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Polarized quark distributions in nuclear matter

Jason R. Smith∗ and Gerald A. Miller
Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA

(Received 18 May 2005; published 31 August 2005)

We compute the polarized quark distribution function of a bound nucleon. The chiral quark-soliton model
provides the quark and antiquark substructure of the nucleon embedded in nuclear matter. Nuclear effects
cause significant modifications to the polarized distributions, including an enhancement of the axial coupling
constant.
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Polarized lepton-nucleus scattering experiments are an
important tool in hadronic physics. For example, in order
to study the spin structure function of the neutron, one
must use nuclear targets. It is already well known that
there are significant differences betweeen free and bound
nucleons in the unpolarized case; the famous European Muon
Collaboration (EMC) effect [1] is the prime example. It is
reasonable to assume that nuclear effects could appear in
polarized quark distributions. Our purpose here is to calculate
the analogous modification to the nucleon spin structure
function g

(p,n)
1 (x,Q2), a polarized EMC effect.

The first discussion of nuclear effects in the polarized
quark distributions is in Ref. [2] in the context of dynamical
rescaling. A more recent calculation [3] predicts dramatic
effects for the bound nucleon spin structure function. We
have shown [4,5] that sea quarks, introduced at the model
scale, can have important consequences for modifications in
the nuclear medium. We will use our previous work [4] as a
basis for the results presented here and provide a mechanism
for the modification within the chiral quark-soliton (CQS)
model [6–10]. This relativistic mean field approximation to
baryons has many desirable qualities, such as the inclusion
of antiquarks (which is deeply linked to satisfying sum
rules and the positivity of generalized parton distributions),
and a basis in quantum chromodynamics (QCD) [8]. We
have previously shown how the model describes nuclear
saturation properties, reproduces the EMC effect, and satisfies
the bounds on unpolarized nuclear antiquark enhancement
provided by Drell-Yan experiments [4]. Therefore, we expect
the CQS model to produce a reasonable result for the polarized
distributions.

The CQS model Lagrangian with (anti)quark fields ψ,ψ

and profile function �(r) is

L = ψ(i∂/ − Meiγ5n·τ�(r))ψ, (1)

where �(r → ∞) = 0 and �(0) = −π to produce a soliton
with unit winding number. The quark spectrum consists of
a single bound state and a filled negative energy Dirac
continuum; the vacuum is the filled negative continuum with
� = 0. In both the free nucleon and the vacuum sectors
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the positive continua are unoccupied. The wave functions
in this spectrum provide the input for the quark and anti-
quark distributions used to calculate the nucleon structure
function.

We work to the leading order in the number of colors
(NC = 3), with Nf = 2, and in the chiral limit. While the
former characterizes the primary source of theoretical error,
one could systematically expand in NC to calculate corrections.
We also expect that since the nucleon size is stable in the
limit NC → ∞, the quark wave functions, our primary focus,
should be within a few percent of their NC = 3 value [11].
We take the constituent quark mass to be M = 0.42 GeV,
which reproduces, for example, the N -� mass splitting at
higher order in the NC expansion, and other observables [9].
We ignore contributions from the structure functions of pion
quanta, which in this model propagate through constituent
quark loops; they are suppressed by factors of O(1/NC) and
are not treated at the leading order.

The theory contains divergences that must be regulated. We
use a single Pauli-Villars subtraction as in Ref. [12] because we
follow that work to calculate the quark distribution functions.
The Pauli-Villars mass is determined by reproducing the
measured value of the pion decay constant, fπ = 0.093 GeV,
with the relevant divergent loop integral regularized by using
MPV � 0.58 GeV. This regularization also preserves the
completeness of the quark states [12].

The results for binding and saturation of nuclear matter
have been published elsewhere [4,5], but we provide a brief
review for completeness. The nucleon mass is given by a
sum of the energy of a single valence level (Ev), and the
regulated energy of the soliton (E� equal to the energy in
the negative Dirac continuum with the energy in the vacuum
subtracted)

MN = NCEv + E�(M) − M2

M2
PV

E�(MPV ), (2)

E�(M) = NC

∑
E<0

En − E(0)
n

∣∣
M

. (3)

The field equation for the profile function is

�(r) = arctan
ρ

q
ps(r)

ρ
q
s (r) + gsP N

s (kF )
, (4)
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where ρ
q
s and ρ

q
ps are the quark scalar and pseudoscalar

densities, respectively. The dependence of nucleon properties
on the nuclear medium has been incorporated into the model by
simply letting the quark scalar density in the field equation (4)
contain a constant, but Fermi momentum kF -dependent,
contribution P N

s (kF ), equal to the convolution of the nuclear
scalar density with the nucleon quark density,

P N
s (kF ) =

∫
d3r ′ρN

s (r ′)ρq
s (r − r ′), (5)

arising from other nucleons present in symmetric nuclear
matter. This models a scalar interaction via the exchange of
multiple pairs of pions between nucleons, and the parameter
gs is varied to obtain nuclear saturation.

The nucleon scalar density is determined by solving the
nuclear self-consistency equation

ρN
s = 4

∫ kF d3k

(2π )3

MN

(
ρN

s

)
√

k2 + MN

(
ρN

s

)2
. (6)

The dependence of the nucleon mass, and any other properties
calculable in the model, on the Fermi momentum kF enters
through Eq. (6). Thus there are two coupled self-consistency
equations: one for the profile, Eq. (4), and one for the density,
Eq. (6). These are iterated until the change in the nucleon
mass Eq. (2) is as small as desired for each value of the
Fermi momentum. We use the Kahana-Ripka (KR) basis
[13] to evaluate the energy eigenvalues and wave functions
used as input for the densities, nucleon mass, and quark
distributions.

We introduce a phenomenological vector meson (with
mass fixed at mv = 0.77 GeV and coupling gv) [14] ex-
changed between nucleons, but not quarks in the same
nucleon (i.e., we ignore the spatial dependence of the
vector field in the vicinity of a nucleon, treating only the
nuclear mean field). The vector meson couples to the vector
density

P N
v (kF ) =

∫
d3r ′ρN

v (r ′)ρq
v (r − r ′) = 2k3

F

3π2
. (7)

This mechanism is a proxy for uncalculated soliton-soliton
interactions used to obtain the necessary short distance
repulsion that stabilizes the nucleus.

The polarized quark distribution for flavor i is defined by the
difference between the quark distributions with spin parallel
(↑) and antiparallel (↓) to the nucleon,

�qi(x,Q2) = q
↑
i (x,Q2) − q

↓
i (x,Q2). (8)

The polarized antiquark distribution is defined analogously
by using q̄

↑
i , and q̄

↓
i . The isovector polarized distribution

�q(T =1)(x) = �u(x) − �d(x) is the leading order term in NC ,
with the isoscalar polarized quark distribution �q(T =0)(x) =
�u(x) + �d(x) smaller by a factor ∼1/NC and set to zero.
This follows from the fact that the isoscalar combination
is normalized to the spin of the nucleon, which is O(N0

C),
while the isovector combination is normalized to the axial
coupling, which is O(N1

C) [15]. Therefore, at the model scale
M2

PV � 0.34 GeV2, we see that a large portion of the spin
is carried by the orbital motion of the constituent quarks

in the valence level and the sea [8]. We will therefore
suppress the isospin superscript in the following. The dis-
tributions are calculated by using the KR basis at kF = 0
and kF = 1.38 fm−1 (see Refs. [4,5]) almost exactly as in
Ref. [12], where the quark distribution is given by the matrix
element

�q(x) = −1

3
(2T3)NCMN

∑
n

〈ψn|τ 3γ5

× (1 + γ 0γ 3)δ(En + p3 − xMN )|ψn〉, (9)

with the regulated sum taken over occupied states. The eigen-
values En are determined from diagonalizing the Hamiltonian,
derived from the full Lagrangian, in the KR basis. These
are also the eigenvalues that enter into Eq. (2) for the mass.
The momentum sum rule (for the unpolarized distribution) is
automatically satisfied as long as Eq. (2) defines the mass in
the unpolarized analog of Eq. (9), and the same eigenvalues
are used in both quations [12].

The vector and scalar interactions with the other nucle-
ons in the nucleus at the (low) model scale are implicitly
included in the energy eigenvalues in Eq. (9). In the handbag
diagram for deep inelastic scattering in the parton model
language, the quarks in the intermediate state are treated as
noninteracting, so how do the nuclear interactions modify the
parton distributions? The key point is that all three quarks
in the intermediate state undergo evolution in QCD from
the same starting scale to the scale of the deep inelastic
scattering, and it is this scale that would appear in the
Wilson coefficients in the language of the operator product
expansion (OPE) picture of deep inelastic scattering. The
model for medium modifications presented here represents
different boundary conditions on the Wilson coefficients or
the parton distributions for free and bound nucleons at the
model scale that maintains consistency with the parton model
and OPE pictures of deep inelastic scattering. It is worth noting
here that these two pictures are already consistent in the free
nucleon case, since the parton model hypothesis that the quark
transverse momenta do not grow with Q2 is satisfied [12], and
our model for medium modifications does not damage this
equivalence.

The antiquark distribution is given by �q̄(x) = �q(−x),
where the sum is over unoccupied states. The use of a
finite basis causes the distributions to be discontinuous. These
distributions are smooth functions of x in the limit of infinite
momentum cutoff and box size, but numerical calculations are
made at finite values and leave some residual roughness. This
roughness is overcome in Ref. [12] by introducing a smoothing
function. We deviate from their procedure and do not smooth
the results; instead we find that performing the one-loop per-
turbative QCD evolution [16] provides sufficient, but not com-
plete, smoothing. Some residual fluctuations due to the finite
basis remain visible in our results, and the size of these fluctu-
ations serve as a guide to the size of the error introduced by the
method.

These distributions are used as input at the model scale
of Q2 = M2

PV � 0.34 GeV2 for evolution to Q2 = 10 GeV2.
The polarized structure function to the leading order in NC is
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given by

g
(p,n)
1 = 1

2

∑
i

e2
i (�qi + �q̄i) (10)

= ± 5

18
�qNS + O

(
N0

C

)
, (11)

�qNS = 3

5
(�u − �d + �ū − �d̄ ) + O

(
N0

C

)
. (12)

The ratio function is defined to be

R1(x,Q2) = g
(p|A)
1 (x,Q2, kF )

Ag
(p)
1 (x,Q2, kF = 0)

,

(13)

g
(p|A)
1 (x,Q2, kF ) =

∫ A

x

dy

y
f (y)g(p)

1 (x/y,Q2, kF ).

The nucleon momentum distribution f (y) in light-polarized
nuclei has been calculated in Ref. [17]. Here, the nucleon
momentum distribution is assumed to be the same as the
unpolarized case, as the effects of the spin-orbit force will
tend to average out in nuclear matter. We can also justify this
approximation in nuclear matter because the zero pressure
condition P + = P − for a nucleus with momentum P in
the rest frame, which implies the light-cone version of the
Hugenholtz-van Hove theorem [18], is still true. Therefore,
one expects a distribution f (y) that is peaked at y � 1, like
those in Ref. [17]. This peak location is the dominant effect
on the ratio of Eq. (13); the remaining details of the function
f (y) have only a small effect. Following a light-cone approach
valid for any mean field theory of nuclear matter for which the
density and binding energy per nucleon are the only input
parameters [18], one obtains

f (y) = 3

4�3
F

θ (1 + �F − y)θ (y − 1 + �F )

× [
�2

F − (1 − y)2] , (14)

where �F = kF /MN and MN = MN (0) − 15.75 MeV.
We show the ratio Eq. (13) in Fig. 1 for a valence

like distribution as well as for the full distribution. The
latter includes all medium modifications, while the former
distribution uses the medium modified energy level eigenstate,
but the same free nucleon sea quark distribution for both the
free and the bound nucleon. This was done in order to compare
our results with the model in Ref. [3], which has only valence
quarks at the model scale. The single energy level actually
has a contribution to the polarized antiquark distribution, so
it alone cannot be considered a true valence spin structure
function. However, this contribution is small, so we effectively
reproduce the result of a valence quark model, especially in
the region x >∼ 0.3.

In Fig. 1, one can see that there is a large depletion for
0.3 <∼ x <∼ 0.7 in the polarized valence quark distribution. This

produces a large depletion in the isovector axial coupling g
(3)
A

of 17.8%. This large effect is comparable with that of the
calculation in Ref. [3], which includes only valence quarks at
the model scale. This valence effect is mitigated by a large
enhancement in the sea quark contribution, so that the full
polarized distribution has only a moderate depletion in the

0.2 0.4 0.6 0.8 1
x
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0.8
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R
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FIG. 1. Ratio of Eq. (13) at the scale Q2 = 10 GeV2 for nuclear
matter. The heavy curve is the full calculation for nuclear matter. The
thin curve is the effect calulated by using only medium modifications
to the valence energy level as decribed in the text.

region 0.3 <∼ x <∼ 0.7 of the same size as the EMC effect
in unpolarized nuclear structure functions. There is a large
enhancement for x <∼ 0.3 that is due to the sea quarks. This
large enhancement is very different from the small effect
calculated in the unpolarized case [4] and seen in unpolarized
Drell-Yan experiments [19]. This would suggest that one
might see a significant enhancement in a polarized Drell-
Yan experiment, even after including shadowing corrections
(which we address below). The larger sensitivity to the lower
components of the wave functions is the primary source for
the greater sea quark enhancement in the polarized case, in
contrast to the unpolarized case.

The axial coupling g
(3)
A is enhanced by 9.8% in the nuclear

medium. This is in accord with an earlier finding of a ∼25%
enhancement for gA in a different soliton model by Birse
[20]. There, the effect is also seen as a competition between
enhancement and depletion. In order to address the medium
modification of the Bjorken sum rule [21,22],

lim
Q2→∞

∫ 1

0
dx g

(p)
1 (x,Q2) − g

(n)
1 (x,Q2) = gA

6
, (15)

as an integral of the experimentally observed nuclear dis-
tribution, one must account for the effects of shadow-
ing. This occurs when the virtual photon striking the nu-
cleus fluctuates into a quark-antiquark pair over a distance
∼1/2MNx exceeding the internucleon separation. This causes
a depletion in the structure function for x <∼ 0.1 and is relatively
well understood [23–25]. Shadowing in the polarized case
is expected to be larger than in the unpolarized case by
roughly a factor of 2 simply from the combinatorics of multiple
scattering (see, e.g., Ref. [26]).

The enhancement at x ∼ 0.1 − 0.2 in Fig. 1 is comparable
with that seen by Guzey and Strikman [26]; they assume
that the combined effects of shadowing, enhancement, and
target polarization lead to the empirical value of the nuclear
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Bjorken sum rule for 3He and 7Li. Shadowing effects become
large for x <∼ 0.05, but we ignore them as well as target
polarization; such precision is not necessary for our relatively
qualitative analysis. One needs ∼10 times the shadowing
observed in the unpolarized case for Lead in order to counter
the enhancement at x ∼ 0.1 − 0.2 and to give the same value
for the Bjorken sum rule (15) in matter and free space.
This assumes that shadowing is the only significant effect
neglected at small x in our calculation of the unpolarized quark
distribution [4].

We also present, in Fig. 2, the results for the spin asymmetry

A
(p)
1 (x,Q2) =

∑
i e

2
i [�qi(x,Q2) + �q̄i(x,Q2)]∑
i e

2
i [qi(x,Q2) + q̄i(x,Q2)]

. (16)

The nuclear asymmetry A
(p|A)
1 is defined by replacing the

polarized and unpolarized quark distributions, represented
generically as q, with

q(p|A)(x,Q2, kF ) =
∫ A

x

dy

y
f (y)q(p)(x/y,Q2, kF ). (17)

We find that for the free case the calculation falls slightly below
the data owing to the smaller value of gA in the large NC limit
and that the size of the medium modification is of the same
order as the experimental error for the free proton [27,28].

The central mechanism to explain the EMC effect is that
the nuclear medium provides an attractive scalar interaction
that modifies the nucleon wave function. We see this again in
the polarized case. This is also the dominant mechanism in the
model of Cloet et al. [3] and in the soliton model of Birse [20].

The present model provides a intuitive, qualitative treatment
that maintains consistency with all of the free nucleon
properties calculated by others [8,9]. It provides a reasonable
description of nuclear saturation properties, reproduces the
EMC effect, and satisfies the constraints on the nuclear
sea obtained from Drell-Yan experiments with only two
parameters for the nuclear physics (gs and gv) fixed by the
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FIG. 2. Asymmetry A
(p|A)
1 Eq. (16) at the scale Q2 = 10 GeV2.

The heavy curve is for nuclear matter. The dashed curve is for the
free proton. The data points are for the free proton from SLAC [27]
(filled) for Q2 ∼ 1 − 40 GeV2 and HERMES [28] (empty) for Q2 ∼
1 − 20 GeV2. The free curve falls slightly below the data because of
the lower value of gA calculated in the large NC limit.

binding energy and density of nuclear matter. Therefore, we
expect the results presented here to manifest themselves in
future experiments with polarized nuclei. Our conclusions
differ from those in Ref. [3]; the main difference is the role of
sea quarks at the model scale. Therefore, we also expect future
experiments would help determine the role of sea quarks in
nuclei.

We also thank A. W. Thomas for suggesting the problem to
us. We thank the U.S. Department of Energy for partial support
of this work.
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