MATHEMATICA,
viz., differential evolution, Nelder-Mead, random search, and
simulated annealing. We performed various checks (different
starting vectors setting individual amplitudes to zero) to further
support that the minimum is indeed a total minimum. In
Figs. 1–6, to illustrate the quality of the fit, we com-
pare our results with some of the observables measured
in Ref. [8].

The uncertainties in the zκ, κ = 2, . . . , 12, were determined
as follows. Let a denote the vector whose 21 components are
the real and imaginary parts of the amplitudes zi . Then the
uncertainty (standard deviation) in any of the components, say
aj , denoted σaj

, is obtained through [20]

σ 2
aj

=
117∑
i=1

{
21∑
l=1

1

σi

[
εjl

∂

∂al

fi(a)

]
a=a0

}2

. (11)

Here fi(a) stands for the explicit functional form of the bilinear
coefficients listed in Table IV of Ref. [8], in terms of the zκ .
σi are the corresponding errors in these bilinear coefficients,
taken from the same table, and εjl is the (j, l)th element of
the error (covariance) matrix ε defined as the inverse of the
curvature matrix α, whose elements are given by

αjl ≡ 1

2

∂2χ2

∂aj ∂al

. (12)

Here a0 is the value of a for which the value of χ2 is at its
minimum.

IV. RESULTS AND DISCUSSION

In Figs. 7 and 8, the values for the zκ, κ = 1, . . . , 12, as
determined in the fit are plotted. The uncertainties quoted
in these figures for |zκ |, κ = 1, . . . , 12 and tan[Arg(zκ )], κ =
3, . . . , 12, were determined by propagating the errors obtained
for the real and imaginary parts of the zκ, κ = 1, . . . , 12, in
the standard way [21]. It is striking that the amplitude z2,
corresponding to the transition 1S0 → 3P0s, is the largest.

We now turn to a comparison of the extracted zκ with the
predictions of the microscopic model of the Jülich group.
For a detailed description of the model we refer the reader
to Refs. [9,12]. Here we only want to summarize its salient
features. In the Jülich model all standard pion-production
mechanisms [direct production, Fig. 9(a); pion rescattering
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FIG. 5. Additional observables at a bombarding energy of 375 MeV as a function of the pion angle. Same description of data and curves
as in Fig. 1.

Fig. 9(b); and contributions from pair diagrams Fig. 9(c)]
are considered. In addition, production mechanisms involving
the excitation of the �(1232) resonance [cf. Figs. 9(d)–9(g)]
are taken into account explicitly. All NN partial waves up to
orbital angular momenta Lp = 2 and all states with relative
orbital angular momentum lq � 2 between the NN system and
the pion are considered in the final state. Furthermore, all
πN partial waves up to orbital angular momenta LπN = 1
are included in calculating the rescattering diagrams in
Figs. 9(b), 9(e) and 9(g). Thus, this model includes not only
s-wave pion rescattering but also contributions from p-wave
rescattering.

The reaction NN → NNπ is treated in a distorted-wave
Born approximation, in the standard fashion. The actual
calculations are carried out in momentum space. For the
distortions in the initial and final NN states, a coupled channel
(NN,N�,��) model is employed [22] that treats the nucleon
and the � degrees of freedom on equal footing. Thus, the
NN ↔ N� transition amplitudes and the NN T matrices that
enter in the evaluation of the pion-production diagrams in
Fig. 9 are consistent solutions of the same (coupled-channel)
Lippmann-Schwinger-like equation.

By taking the partial-wave amplitudes Tκ (Ec.m., ε) pre-
dicted by the model, it is straightforward to extract the moduli
of the zκ from the model through their definition in Eqs. (7)
and (9): ∣∣zmodel

κ

∣∣ = η−lq (κ)−Lp(κ)−2
√
Bκκ (Ec.m.).

Since the phases of the bilinearsBκκ ′ calculated from the model
are not in all cases consistent with the factorization used in
Eq. (9), they cannot be compared easily with those extracted
from the data.

The |zκ | predicted by the model are compared with the
results of the partial-wave analysis in Fig. 10. In the upper part
of the graph we compare the moduli of the zκ of the model with
those obtained by our partial-wave analysis, while in the lower
part the deviation of the model predictions from the analysis
are presented. Note that the model results are normalized in
such a way that |z1| for a bombarding energy of 375 MeV (i.e.,
the one corresponding to the 3P0 → 1S0s transition) coincides
with the corresponding extracted value. This is done in order
to facilitate the comparison between the various other |zκ |.

It is evident from Fig. 10 that the microscopic model of
Refs. [9,12] yields a rather impressive overall description of
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of Ref. [8] has the best statistics. Same description
of data and curves as in Fig. 1.

the various partial-wave amplitudes; cf. the squares and circles.
This is particularly remarkable because one has to keep in mind
that practically all parameters of the model were fixed by other
reactions (elastic NN scattering and πN scattering).2 In fact
the majority of the partial-wave amplitudes is reproduced even
quantitatively (if one takes into account the error bars of the
partial-wave analysis). The only serious discrepancy occurs in
the amplitude z9 (3P1 → 3S1p) and to a lesser extent also in z12

(3F3 → 3P0p). The reason for the shortcoming in the model
prediction for these |zκ | and the connection with its dynamical
ingredients needs to be explored in the future.

Figure 10 also suggests considerable deviations in z13, z15,
and especially z16. However, these zκ correspond to partial

2The only free parameter was fixed to the total cross section for
pp → ppπ 0 at low energies [11].

waves with NN D waves or pion d waves in the final state whose
contribution had been set to zero in the analysis of Meyer et
al. [8]—as well as in ours—as already mentioned above. Thus,
the predictions of the microscopic model can be seen as an
indication that those amplitudes are likely not negligible and
therefore should be taken into account in any future analysis
of the reaction pp → ppπ0. Since in the present analysis the
neglected contributions of the D-wave and d-wave amplitudes
are presumably mimicked by other partial-wave amplitudes, a
more complete partial-wave analysis could yield results that
are even closer to the model prediction than for the case
considered in the present paper.

While a well-founded theoretical interpretation of the
obtained partial-wave amplitudes calls for a thorough inves-
tigation, e.g., within the framework of effective field theory,
as advocated in Refs. [2,4,5], the presented analysis already
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allows us to shed light on the role of the � (1232) resonance
for π0 production. The importance of the � isobar for the
reaction NN → NNπ was already pointed out in Ref. [9]. The
present partial-wave analysis allows us to confirm that aspect
nicely in a quantitative and transparent way. The results of the
model of Refs. [9,12] after omitting contributions involving
� degrees of freedom are shown by the triangles in Fig. 10.
The corresponding predictions clearly fall short in describing
the amplitudes of the partial-wave analysis. In particular, even
the qualitative trend in the magnitude of the amplitude is not
reproduced.

Further insight can be gained by taking into account
only those NN → N� transitions that occur before the pion
emission [Figs. 9(d) and 9(e)]. The corresponding predictions
for the |zκ | are shown by the open diamonds in Fig. 10. For
almost all partial waves this part provides the dominant �

effect, as expected, since the energy of the incoming NN system
is not too far away from the nominal N� threshold. The energy
in the outgoing NN system, on the other hand, is much smaller
and therefore the excitation of the �(1232) is expected to be of
much less significance. However, to achieve also a quantitative
agreement with the extracted |zκ |, the � excitation in the final
state [after pion emission: Figs. 9(f ) and 9(g)] is essential, as
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FIG. 8. Tangent of the arguments of the zκ , κ = 3, . . . , 12.

can be most clearly seen in case of z2 (1S0 → 3P0s) and z3

(1D2 → 3P2s). Specifically, only after inclusion of the � in the
final state does the former became larger than the latter.

In this context it is also important to note that both types of
contribution, the emission of a real pion from a � decay—as
depicted in diagrams (d) and (f) of Fig. 9—and the emission
of a virtual pion from a � that becomes rescattered off the
other nucleon—depicted in diagrams (e) and (g) of Fig. 9—are
of similar numerical significance. This should not come as a
surprise, for as soon as the Delta isobar is involved, the large
isovector pion nucleon interaction can contribute to the neutral
pion production [12]. This is also consistent with the fact that
both these contributions (among others) contribute at next-to-
leading order in the chiral expansion [5].

∆
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FIG. 9. Pion-production mechanisms taken into account in the
model of Ref. [9]: (a) direct production; (b) pion rescattering;
(c) contributions from pair diagrams; (d) to (g) production involving
the excitation of the �(1232) resonance, depicted by the double line.
In the diagrams the pion (nucleon) is shown as a dashed (solid) line.
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In any case, it should be clear from this discussion that the �

degrees of freedom have to be taken into account explicitly in
any model that aims at a quantitative description of the reaction
pp → ppπ0, even for energies near the pion-production
threshold.

V. SUMMARY AND OUTLOOK

We have presented a partial-wave analysis of the double
polarization data for the reaction pp → ppπ0, measured at the
IUCF [8]. Due to the limited statistical accuracy of the data,
following the authors of Ref. [8], we made several assumptions
about the contributing amplitudes in order to be able to perform
the analysis. The quality of the fit, with a χ2 per degree
of freedom of 1.7, is not completely satisfying. This could
be a consequence of the assumptions that were made in the
analysis.

When compared with the results of a microscopic model
[9], the analysis made three important points rather explicit:
(i) the � degree of freedom is important for a quantitative
understanding of the reaction pp → ppπ0, (ii) there is
especially one zκ that very strongly deviates from that extracted
from the data, namely z9 (3P1 → 3P0p)—this will guide the
search for the possible short-comings of the model, and (iii)
the set of partial waves included in the analysis was possibly
too limited.

As a next major step a combined analysis of NN scattering
data and data on NN → NNπ needs to be performed. On the
one hand, the pion production channels directly provide the
inelasticities to be used for the analysis of the NN data; on
the other hand, the NN elastic phase shifts provide the phase
motion as well as the dominant energy dependence of the
moduli of the production amplitudes. The latter connection
is provided by dispersion integrals as discussed in detail
in Refs. [2,22].
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