
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 72, 022201(R) (2005)

Interacting quark-diquark model of baryons
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A simple quark-diquark model of baryons with direct and exchange interactions has been constructed. Spectrum
and form factors have been calculated and compared with experimental data. Advantages and disadvantages of
the model are discussed.
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The notion of diquark is as old as the quark model
itself. Gell-Mann [1] mentioned the possibility of diquarks
in his original paper on quarks. Soon afterwards, Ida and
Kobayashi [2] and Lichtenberg and Tassie [3] introduced
effective degrees of freedom of diquarks in order to describe
baryons as composed of a constituent diquark and quark.
Since its introduction, many articles have been written on this
subject [4] up to the most recent ones [5].

Different phenomenological indications for diquark corre-
lations have been collected during the years, such as some
regularities in hadron spectroscopy, the �I = 1

2 rule in weak
nonleptonic decays [6], some regularities in parton distribution
functions [7] and in spin-dependent structure functions [7].
Finally, although the phenomenon of color superconductivity
[8] in quark dense matter cannot be considered an argument
in support of diquarks in the vacuum, it is nevertheless of
interest since it stresses the important role of Cooper pairs
of color superconductivity, which are color antitriplet, flavor
antisymmetric, scalar diquarks.

The introduction of diquarks in hadronic physics has
some similarities to that of correlated pairs in condensed
matter physics (superconductivity [9]) and in nuclear physics
(interacting boson model [10]), where effective bosons emerge
from pairs of electrons [11] and nucleons [12], respectively.
However, while the origin of correlated electron and nucleon
pairs is clear (the electron-phonon interaction in condensed
matter physics and the short-range pairing interaction in
nuclear physics), the microscopic origin of diquarks is not
completely clear and its connection with the fundamental
theory (QCD) not fully understood, apart from the cold
asymptotic high dense baryon case, in which the quarks
form a Fermi surface and perturbative gluon interactions
support the existence of a diquark BCS state known as color
superconductor [8]. We can only say that in perturbative QCD
the color antitriplet, flavor antisymmetric scalar channel is
favored by one gluon exchange [13] and in nonperturbative
regime by instanton interactions [14]. Regarding the hadron
spectrum we are interested in the role of diquark correlations
in nonperturbative QCD. In this respect it is interesting the
discussion of nonperturbative short-range, spin and flavor de-
pendent correlations in hadrons, given in Ref. [15] considering
an instanton liquid model and the comparison of some of these
results with Lattice QCD (LQCD) ones. However, the question
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remains open and other LQCD calculations are needed in order
to understand it fully.

Nonetheless, as in nuclear physics, one may attempt to
correlate the data in terms of a phenomenological model. In
this article, we address this question by formulating a quark-
diquark model with explicit interactions, in particular with a
direct and an exchange interaction. We then study the spectrum
which emerges from this model and we start to calculate the
form factors which have been measured, or will be measured
at dedicated facilities (TJNAF,MAMI, . . .).

We think of a diquark as two correlated quarks treated as a
point-like object, though this is a rough approximation of an
extended effective boson degree of freedom.

We assume that baryons are composed of a constituent
quark, q, and a constituent diquark, q2 = Q2. We consider
only light baryons, composed of (u, d, s) quarks, with internal
group SUs(2) ⊗ SUf (3) ⊗ SUc(3). Using the conventional
notation of denoting spin by its value and flavor and color
by the dimension of the representation, the quark has spin
s = 1

2 , F = 3 and C = 3. The diquark must be 3 of SUc(3)
since the total hadron must be colorless. This limits the possible
SUsf (6) representations for the diquark [3] to be only the 21
of SUsf (6), which is symmetric and contains s12 = 0, F12 = 3
and s12 = 1, F12 = 6. This is because we think of the diquark
as two correlated quarks in an antisymmetric nonexcited state.

As one can see from the simple multiplication of the Young
diagrams associated with two fundamental representations of
SUsf (6)

⊗ = ⊕ (1)

6 ⊗ 6 = 21 ⊕ 15, (2)

by keeping only the representation 21 of SUsf (6), as in the
diquark case, one is deleting in baryons those states obtained
by combining the representation 15 with that of the remaining
quark 6, i.e., a 70 and 20.

If one treats only nonstrange baryons, the quark is in the
representation 4 of the Wigner SUst (4), with s = 1

2 and t = 1
2 ,

and the diquark is the representations with spin s12 = 0,
isospin t12 = 0, and spin s12 = 1, isospin t12 = 1, i.e., the
symmetric representation 10 of SUst (4) ⊃ SUs(2) ⊗ SUt (2).
The situation for the internal degrees of freedom is summarized
in Table I.

The two diquark configurations s12 = 0, F12 = 3 and
s12 = 1, F12 = 6 are split, by (among other things) color
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TABLE I. Combinations of possible irreducible representations of SUc(3), SUs(2), and
SUf (3) for the quark, q, and the diquark, Q2. The right-hand side of the table also shows
the combinations of the possible SUs(2) and SUt (2) representations if only nonstrange baryons
are involved.

SUc(3) SUsf (6) SUs(2) SUf (3) SUst (4) SUs(2) SUt (2)

q 3 6 s = 1
2 3 4 s = 1

2 t = 1
2

Q2 3 21 s12 = 0 3 10 s12 = 0 t12 = 0
s12 = 1 6 s12 = 1 t12 = 1

magnetic forces [16], as shown in Fig. 1. It means that we
have two possible diquark configurations: a scalar diquark
(s12 = 0, F12 = 3, C = 3) and a vector one (s12 = 1, F12 = 6,

C = 3). The scalar diquark (the “good diquark” in Wilczek and
Jaffe’s terminology) is favored since it is at lower energy, and
will be the dominant configuration in the more stable states.

We call the splitting between the two diquark configurations
� and parametrize it as

� = (B + Cδ0), (3)

i.e., as a constant B which acts equally in all states with s12 = 1
plus a contact interaction which acts only on the spatial ground
state and of strength C. The contact interaction emphasizes the
different role that the ground state has in a quark-diquark
picture as compared with all other states.

Here, we consider a quark-diquark configuration in which
the two constituents are separated by a distance r. We use a
potential picture and we introduce a direct and an exchange
quark-diquark interaction. For the direct term, we consider a
Coulomb-like plus a linear confining interaction

Vdir(r) = −τ

r
+ βr. (4)

The importance of the Coulomb-like interaction was empha-
sized long ago by Lipkin [17]. A simple mechanism that
generates a Coulomb-like interaction is one-gluon exchange.
A natural candidate for the confinement term is a linear one,
as obtained in lattice QCD calculations and other considera-
tions [18].

An exchange interaction is also needed, as emphasized by
Lichtenberg [19]. This is indeed the crucial ingredient of a
quark-diquark description of baryons. We consider

Vex = (−1)l+12Ae−αr [ �s12 · �s3 + �t12 · �t3 + 2 �s12 · �s3 �t12 · �t3]. (5)

Here �s12, �s3 and �t12 and �t3 are the spin and the isospin operators
of the diquark and the quark, respectively. The sign (−1)l

(Q2)
C = 3 ∆

s12=1, F12 = 6

s12=0, F12 = 3

FIG. 1. Schematic picture of the split, between the two diquark
configurations s12 = 0, F12 = 3 and s12 = 1, F12 = 6.

reflects the angular momentum dependence of the exchange
interaction.

A feature of the present approach, as compared with
previous ones, is that we attempt a simultaneous description
of all states; indeed, in previous approaches the ground state
has usually been excluded. It is certainly the case that diquark
correlations are particularly important for high �-states [20]
which have a more pronounced string-like behavior. However,
if one is interested in the overall spectroscopy and also in the
form factors (elastic and inelastic) that have been measured or
will be measured (TJLAB, MAMI, . . .) the ground state must
be included in this description.

Another important observation is that, in the quark-diquark
model, SUsf (6) is badly broken and thus a classification of the
spin-flavor wave functions in terms of SUsf (6) is inappropriate.
The appropriate classification is that in terms of SUs(2) ⊗
SUf (3) ∣∣s12, F12; 1

2 , 3; S, F
〉
, (6)

where s12 and F12 are, respectively, the spin and the flavor of
the diquark, 1

2 , 3 are the spin and flavor of the quark, and S, F

are the total spin and flavor obtained by coupling the spin and
flavor of the diquark with those of the quark.

If only nonstrange baryons are considered, one can use the
isospin of the diquark, t12, and quark, 1/2, and the total isospin,
T. The possible states are∣∣s12 = 0, t12 = 0; 1

2 , 1
2 ; S = 1

2 , T = 1
2

〉
,∣∣s12 = 1, t12 = 1; 1

2 , 1
2 ; S = 1

2 , T = 1
2

〉
,∣∣s12 = 1, t12 = 1; 1

2 , 1
2 ; S = 1

2 , T = 3
2

〉
, (7)∣∣s12 = 1, t12 = 1; 1

2 , 1
2 ; S = 3

2 , T = 1
2

〉
,∣∣s12 = 1, t12 = 1; 1

2 , 1
2 ; S = 3

2 , T = 3
2

〉
.

The total wave functions are combinations of the spin-flavor
wave functions with the radial and orbital wave functions.
These are very simple and straigthforward since the main
advantage of the quark-diquark model is to reduce the baryon
problem (a three-body problem) to a two-body problem. The
spatial part of the wave functions is, for the central interaction
of Eq. (4),

�n,l,m(�r) = Rn,l(r)Yl,m(θ, ϕ), (8)

where the radial wave function Rn,l(r) can be obtained by
solving the radial equation. Although the numerical solution
poses no problem, we prefer to exploit here the special nature
of the interaction. For a purely Coulomb-like interaction the
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problem is analytically solvable. The solution is trivial, with
eigenvalues

En,l = −τ 2m

2n2
, n = 1, 2 . . . . (9)

Here m is the reduced mass of the diquark-quark configuration
and n the principal quantum number. The eigenfunctions are
the usual Coulomb functions

Rn,l(r) =
√

(n − l − 1)!(2g)3

2n[(n + l)!]3
(2gr)le−grL2l+1

n−l−1(2gr), (10)

where for the associated Laguerre polynomials we have used
the notation of Ref. [21] and g = τm

n
.

We treat all other interactions as perturbations. We begin
with the linear term. The matrix elements of βr can be
evaluated analytically, with the result

�En,l =
∫ ∞

0
βr[Rn,l(r)]2r2dr = β

2mτ
[3n2 − l(l + 1)].

(11)

This perturbative estimate is only valid for small n and l. (For
large n and l, the radial equation must be solved numerically.)
Combining Eq. (9) with Eq. (11), we can write the energy
eigenvalues as

En,l = −τ 2m

2n2
+ β

2mτ
[3n2 − l(l + 1)]. (12)

Next comes the exchange interaction of Eq. (5). The spin-
isospin part is obviously diagonal in the basis of Eq. (7)

〈�s12 · �s3〉 = 1
2 [S(S + 1) − s12(s12 + 1) − s3(s3 + 1)]

(13)
〈�t12 · �t3〉 = 1

2 [T (T + 1) − t12(t12 + 1) − t3(t3 + 1)] .

To complete the evaluation, we need the matrix elements of
the exponential. These can be obtained in analytic form

In,l(α) =
∫ ∞

0
e−αr [Rn,l(r)]2r2dr. (14)

The results are straightforward. Here, by way of example, we
quote the result for l = n − 1

In,l=n−1(α) =
(

1

1 + nα
2τm

)2n+1

. (15)

Combining all pieces together, the Hamiltonian is

H = E0 + p2

2m
− τ

r
+ βr + (B + Cδ0)δS12,1

+ (−1)l+12Ae−αr [ �s12 · �s3 + �t12 · �t3 + 2 �s12 · �s3 �t12 · �t3],

(16)

where δ0 stands in short for δn,1δl,0. This Hamiltonian is
characterized by the parameters τ, β,E0, A, α, B,C, which
are chosen by comparing with experimental data. Since all
contributions are given in explicit analytic form, the determi-
nation of the parameters is straigthforward. The procedure that
we use is the following:

(i) the parameters τ 2m,
β

mτ
, and E0 are determined from

the location of the lowest state for each orbital angular
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FIG. 2. Comparison between the calculated masses (black lines)
of nonstrange baryon resonances up to 2 GeV and the experimental
masses (grey boxes) from PDG [22] for the 4∗ and 3∗ resonances.

momentum; we obtain τ 2m = 1546 MeV,
β

mτ
= 5 MeV, and

E0 = 1706 MeV;
(ii) the parameters B and C are determined by the splitting

between the state s12 = 0, t12 = 0 and the average of the states
s12 = 1, t12 = 1. We find B = 300 MeV and C = 400 MeV.
The value B = 300 MeV is consistent with earlier estimates,
B = 250 MeV, arising from an evaluation of the color mag-
netic interaction [16];

(iii) the parameters A and α are determined from the
splitting of the multiplet within s12 = 1, t12 = 1. We find
A = 205 MeV, α

τm
= 0.30.

In Fig. 2 and in Table II the results of the model are
compared with the experimental data [22]. It can be seen
that the quark-diquark model with the specific interaction,
Eq. (16), provides a good description of the masses of 4∗
and 3∗ resonances. The quality of this description is similar
to that of the usual three-quark model in its various forms
[23,24], and it can be observed that the predicted value for the
mass of the Roper resonance is higher than the experimental
data. However, in the quark-diquark model, some degrees of
freedom are frozen. There are therefore far fewer missing
resonances, and in particular no missing resonances in the
lower part of the spectrum. On the contrary, the problem of
missing resonances plagues all models with three constituent
quarks.

It will also be noted that the clustering of states expected by
the quark-diquark model is particularly evident for lP = 1−
and lP = 2+, at both the qualitative and quantitative levels.
This clustering appears both in the nucleon, N, and in the �.
The clustering of states is another feature that is difficult to
obtain in a three quark description. In the quark-diquark model,
however, it is obtained automatically.

For the model described here, in which all interactions
in addition to the Coulomb-like interaction are treated in
perturbation theory, elastic and transition form factors can all
be calculated analytically. The scalar matrix elements are of
the type

∫
d3rRn′,l′ (r)Yl′,m′ (
)e−i�k·�rRn,l(r)Yl,m(
). (17)
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TABLE II. Comparison between the calculated masses of non-
strange baryon resonances up to 2 GeV, Mcalc, and the experimental
masses [22], Mexp, for the 4∗ and 3∗ resonances. The masses are
given in MeV.

Baryon Status Mexp J P lP S Mcalc

(MeV) (MeV)

N(939) P11 ∗∗∗∗ 938 1
2

+
0+ 1

2 940

N(1440) P11 ∗∗∗∗ 1430–1470 1
2

+
0+ 1

2 1543

N(1520) D13 ∗∗∗∗ 1515–1530 3
2

−
1− 1

2 1538

N(1535) S11 ∗∗∗∗ 1520–1555 1
2

−
1− 1

2 1538

N(1650) S11 ∗∗∗∗ 1640–1680 1
2

−
1− 3

2 1675

N(1675) D15 ∗∗∗∗ 1670–1685 5
2

−
1− 3

2 1673

N(1680) F15 ∗∗∗∗ 1675–1690 5
2

+
2+ 1

2 1675

N(1700) D13 ∗∗∗ 1650–1750 3
2

−
1− 3

2 1673

N(1710) P11 ∗∗∗ 1680–1740 1
2

+
0+ 1

2 1640

N(1720) P13 ∗∗∗∗ 1650–1750 3
2

+
2+ 1

2 1675
�(1232)P33 ∗∗∗∗ 1230–1234 3

2

+
0+ 3

2 1235

�(1600)P33 ∗∗∗ 1550–1700 3
2

+
0+ 1

2 1714

�(1620)S31 ∗∗∗∗ 1615–1675 1
2

−
1− 1

2 1673

�(1700)D33 ∗∗∗∗ 1670–1770 3
2

−
1− 1

2 1673

�(1900)S31 ∗∗∗ 1850–1950 1
2

−
1− 1

2 2003

�(1905)F35 ∗∗∗∗ 1870–1920 5
2

+
2+ 3

2 1930

�(1910)P31 ∗∗∗∗ 1870–1920 1
2

+
2+ 3

2 1930

�(1920)P33 ∗∗∗ 1900–1970 3
2

+
2+ 3

2 1930

�(1930)D35 ∗∗∗ 1920–1970 5
2

−
1− 3

2 2003

�(1950)F37 ∗∗∗∗ 1940–1960 7
2

+
2+ 3

2 1930

These integrals, denoted by Unl,n′l′ (k)δmm′ are straightforward
and Table III shows the corresponding results for transitions
from the ground state with quantum numbers, n = 1, lP = 0+
to a state with n, l. It is observed that the elastic form factor is

F (k) = 1

(1 + k2a2)2
, (18)

with a = 1
2τm

. In addition to having a power-law behavior with
momentum transfer, k, typical of Coulomb-like interactions,
this form factor has precisely the power dependence observed
experimentally. Thus the quark-diquark model presented here
has the further advantage of producing in first approximation
an elastic form factor in agreement with experimental data,
Fig. 3. All form factors depend on the scale a. To determine
the scale a the rms radius can be calculated by using
the ground state wave functions, 〈r2〉 = 3

τ 2m2 = 12a2. This
calculated value is then fitted to the experimental value
〈r2〉exp = 0.74(1) fm2 [22]. The resulting value is a = 0.25 fm.
Since the parameter τ is determined from the spectrum,
one obtains the reduced mass m = 102 MeV. This value is
somewhat lower than the naive expectation m = 200 MeV,
obtained by assuming the quark mass to be 300 MeV and the
diquark mass to be 600 MeV. The results shown in Table III

TABLE III. The scalar form factors of Eq. (17) for transitions to
final states labeled by the quantum numbers n, lP , where P is the
parity. The initial state is n = 1, lP = 0+ and a = 1

2τm
.

n lP 〈nlP |U |10+〉
1 0+ 1

(1+k2a2)2

2 1− i√
2

( 4
9 )3 24ka

(1+ 16
9 k2a2)3

2 0+ 16
√

2( 4
9 )3 (ka)2

(1+ 16
9 k2a2)3

3 2+ − 4√
6

( 9
16 )2 (ka)2

(1+ 9
4 k2a2)4

3 1− i
√

264ka

27 ( 9
16 )3 (1+ 27

4 (ka)2)

(1+ 9
4 k2a2)4

3 0+ 4√
3

( 9
16 )2 (1+ 27

4 (ka)2)(ka)2

(1+ 9
4 k2a2)4

should be compared with the analogous results in the three
quark model, as for example reported in Table IX of Ref. [24].

In order to calculate the magnetic elastic form factors and
the helicity amplitudes, other matrix elements are also needed
to be calculated; this program will be completed in another
article (not least because a relativistic version of the model is
required for a good calculation of form factors), since here we
are interested only to explore the qualitative features of the
model and of its results. In particular the quark-diquark model
presented here produces the phenomenon of stretching, which
is at the basis of the Regge behavior of hadrons. The transition
radii increase with n and l, as one can see from Table III, or
by evaluating 〈r2〉n,l=n−1 = (2n + 2)(2n + 1) n2

4τ 2m2 . In other
words, hadrons swell as the angular momentum increases.

In this article, we present a simple quark-diquark model
with a specific direct plus exchange interaction. This model re-
produces the spectrum just as well as conventional three-quark
models. However, it has far fewer missing resonances than
the usual models. Most importantly, the model produces form
factors with power-law behavior as a function of momentum
transfer, in agreement with experimental data. Finally, it shows
the phenomenon of stretching which is at the basis of the Regge
behavior of hadrons.
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FIG. 3. The electric form factor of the proton. The dotted line is
the result of the model [Eq. (18)] using a = 0.25 fm, the dot-dashed
line corresponds to the dipole fit, a = 0.23 fm. The experimental data
are from Ref. [25].
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One may wonder whether there is a unique spectral
signature for quark-diquark models. One of these signatures
is the detection of 1+ states which are antisymmetric in
all three quarks. These states, originating from the omitted
diquark representation 15 of SUsf (6) are not present in the
quark-diquark model and occur (at different masses) in all
models with three quarks. These missing states may, however,
be very difficult to detect since they are decoupled and cannot
be excited with electrons or photons. To excite these states,
strongly interacting particles are needed, for example ( �p, �p′)
with spin transfer. Another possibility is to study whether or
not the mixed symmetry states (which are doubly degenerate
in the q3 model) are in fact simply degenerate (as in the
quark-diquark model).

The work presented here can be expanded in several
directions: (1) to include strange baryons; this expan-
sion is straightforward and requires no further assumption;
(2) to study multiquark states; (3) to include relativistic
corrections.

For transparency, here we have presented results in which
all interactions, in addition to the Coulomb-like force, are
treated in perturbation theory. Numerical diagonalization

shows that with the parameters of this article, the perturbation
treatment is valid (at least for the low-lying states). The
complete numerical results will be the subject of a subsequent
paper.

An aspect that has not been discussed here is how to derive
the quark-diquark model from microscopy. This aspect has
been the subject of many investigations in the similar problems
of condensed matter and nuclear physics. The usual argument
in hadronic physics is that diquark correlations arise from the
spin-spin interaction originating from one gluon exchange that
lowers the scalar diquark relative to the vector diquark. Some
interesting results are now available and show that instanton
interactions favor diquark clustering [14], and that by using
an instanton liquid model these generate a deeply bound
scalar antitriplet diquark not point-like [15]. In this respect
instantons can provide a microscopic dynamical mechanism
in terms of nonperturbative QCD interactions. In this article,
we have merely tried to describe many data by means of a phe-
nomenological approach; the objective of a subsequent pa-
per will be to understand what kind of microscopic QCD
mechanisms we are trying to mimic in this oversimplified
form.
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