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Combined method to extract spectroscopic information
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Spectroscopic factors (SFs) play an important role in nuclear physics and astrophysics. The traditional method
of extracting SFs from direct transfer reactions suffers from serious ambiguities. We discuss a modified method
that is based on including the asymptotic normalization coefficient of the overlap functions into the transfer
analysis. In the modified method the contribution of the external part of the reaction amplitude, typically
dominant, is fixed and the SF is determined from the fitting of the internal part. We illustrate the modified method
with (d,p) reactions on 208Pb, 12C, and 84Se targets at different energies. The modified method allows one to
extract the SFs, which do not depend on the shape of the single-particle nucleon-target interaction, and has the
potential of improving the reliability and accuracy of the structure information. This is specially important for
nuclei on dripline, where not much is known.
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Spectroscopic factors (SFs) were introduced by the shell-
model formalism and are typically related to the shell
occupancy of a state n in one nucleus relative to a state
m in a nearby nucleus [1]. Today, phenomenological SFs
are extensively used in a variety of topics, from nuclear
reactions to astrophysics or applied physics, yet the procedure
for their extraction from the data has remained essentially
the same for decades. For more than 40 years since the
dawn of nuclear physics, direct transfer reactions, such as
(d,p), (d,t), (3He, d), and (3He, α), have been the central
tools for determining SFs [2–4]. Extracting SFs with good
precision from data is very important to test the validity of
today’s many-body theories. For conventional nuclei there
are many experiments available that provide SFs, which
are often lower than those predicted by shell model [1].
Electron-induced knockout or electron scattering is supposed
to provide a better accuracy in extracting SFs than transfer
[5,6]. However, for exotic nuclei near or on the driplines,
transfer reactions are a unique tool and hence can have a large
impact on the programs of the new-generation rare-isotope
laboratories. Given the experimental difficulties faced with
measurements on the driplines, it is crucial to have a reliable
method for analyzing and extracting useful information from
each single data set.

Usually transfer angular distributions are analyzed within
the framework of the distorted-wave Born approximation
(DWBA). The SF determined by normalization of the calcu-
lated DWBA differential cross section to the experimental one
(e.g., Refs. [7–9]) is compared with the SF predicted by shell
model. Even when error bars in the experimental cross section
are low, the uncertainty of the extracted SF resulting from
the normalization of the DWBA cross section is often large,
regardless of whether it agrees with the shell-model prediction.
The reasons for this inaccuracy are typically (i) optical
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potentials ambiguity, (ii) the inadequacy of the DWBA reaction
theory, or (iii) the dependence on the single-particle potential
parameters. The first point has been the object of a recent
systematic study [10]. The second point needs to be addressed
case by case, and examples of improved reaction models
are the coupled-channel Born approximation (e.g., Ref. [11])
or the continuum discretized coupled-channel method
(e.g., Ref. [12]). This paper critically reviews the standard pro-
cedure of extracting SFs from transfer reactions by focusing on
the third point; the modified method eliminates the dependence
of the extracted SFs on the single-particle potentials, the main
advantage of the method.

We address a modified approach to spectroscopy from
transfer reaction that includes the asymptotic normalization
coefficient (ANC) in the analysis [2]. For simplicity, in the
following formulation, we consider the A(d,p)B reaction
and disregard spins (naturally these are included in the
applications). The DWBA amplitude for this reaction is
given by

M = 〈
ψ

(−)
f IB

An

∣∣�V
∣∣ϕpn ψ

(+)
i

〉
, (1)

where �V = Vpn + VpA − UpB is the transition operator in
the postform, Vij is the interaction potential between i and
j, and UpB is the optical potential in the final state. The
distorted waves in the initial and final states are ψ

(+)
i and ψ

(−)
f ,

respectively, ϕpn is the deuteron bound-state wave function,
and IB

An(r) is the overlap function of the bound states of nuclei
B and A that depends on r, the radius vector connecting
the center of mass of A with n. The overlap function is not
an eigenfunction of an Hermitian Hamiltonian and is not
normalized to unity [13]. The square norm of the overlap
function gives a model-independent definition of the SF:

S = N
〈
IB
An

∣∣IB
An

〉
. (2)

Here, N is the antisymmetrization factor in the isospin
formalism (N is included in the overlap function from
now on).
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The leading asymptotic term of the radial overlap function
(for B = A + n) is

IB
An(lj )(r)

r>R≈ Clj i κ hl(i κ r), (3)

where hl(i κ r) is the spherical Bessel function, κ =√
2 µAn εAn, εAn is the binding energy for B → A + n, and

µAn is the reduced mass of A and n. Similarly, the asymptotics
of the neutron single-particle wave function is ϕAn(nr lj )(r)

r>R≈
bnr lj i κ hl(i κ r), where nr is the principle quantum number.
The asymptotic behavior is valid beyond R, the channel
radius. It is clear that, in the asymptotic region, the overlap
function is proportional to the single-particle wave function.
The normalization Clj introduced in approximation (3) is the
ANC that is related to the single-particle ANC (SPANC)
bnr lj by Clj = Knr lj bnr lj , where Knr lj is an asymptotic
proportionality coefficient. It is standard practice to assume
that the proportionality between the overlap function and the
single-particle function extends to all r values:

IB
An(lj )(r) = Knr lj ϕAn(nr lj )(r). (4)

Because ϕAn(nr lj )(r) is normalized to unity, this approximation
[Eq. (4)] implies that Slj = K2

nr lj
. We have to emphasize,

however, that the overlap function in the interior is nontrivial
and may well differ from the single-particle wave function.
Approximating the radial dependence of the overlap function
as already described leads to the DWBA amplitude M =
Knr lj 〈ψ (−)

f ϕAn(nr lj )|�V |ϕpn ψ
(+)
i 〉. Normalizing the calculated

DWBA cross section,

σ DW = |〈ϕAn(nr lj )|�V |ϕpn ψ
(+)
i 〉|2, (5)

to the experimental data provides the phenomenological SF
Slj = K2

nr lj
. Assuming that Eq. (4) is valid for all r, we can

infer from Eq. (2) that the main contribution to the norm of the
overlap function comes from the nuclear interior.

To make the dependence on the SPANC more explicit, we
split the reaction amplitude into an interior part and an exterior
part:

M = Knr lj M̃int[b] + Knr lj bnr lj M̃ext, (6)

where the internal part of the matrix element M̃int[bnr lj ] =
〈ψ (−)

f ϕAn(nr lj )|�V |ϕpn ψ
(+)
i 〉r<R depends on bnr lj through the

bound-state wave function ϕAn(nr lj ), whereas the external part
M̃ext = 〈ψ (−)

f i κ hl(i κ r)|�V |ϕpn ψ
(+)
i 〉r>R does not depend

on bnr lj . Here, R is the channel radius taken so that for r > R

the overlap function can be approximated by its asymptotic
form [Eq. (3)] (R is used only to illustrate the method as
in the end this separation is not required). The contribution
from the nuclear exterior is fixed by the ANC, whereas the
SF determines the normalization of the internal part of the
radial matrix element. Since transfer reactions are dominantly
peripheral, SFs can only be extracted from transfer reactions
due to a small contribution from the nuclear interior. We now
introduce the ANC into the DWBA cross section:

d σ DW

d�
= C2

lj

σ DW

b2
nr lj

. (7)

Introducing Eqs. (6) and (7) and dividing by C2
lj , we arrive at

a function RDW(b):

RDW(bnr lj ) =
∣∣∣∣
M̃int[b]

bnr lj

+ M̃ext

∣∣∣∣

2

. (8)

Note that the SPANC bnr lj itself is a function of the geometrical
parameters of the bound-state n − A nuclear potential (r0, a)
that are, a priori, not known. If the ANC and the cross section
for the (d,p) reaction have been measured, the experimental
counterpart of RDW, Rexp = d σ exp

d�
/C2

lj can be experimentally
fixed. Then, imposing the equality

Rexp = RDW
(
bnr lj

)
(9)

will provide the correct bnlj and consequently the SF Slj =
C2

lj /b
2
nlj .

At this stage, a few points should be made clear. First, for
specific optical potentials, Eq. (5) depends on two independent
parameters, Slj and bnlj . In the standard approach, to evaluate
this cross section, the second parameter is fixed by an arbitrary
choice of the bound-state n − A potential geometry. Thus
the extracted product Slj b2

nr lj
does not coincide necessarily

with the correct ANC. Because the ANC determines the
normalization of the external part of the DWBA amplitude, in
the standard approach the SF is determined by an unrealistic
variation of the external contribution. In the modified method
discussed here, because the contribution of the external part is
fixed through the correct ANC, the whole DWBA procedure
loses this artificial degree of freedom.

Second, if the reaction is peripheral, i.e., the first term in
Eq. (6) is negligible, one can determine the ANC. Therefore
the modified approach makes use of two experiments: the first
to fix the ANC, the second to determine the SF consistent with
that ANC. In present experiments and with the new generation
of rare-isotope facilities, ANCs can be determined with 5%
accuracy. Because the determination of the SF comes from the
internal region, the second experiment needs to be performed
at a beam energy for which the contribution from the interior is
significant. The higher the contribution of the internal region,
the stronger the dependence on bnr lj in RDW(bnr lj ) and the
smaller the uncertainty of the extracted SF, although a balance
needs to be found because large interior contributions may
not be well described by the DWBA. The DWBA differential
cross section near the main peak of the angular distribution and,
correspondingly, RDW(bnr lj ) are the functionals of the SPANC
bnr lj . One given bnr lj can be produced by an infinite number
of single-particle potentials, local and nonlocal. However, the
dependence of d σ DW/d� or RDW(bnr lj ) on the shape of the
single-particle potential is minor. Hence the extracted SF in
the modified method does not depend on the single-particle
potential. We illustrate the method by presenting three different
applications: (i) 209Pb, (ii) 13C, and (iii) 85Se. We drop the
subscripts on b for simplicity.

Let us consider the reaction 208Pb(d,p)209Pb from
Ref. [12]. Although the ANC for 〈209Pb|208Pb〉 is not pub-
lished, it can be determined from the sub-Coulomb reaction
[14] 208Pb(13C, 12C)209Pb as the other vertex 〈13C|12C〉
is well known [15]. Sub-Coulomb reactions are extremely
peripheral and insensitive to details of the optical potentials.
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For this reason they present an excellent probe for ex-
tracting the ANC accurately. From Ref. [14] we obtain an
ANC of C2

g9/2 = 2.15(0.16) fm−1 for 209Pb. Then, by using
208Pb(d,p)209Pb data at Ed = 22 MeV [12], we obtain Rexp =
2.46(0.31) fm mb/sr, where we calculate the error bar based
on both the ANC and the cross-sections errors, taken as
independent. The experimental data in Ref. [12] have 1%
accuracy but are taken down to only θcm = 35◦ whereas the
peak of the DWBA distribution is at θcm = 25◦. We extrapolate
the data based on the shape predicted by DWBA and include
a 10% error in the cross section to account for this difference.
Measurements at 25◦ could improve the error bar in Rexp

considerably. We next perform a series of finite-range DWBA
calculations for 208Pb(d,p)209Pb (Ed = 22 MeV), using the
optical potentials from Ref. [16]. The adiabatic prescription
[17] was used to take into account deuteron breakup, which is
important for this reaction. The Reid-soft-core potential was
used for the deuteron wave function, as well as in all other
examples. For illustration purposes, we use a Woods-Saxon
well to generate the 208Pb + n single-particle wave functions
and obtain a range of SPANCs b by varying the single-particle
parameters (r0, a) and adjusting the depth to reproduce the
correct binding for the 2g9/2 in each case. We use the same
spin-orbit strength as that in Ref. [14], although the spin-orbit
strength does not affect the final result.

The results of our calculations RDW (dot-dashed curve)
and the experimental value Rexp (solid line and shaded area,
respectively) are presented, as functions of b, in Fig. 1. From
Rexp we find b = 1.82 fm−1/2 and S = 0.74. It is worth noting
that, in the standard approach, typical parameters (r0, a) =
(1.2, 0.6) fm produce b = 1.34 fm−1/2. Direct comparison of
the DWBA cross section by use of (r0, a) = (1.2, 0.6) fm
with the data gives S = 0.866 and consequently C2 =
1.56 fm−1, beyond the experimental range. As pointed out
before, in the standard approach the SF is determined at the
cost of an artificial ANC.

The beam energy of 22 MeV is above the Coulomb barrier;
thus the reaction is not peripheral. This can be seen in
Fig. 1 through the slope of the dot-dashed curve. In fact, for
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FIG. 1. Cross section for 208Pb(d,p)209Pb(ground state) at
22 MeV and the dependence on the single-particle parameters:
experimental value (solid line), experimental error bar (shaded area),
and the DWBA prediction (dot-dashed curve).

this particular energy, the interior contribution is around 10%.
The uncertainty in b ∈ [1.1, 3.1] fm−1/2 propagates into a large
uncertainty in S ∈ [0.3, 2.2]. This is due to the fact that the
contribution from the interior at this energy is still small. The
scaling factor relating the uncertainty of S with that of b is
(|M>|/|M<|)2. The smaller the contribution from the interior,
the smaller the accuracy with which the SF can be determined.

Also in Fig. 1 we show the results for RDW corresponding
to the calculation at Ed = 5 MeV (dashed line). This is to
illustrate that, at sub-Coulomb energies, the reaction becomes
completely peripheral and the dependence on b disappears.
Measurements at these energies could provide C2

g9/2
with

an accuracy of <5%. In addition, measurements at higher
energies (>30 MeV) would increase the slope of RDW(b) and
decrease further the error on the extracted SF.

Another standard case is the 12C(d,p)13C reaction, for
which many data sets are conveniently compiled in a recent
publication [10]. We studied three cases (8.9, 30, and 51 MeV),
using the same JLM optical potentials as were used in
Ref. [10]. We perform a series of finite-range DWBA calcu-
lations, varying the 1p1/2

12C − n single-particle parameters
to obtain RDW(b) as described before. Results for the less
peripheral case (51 MeV) are plotted in Fig. 2 (dotted-dashed
curve). We take the data from Ref. [10], and the ANC from
Ref. [15] to obtain Rexp = σ (2.5◦)

C2
1,1/2

= 2.92(0.35) fm mb/sr.

An S = 0.66 (shell model) would require b = 1.89, which
is contained in our results. However, such a conclusion is
misleading. Figure 2 shows that, even for this relatively large
energy, the dependence of RDW on b is weak. Consequently, it
is not possible to extract a SF.

It was pointed out in Ref. [10] that the deuteron breakup is
important for this reaction and should be taken into account.
To emphasize this fact, we compare our results by using the
adiabatic deuteron potential [17] from Ref. [10] (dot-dashed
curve in Fig. 2) with those obtained with an optical potential
fitted to the deuteron elastic scattering (dotted line in Fig. 2).
The disagreement is very large. Interestingly, the method here
described is also able to detect inadequate optical potential
parametrizations.
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FIG. 2. Cross section for 12C(d,p)13C(ground state) at 51 MeV
and the dependence on the single-particle parameters: experimental
value (solid line), experimental error bar (shaded area), and the
DWBA prediction (dot-dashed curve).
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Oak Ridge has developed a program to measure a series of
inverse kinematics (d,p) reactions for nuclei on the neutron
dripline [18]. As one of the nuclei in the program is 85Se, we
have performed exploratory calculations for 84Se(d,p)85Se.
We take global parametrizations for the optical potentials [16]
and perform a series of calculations, varying the single-
particle parameters. We compare the dependence of RDW on
b for a range of energies Ed = 4–100 MeV. We verify that,
expectedly, the dependence on b increases with beam energy.
We find that Oak Ridge energies (10 MeV/A) are adequate for
determining ANCs but not SFs. However, a facility that allows
for the production of 84Se at E > 25 MeV/A (such as the
National Superconducting Cyclotron Laboratory at Michigan
State University, GANIL, or RIKEN) could provide accurate
spectroscopic information.

In conclusion, we have presented an alternative method
for extracting SFs, taking into account the sensitivity of the
transfer data to the interior part of the overlap function and
combining that information with the ANC. Transfer data can
become useful within this method only if it has a significant
contribution from the interior and is well described through a
one-step DWBA formalism. The balance between these two
conditions is not a trivial one. By reducing the error bars in
both the measured transfer cross section and the ANC, this
prescription determines the single-particle asymptotics and
from it a SF with reduced uncertainty. The ANC needs to be
determined independently; it can be pinned down accurately
with the same transfer reaction at sub-Coulomb energies or
by use of heavy-ion-induced reactions, both safely peripheral.
Note that uncertainties that are due to optical potentials and
higher-order effects need to be assessed independently, as this

work focuses on the single-particle parameter uncertainties
only.

The method here presented has the potential of reducing the
uncertainty in the overlap function considerably. However, it
still assumes that the interior part has a Woods-Saxon single-
particle wave-function shape. This has been corroborated by
recent Green’s function Monte Carlo calculations on light
nuclei [19]. Even if there were nonlocalities of the single-
particle potential, this would affect mostly the deep interior
and thus would not be visible in the transfer reactions.

Results for (d,p) on 208Pb were used to illustrate the
method. We discussed previous analyses of (d,p) reactions on
12C and showed the limitations. We have also demonstrated
that this method can rule out inadequate choices of optical
potentials. Considering specific future experiments, we have
performed exploratory calculations for (d,p) on 84Se. This
method will become useful for a broad variety of transfer
experiments in the field of rare isotopes. The same method
can equally be used for transfer to excited states. These same
ideas can be extended to other reactions, in particular breakup
reactions, which also have an impact on astrophysics. Finally,
it would be helpful if the state-of-the-art reaction codes would
incorporate the formalism discussed.
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