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Three-body resonant radiative capture reactions in astrophysics
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We develop the formalism based on the S matrix for 3 → 3 scattering to derive the direct three-body resonant
radiative capture reaction rate. Within this formalism, the states that decay only/predominantly directly into the
three-body continuum should also be included in the capture rate calculations. Basing our work on the derivation,
as well as on the modern experimental data and theoretical calculations concerning 17Ne nucleus, we significantly
update the reaction rate for the 15O(2p, γ )17Ne process in an explosive environment. We also discuss possible
implementations for the 18Ne(2p, γ )20Mg, 38Ca(2p, γ )40Ti, and 4He(nα, γ )9Be reactions.
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I. INTRODUCTION

The reactions of three-body radiative capture may play
a considerable role in the rapid nuclear processes that take
place in stellar media under conditions of high temperature
and density. The possibility of bridging the waiting points of
the rp process in explosive hydrogen burning by the 2p radia-
tive capture reactions was discussed in Ref. [1]. The reactions
15O(2p, γ )17Ne, 18Ne(2p, γ )20Mg, and 38Ca(2p, γ )40Ti could
be a more efficient way to “utilize” 15O, 18Ne, and 38Ca than
to wait for their β+ decay (corresponding lifetimes are quite
large: 122, 1.67, and 0.44 s). The 4He(nα, γ )9Be reaction has
been found to be important for building heavy elements in
the explosions of supernovae [2,3]. This reaction has been
theoretically considered several times in recent years [4–9].

Three-body radiative capture is a very improbable process.
It can only be important if the sequence of two-body radiative
captures involving the bound states of the intermediate system
is not possible. This happens if the bound intermediate system
does not exist (along the driplines, the continuum ground states
are not uncommon). Then the three-body radiative capture
can proceed sequentially via the intermediate resonances
or directly from the three-body continuum (see Fig. 1 for
illustration of these modes). The latter is the inverse process
to the “true” two-proton radioactivity [10], of which studies
are active now [11–22]. The relations between sequential and
direct mechanisms of two-proton decay are discussed in detail
in Refs. [13,19].

In the modern literature, some misunderstanding exists
about the role of direct three-body capture in the theoretical
calculations of three-body radiative capture rates. In most
cases, this misunderstanding does not lead to any significant
problems. However, in some situations, the difference is suffi-
ciently large. In our opinion, the origin of the misunderstanding
is the following. The accurate formulas for the resonant
three-body capture have been known for a long time (see,
e.g., Ref. [23]). But nowadays they do not seem to be always
interpreted completely correctly. The possible reason is that
for nonresonant capture calculations the sequential capture
formalism is used in Refs. [1,6,8,9,24]. At some stage, it

has become considered as obtained employing more general
assumptions (see, e.g., Ref. [24]) than used in the derivation
of Ref. [23], which is based on complete thermal equilibrium
and detailed balance.

In this paper, we apply formalism based on the S matrix
for 3 → 3 scattering to derive the reaction rates for three-body
resonant radiative capture. In this approach, the right way of
using these formulas becomes evident. We found that the direct
and sequential capture mechanisms complement each other. In
cases when the sequential process is prohibited energetically
or suppressed dynamically, the sequential formalism should
underestimate the rate. Among the processes, where significant
differences with previous calculations can be found, there are
reactions leading to 17Ne and 40Ti.

The unit system h̄ = c = 1 is used in this article.

II. THREE-BODY RADIATIVE CAPTURE

The derivations provided below are relatively trivial. Those
of Sec. II A can be found, e.g., in Refs. [1,24]. They are
presented, however, in much detail to provide unified notation,
simplify the reading of the paper, and avoid any possible
misinterpretation.

A. Sequential capture

The abundance YA+2 for the nucleus with mass number
A + 2 due to the sequential two-proton capture reaction on
the nucleus with mass number A is defined via a three-body
reaction rate 〈σpp,γ v〉 as (see, e.g., Ref. [23])

ẎA+2 = (1/2) N2
A ρ2 〈σpp,γ v〉 Y 2

pYA, (1)

where ρ is the density and NA is the Avogadro number. The
two-proton reaction rate is defined for the sequential capture
of protons (for example, in [1]) by

〈σpp,γ v〉 = 2
∑

i

〈σp,pv〉i
�p,i

〈σp,γ v〉i .
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FIG. 1. Schematic illustration of different modes of two-proton
radiative capture reaction. Only the ground states are shown for
A + 1 system. Protons are picked up one by one from the continuum
with probabilities proportional to Boltzmann distributions w(E1) and
w(E2). Difference between sequential (a) and direct (b) resonant
capture is the availability of an intermediate resonance in the A + 1
system. At very low temperature, the resonances are not populated
by protons and γ deexcitation proceeds directly from the continuum
(c). Note that in the case of direct captures, the ratio E1/E2 is not
fixed, and different possible ratios should be taken into account.

This expression is a consequence of the rate equations for the
resonance number i

Ẏ
(i)
A+1 = NA ρ〈σp,pv〉i YpYA − �p,iY

(i)
A+1,

(2)
ẎA+2 =

∑
i

NA ρ〈σp,γ v〉i YpY
(i)
A+1,

and the assumption about thermodynamic equilibrium for the
intermediate resonant states Ẏ

(i)
A+1 = 0.

The standard expression for the cross section of the
resonance reaction with the entrance channel α and exit
channel β is

σ (E) = π

k2
12

�α�β

(E − ER)2 + �2/4

2J2R + 1

(2J1 + 1)(2J2 + 1)
, (3)

where J1 and J2 are the total spins of incoming particles and
J2R is the total spin of the resonance.

In the case of intermediate capture into the narrow proton
resonance number i (which also decays practically only via
proton emission), �α = �β = �p,i , and

〈σp,pv〉i =
∫

vσi(E12)w(k12)d3k12 =
(

A1 + A2

A1A2

)3/2

× 2J2R,i + 1

2(2JI + 1)

(
2π

mkT

)3/2

exp

[
−E2R,i

kT

]
�p,i, (4)

where JI is the total spin of the initial (core) nucleus and J2R,i is
the total spin of the resonance number i in the core+p system.
The Boltzmann distribution normalized for integration over
d3k12 (k12 = √

2m12E12 is the relative motion momentum) is

w(k12) = (2πm12kT )−3/2 exp[−E12/kT ],

and we approximate the integral over the resonance profile as∫ ∞

−∞

dE

(E − ER)2 + �2/4
= 2π

�
.

The reaction rate for the subsequent capture of the second
proton on the core+p system in the resonant state number
i and the following γ emission is

〈σp,γ v〉i =
(

A1 + A2 + A3

(A1 + A2)A3

)3/2 2JF + 1

2(2J2R,i + 1)

(
2π

mkT

)3/2

× exp

[
−E3R − E2R,i

kT

]
�γ �′

p,i

�3R

, (5)

where JF is the total spin of the resonance E3R in the core+2p

system. �′
p,i is the partial width for decay of this state into the

binary channel (core+p)i+p, where the core+p subsystem is
in the resonant state number i. It is easy to determine that the
two-proton reaction rate for sequential proton capture (through
narrow intermediate resonances) is

〈σpp,γ v〉 =
(

A1 + A2 + A3

A1A2A3

)3/2 2JF + 1

2(2JI + 1)

(
2π

mkT

)3

× exp

[
−E3R

kT

]
�γ

∑
i �

′
p,i

�3R

. (6)

The following features of this rate should be noted:

(i) The reaction rate does not depend on the number and
properties of the intermediate states, but only on the sum
of the proton widths for the population of these states in
the decay of the A + 2 system.

(ii) In the most expected case of the sequential decay
mode dominance for the three-body resonance E3R , we
have �γ � �3R, �2p � �3R (�2p is the width for the
direct decay into the 2p continuum, the process not
proceeding via intermediate core+p resonances), and
�3R = ∑

i �
′
p,i . So, the reaction rate depends only on

the γ width of the three-body resonance in A + 2.
(iii) Equation (6) shows that if there exist other significant

decay channels for three-body resonance E3R , then �3R >∑
i �

′
p,i and the production rate decreases. Such a possible

decay channel is, as already mentioned, a direct (not
via resonances) decay of the three-body resonance E3R

into the two-proton continuum. Typically this process is
suppressed, but there are cases where this process is not
suppressed. Such situations are typically connected with
specific separation energy conditions [13]. The direct
process can be dominating, or it can even be the only
possible decay channel (no intermediate resonances).
Such an opportunity is considered in the next section.

B. Direct capture

The abundance YA+2 due to the direct two-proton capture
reaction is defined via a three-body reaction rate as

ẎA+2 = (1/2) N2
A ρ2〈σ2p,γ v〉 Y 2

pYA. (7)

To derive the cross section of the direct capture from the three-
body continuum, we use the S-matrix formalism for the 3 → 3
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reaction. The plane wave for three particles can be decomposed
over hyperspherical harmonics ILML

Kγ such that

�
pw
3 = exp[ ik1r1 + ik2r2 + ik3r3]χS1M1χS2M2χS3M3

= exp[ ikc.m.Rc.m. + ikyY + ikxX]χS1M1χS2M2χS3M3

= exp[ ikc.m.Rc.m.]
(2π )3

( κρ)2

∑
JM

∑
KLlx lySSx

iKJK+2(κρ)

× J JM
KLlx lySSx

(
ρ)
∑
ML

ILML∗
Klx ly

(
κ) g
JLSSx

MMLM1M2M3
, (8)

where χSiMi
are spin functions for the cluster number i. J JM

denotes the hyperspherical harmonic ILML coupled with spin
functions of clusters to the total momentum J, that is,

J JM
KLlx lySSx

= [
IL

Klx ly
⊗ XSSx

]
JM

,

XSSxMS
= [[

χS1 ⊗ χS2

]
Sx

⊗ χS1

]
SMS

.

Variables kc.m. and Rc.m. describe the center-of-mass motion.
Conjugated sets of Jacobi variables for the internal motion
of the three-body system are {kx, ky} and {X, Y}. The
corresponding equivalent sets of hyperspherical variables (in
momentum and coordinate spaces) are {κ,
κ} and {ρ,
ρ}.
Complete definitions of the hyperspherical variables and
hyperspherical harmonics can be found, e.g., in Ref. [21]. The
dependence on magnetic quantum numbers is

g
JLSSx

MMLM1M2M3
=

∑
MSMx

CJM
LMLSMS

C
SMS

SxMxS3M3
C

SxMx

S1M1S2M2
.

Following the same steps as in the two-body case, we define
scattering amplitude and decompose it over hyperspherical
harmonics. The asymptotic form of the three-body wave
function (WF), where center-of-mass motion is omitted, is
given by

�3(ρ → ∞) = �
pw
3 + exp[i κρ]

ρ5/2
fM1M2M3 (
ρ,
κ), (9)

where

fM1M2M3 (
ρ,
κ) =
∑
JM

∑
LSSx

∑
MLMS

CJM
LMLSMS

× f
J L S Sx

MMLM1M2M3
(
ρ,
κ) XSSxMS

.

So, the 3 → 3 scattering amplitude can be written as

f
J L S Sx

MMLM1M2M3
(
ρ,
κ)

= exp[−iπ/4] (2π/ κ)5/2
∑

Klx ly ,K ′γ ′

(
δ

K ′γ ′
Kγ − S

K ′γ ′
Kγ

)
ILML

Klx ly
(
ρ)

×
∑
M ′

L

IL′M ′
L∗

K ′l′x l′y
(
κ)g

JL′S ′S ′
x

MM ′
LM1M2M3

, (10)

where γ = {LlxlySSx}. In these equations, angles 
κ point
to the direction on the hypersphere where the particles came
from [the directions defined by momenta in the plane wave
(8)]. The angles 
ρ in the asymptotic expression (9) define the
vectors of particles and the energy distribution after collision.

The cross section of 3 → 3 scattering can be written as

dσ (
κ)

d
ρ

=
∑

SSxMS

∣∣∣∣∣
∑
LML

CJM
LMLSMS

f
J LS Sx

MMLM1M2M3
(
ρ,
κ)

∣∣∣∣∣
2

,

and after integration over the angle 
ρ of the outgoing
particles, summation over the projections of the final total spin
M, and averaging over the projections of spins of the incoming
clusters Mi , we obtain

σ (
κ) =
(

2π

κ

)5

GJ
S1S2S3

∑
Kγ,K ′γ ′

δS ′
S δ

S ′
x

Sx
δL′
L

× 1

2L + 1

∑
ML

ILML

Klx ly
(
κ) IL′ML∗

K ′l′x l′y
(
κ)

×
∑
K ′′γ ′′

(
δ

Kγ

K ′′γ ′′ − S
Kγ

K ′′γ ′′
)†(

δ
K ′γ ′
K ′′γ ′′ − S

K ′γ ′
K ′′γ ′′

)
. (11)

Coefficients GJ
S1S2S3

are combinatorial factors

GJ
S1S2S3

= 2J + 1

(2S1 + 1)(2S2 + 1)(2S3 + 1)
.

The astrophysical production rate is given by

〈σ2p,2pv〉′ = 2
∫

κ

m
σ (
κ)w(k1k2k3) d3k1 d3k2 d3k3.

The prime symbol in the notation of reaction rate reminds
us that it is calculated in the space of scaled hyperspherical
variables. The Boltzmann distribution for three particles
normalized for integration over

∏
i=1,3 d3ki is

w(k1k2k3) = exp[−(E1 + E2 + E3)/kT ]

(2πmkT )9/2(A1A2A3)3/2
.

After transformation to hyperspherical variables,

d3k1d
3k2d

3k3 →
(

A1A2A3

A1 + A2 + A3

)3/2

d3kc.m.d
κ κ
5d κ,

and after d3kc.m. and d
κ integration (we should recall here
that angles 
κ point to the directions of the incoming particles
defined by vectors ki),

〈σ2p,2pv〉′ = (2π )6

π (2πmkT )3
GJ

S1S2S3

∫
exp

[
− κ

2

2mkT

]
κ

m

×
∑

Kγ,K ′γ ′

(
δ

K ′γ ′
Kγ − S

K ′γ ′
Kγ

)†(
δ

K ′γ ′
Kγ − S

K ′γ ′
Kγ

)
d κ.

(12)

To get the inelastic part of the cross section for the sufficiently
narrow resonance, we should replace (see Refs. [25,26])∑

Kγ,K ′γ ′

(
δ

K ′γ ′
Kγ − S

K ′γ ′
Kγ

)†(
δ

K ′γ
Kγ − S

K ′γ ′
Kγ

)

with
�2p�γ

(E − E3R)2 + �2
3R/4

. (13)

For the two-proton capture on the nucleus JI to the final state
JF (assuming the small width of the three-body resonance),
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we obtain

〈σ2p,γ v〉′ =
(

2π

mkT

)3 2JF + 1

2(2JI + 1)
exp

[
−E3R

kT

]
�2p�γ

�3R

. (14)

The production rate for two-proton capture should be mul-
tiplied by squared density ρ2 to provide the abundance, see
Eq. (7). Equation (14) is written in scaled Jacobi variables.
The density in these variables can be expressed via density in
the ordinary space as

ρ2
scaled = ρ2

(
A1 + A2 + A3

A1A2A3

)3/2

.

The expression for production rate which can be used with
the expression for density in normal space (indicated by the
absence of the prime symbol) is, therefore,

〈σ2p,γ v〉 =
(

A1 + A2 + A3

A1A2A3

)3/2 2JF + 1

2(2JI + 1)

(
2π

mkT

)3

× exp

[
−E3R

kT

]
�2p�γ

�3R

. (15)

Equation (15) is absolutely the same as Eq. (6) except for
the dependence on the decay width of the A + 2 system to
the three-body continuum �2p instead of decay widths to the
resonant states in the A + 1 system �′

p,i . We can draw the
following conclusions here:

(i) Equation (15) is obtained with very general assumptions
about the existence of the asymptotic (9) and analytical
properties of the 3 → 3 scattering S matrix. We also use
the fact that most of the states of interest are narrow.
No other assumptions are made (e.g., in sequential
formalism, there is the assumption about the existence
of the specific decay path). So, the direct capture (unlike
sequential capture) is always possible.

(ii) It is clear that Eqs. (6) and (15) supplement each other,
and the total reaction rate is

〈σ2p,γ v〉 + 〈σpp,γ v〉 =
(

A1 + A2 + A3

A1A2A3

)3/2 2JF + 1

2(2JI + 1)

×
(

2π

mkT

)3

exp

[
−E3R

kT

]
�2p + ∑

i �
′
p,i

�3R

�γ . (16)

(iii) In the most likely situation �2p + ∑
i �

′
p,i 
 �γ (and,

hence, �3R = �2p + ∑
i �

′
p,i), the total reaction rate

depends only on the γ width of the three-body resonance
in the A + 2 system. However, it is possible that the direct
two-proton emission is the only nuclear decay branch for
the state. The width �2p could be very small (smaller than
the γ width) in a relatively broad range of the three-body
decay energies [21]. In that case, the reaction rate depends
only on �2p.

(iv) Equation (16) gives the formula for the reaction rate,
which is the same as the one known for a long time [see,
e.g., Eq. (20) in Ref. [23]] and was obtained by much
easier means (namely, a complete thermal equilibrium
and a detailed balance) than in this work. The result of our
derivation here is a clearer understanding of the fact that
this formula already correctly and completely includes
both sequential capture and direct capture reactions.

So, we see that for the resonant part of the reaction rate,
the sequential formalism treatment is overcomplicated and
incomplete. This is not a great issue in most cases, but there
are situations where it becomes important. The impact of the
formalism on the rates of reactions of astrophysical interest is
discussed in Sec. III.

C. Formal questions

The derivations of the reaction rates in Secs. II A and II B are
quite schematic. They basically rely on assumptions about the
existence of definite asymptotics of the three-body problem.
These assumptions could be not evident, and they require if
not a proof then at least some discussion.

For sequential formalism, we need there to exist a long-
living resonance state in the X Jacobi subsystem [at energy
Ex = kx/(2Mx) and width �x]. Then the asymptotic implied
in the derivations of Sec. II A is

�3({X, Y } → ∞) = �
pw
3 + eikxX

X
f (k̂x)

eikyY

Y
f (k̂y). (17)

For the direct capture, the assumed asymptotic is

�3(ρ → ∞) = �
pw
3 + ei κρ

ρ5/2
f (
ρ,
κ), (18)

where k2
x/(2Mx) + k2

y/(2My) = κ
2/(2m) = E3R .

Expressions (17) and (18) correspond to neutral particles,
whereas we are speaking about nuclei Z = 8–20 capturing
protons. The typical densities for x-ray bursts and processes in
novae are 103–106 g/cm3 [27]. For such densities, the average
distances between protons are about 6 × 102 to 2 × 104 fm;
and for characteristic temperatures, the Debye screening radii,
are 3 × 103 to 5 × 105 fm. Beyond these radii, we have a
formal right to use the asymptotics as they are given by
Eqs. (17) and (18).

It should be understood that in a very formal sense,
the asymptotic (17) is not valid. Equation (17) implies that
subsystem X can be found in the resonance state Ex at
any distance Y of the third particle separation. This is not
possible because of the finite width �x of this resonant
state. In the limit of infinite distance, a long-living two-
body state finally decays, and the asymptotic (17) should
be replaced by (18). However, from the practical side, the
separation of asymptotics (17) and (18) is reasonable. A
nice example (also relevant to the further discussion) of
the coexistence of the three-body and binary asymptotics
is the decay of the 9Be 5/2− state at 2.429 MeV. The
branchings of this state to the three-body α + α + n channel
Br(3) and binary 8Be(g.s.)+n channel Br(2) are comparable
[Br(3) ∼ 0.93–0.95 and Br(2) ∼ 0.07–0.05 [28]]. Separation
of these decay branches is reliably experimentally observed
(see, for example, Ref. [29]). In the case of binary decay, the
average flight distance of the 8Be g.s. resonance (�x = 6.8 eV)
is around 106 fm. Thus, for some practical purposes, the
assumption of Eq. (17) is clearly justified. It is also clear
that the broader the resonance in the X subsystem, the
faster the transition from asymptotic Eq. (17) to asymptotic
Eq. (18) happens. For example, for the width of the intermedi-
ate resonance �x around 100 keV (and typical E3R = 1 MeV),
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the average flight distance of this resonance is around 100 fm.
This is much smaller than the typical distance between protons
in the stellar media, and then usage of Eq. (17) and chemical
balance description by Eq. (2) makes little sense.

The other difficulty is that asymptotics (17) and (18) are
located in the same space and could have the same quantum
numbers. However, we can speak about orthogonality of these
asymptotics in a definite sense and then treat currents asso-
ciated with them independently. Only this assumption makes
possible the separate treatment of sequential and direct decay
channels in Secs. II A and II B. The asymptotic (17) is typically
localized in a very small part of the phase space. Formally,
this corresponds to the fact that the hyperspherical series for
binary channel (at given hyperradius) is very long (with many
significant terms), while for asymptotic (18) we can expect that
only the lowest hyperspherical harmonics in the decomposition
are significant. Thus the sequential and direct channels are
practically orthogonal on the hypersphere of a large radius.
With an increase in the radius, this “orthogonality” (called
asymptotic orthogonality) becomes better, until the effect of
the X subsystem decay becomes important. Again, using the
example of the 5/2− state of 9Be, the level of overlap between
the direct and sequential decay channels in the momentum
space can be estimated as

Br(3) Br(2)
�8Be(0+)

E3R(5/2−)
= 0.06

6.8 eV

764.1 keV
∼ 5 × 10−7,

which is clearly a very small value. When there is no longer
such reliable separation between channels (17) and (18) (the
intermediate resonances are too broad), we have a formal right
to speak only about asymptotic (18).

To finalize this discussion, let us emphasize again that
the derivations in Secs. II A and II B were done as if only
one type of the asymptotic exists. From a formal point of
view, only the asymptotic of Eq. (18) exists. For practical
purposes, either (i) only the asymptotic of Eq. (18) exists or
(ii) both asymptotics (17) and (18) are present simultaneously.
Asymptotic (18) exists in the three-body problem (of the type
we consider, see Fig. 1) unconditionally, while the existence
of asymptotic (17) is subject to the availability of sufficiently
narrow intermediate resonances for the decay. In case (ii), the
regions of the domination of each asymptotic are separated by
a complicated surface in the phase space. Some discussion of
the relevant questions can be found, for example, in Ref. [26].
So, the phase space integration in Secs. II A and II B should
have been done not over the whole space, but over regions of
validity for each type of asymptotic. It is clear, however, that
this imperfection does not influence the final result because (i)
the contribution of the asymptotic of the selected kind in the
phase space outside the region of its domination is typically
negligible and (ii) we are interested in the contribution of both
kinds of asymptotics simultaneously.

III. DISCUSSION

A. 15O(2 p, γ )17Ne reaction

The results of resonant rate calculations for this reaction are
shown in Fig. 2 and in Table I. They differ significantly from

FIG. 2. Reaction rate for 15O(2p, γ )17Ne reaction. Solid curves
show calculations of this paper. Gray curves indicate boundaries due
to uncertainties in the input (they are obtained with “Lower” and
“Upper” columns from Table II). Dashed and dotted curves show full
result from Ref. [1] and resonance contribution to it, respectively.

the results of Ref. [1] (shown in Fig. 2 by dashed and dotted
curves). For the temperature range of astrophysical interest
(∼0.3–3 GK, see [27], for example), the expected increase
of the rate, compared to Ref. [1], is up to four orders of the
magnitude, while the maximum possible increase is up to nine
orders of magnitude.

The reasons for the difference are evident from Table II,
which gives inputs for calculations of this work and the
previous one.

(i) The level scheme of 17Ne has been somewhat updated
(see, e.g., Ref. [30]) since the work [1] was written.

(ii) The use of Eq. (15) includes the first 3/2− excited state
of 17Ne into treatment (it was omitted in Ref. [1], as there
is no sequential capture path to this state). The important
difference in the situation with this state from the others
is that the γ width of this state is known to be much
larger than the 2p width, and the reaction rate Eq. (16) is
entirely defined by the 2p width for the simultaneous two-
proton emission. At the moment, there exist two theoreti-
cal calculations of this width: �2p = 4.1 × 10−16 MeV
[18] and �2p = 3.6 × 10−12 MeV [31], and there is
a quite relaxed experimental lower lifetime limit of

TABLE I. Reaction rates multiplied by N2
A (in cm6/s) for

15O(2p, γ )17Ne reaction.

T (GK) Ref. [1] This work This work upper

0.3 2.9 × 10−23 4.9 × 10−19 2.9 × 10−14

0.5 6.0 × 10−18 2.1 × 10−15 1.3 × 10−12

0.6 1.2 × 10−16 2.8 × 10−14 2.8 × 10−12

0.8 5.6 × 10−15 6.3 × 10−13 6.9 × 10−12

1.0 5.0 × 10−14 3.5 × 10−12 1.3 × 10−11

1.5 1.1 × 10−12 2.5 × 10−11 3.8 × 10−11

2.0 6.0 × 10−12 5.1 × 10−11 6.8 × 10−11

3.0 4.3 × 10−11 7.6 × 10−11 1.1 × 10−10

5.0 2.5 × 10−10 7.3 × 10−11 2.3 × 10−10
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TABLE II. Resonance parameters of 17Ne states used in the 15O(2p, γ )17Ne reaction calculations. Lower and Upper
columns show parameter sets used to estimate the lower and upper limits for the rate. They are defined using the experimental
or theoretical uncertainties of the widths. The listed set of states is sufficient for rate calculations up to 5 GK. Widths and
branchings not specifically discussed are from [28].

State Type Ref. [1] This work

J π E (keV) � (eV) E (keV) Lower � (eV) Median � (eV) Upper � (eV)

3/2− �2p 1288 2 × 10−10 a4.1 × 10−10 b2.5 × 10−5

5/2− �γ 1907 6.0 × 10−5 1764 1.5 × 10−3 c1.7 × 10−3 c2.0 × 10−3

1/2+ �γ 1850 1.6 × 10−5 1908 1.1 × 10−5 1.6 × 10−5 d2.1 × 10−4

5/2+ �γ 2526 2.0 × 10−5 2651 8.2 × 10−6 e9.0 × 10−6 d9.9 × 10−5

3/2− �γ 3204 0.022 3204 0.019 f0.019 d0.19

aA 2p width [see Eq. (16): the γ width is dominating the decay of this state], calculated theoretically in Ref. [18].
bA 2p width; this experimental limit is found in Ref. [17].
cCalculated from B(E2) = 124(18) e2 fm 4 given in Ref. [17].
dA partial width (88% branching) into the ground and first excited states of 17Ne.
eAn assumed value (in analogy with the more than an order of magnitude increase for the 5/2− state from column 3
to 5).
fA partial width (45% branching) into the 1/2− ground and the first excited 3/2− states of 17Ne. γ transition to 1/2+ state
returns the system into 2p continuum.

τ > 26 ps [17] (which corresponds to the width �2p <

2.5 × 10−11 MeV). Values �2p from Refs. [18] and [17]
are used to estimate, respectively, the lower and the upper
boundaries for the band of expected values of the rate
(see Fig. 2). The resonance contribution of this state
is dominating the rate in the temperature range 0.05–
0.35 GK if we take the theoretical 2p width from Ref.
[18], and up to 1.2 GK if we consider the experimental
limit.

(iii) In paper [1] the γ widths for 17Ne were taken from
transitions studied in the isobaric mirror partner 17N.
Recently, the decay of the first excited states of 17Ne
(3/2−, 5/2−) has been studied via the intermediate-energy
Coulomb excitation of a radioactive 17Ne beam on a 197Au
target [11,17]. In these papers, the transition matrix el-
ements B(E2,1/2− → 3/2−) and B(E2,1/2− → 5/2−)
were deduced. We used the deduced B(E2) value from
Ref. [17] to calculate the γ width of the 5/2− state.
The result is shown in Table II. This width appears to
be about 30 times larger than the corresponding width
of the mirror state in 17N. This is probably connected
to the fact that at the proton-rich side, the number of
protons contributing to gamma transitions is larger and
these protons are situated at larger distances compared
with the tightly bound protons in 17N. The relation of
this observable to the possible existence of a proton halo
in 17Ne is discussed in paper [32]. This situation is also
expected for the other states in 17Ne (compared to the
states in 17N), which is reflected by an order of magnitude
increase in the other widths for estimates of the upper
limits (column “Upper” in Table II).

The uncertainty of the obtained rate is quite large, which is
connected mainly with the discrepancy between available the-
oretical results [18,31]. Both theoretical calculations predict
almost equal structure for the 17Ne 3/2− state (see Table II
in Ref. [31]). However, the widths differ by four orders of

magnitude. Theoretical width calculations in paper [18] are
based on the quantum mechanical model with approximate
boundary conditions of the three-body “democratic” Coulomb
problem [12,13]. The model was developed for studies of
2p radioactivity and was tested on a broad range of nuclear
decays from the lightest clusterized systems (6Be [12], 12O,
16Ne [14], 9Be∗,8 Li∗ [33]) to the heaviest known 2p emitters
(45Fe [15,21] and 54Zn [22]). Width calculations in paper
[31] were performed using a quasiclassical WKB formula,
where penetration was considered via the lowest branch of
the hyperspherical adiabatic potential. This model provides
reasonable results for the decays of the 6He 2+ state and
12C 0+ states [34]. Reasons for disagreement between the
models in the particular case of 17Ne 3/2− states are not yet
clear and require further investigation. A further experimental
improvement of the lifetime limit, obtained in [17], is an
extremely complicated task, but could possibly resolve this
problem.

B. 18Ne(2 p, γ )20Mg reaction

For the 18Ne(2p, γ )20Mg reaction, there are no three-body
decaying states that were not taken into account in Ref. [1],
so, no significant update of the rate is expected here. However,
the level scheme and γ widths are not known experimentally
for this nucleus, and this should be reflected in the rate
calculations.

In the cases of 2p capture into 17Ne and 40Ti, the γ widths
from mirror isobaric partners were used in Ref. [1]. In contrast,
for capture into 20Mg, the systematics values were utilized.
The theoretical B(E2) values for some low-lying states in 20Mg
have been calculated recently in Ref. [35]. The B(E2,4+

1 → 2+
1 )

was found to be 28.2 or 11.6 e2 fm4 (for V2 and MN forces,
respectively), and B(E2,2+

2 → 0+
1 ) was found to be 2.9 or

1.9 e2 fm4. These reduced probabilities give γ widths 5.6 ×
10−4 or 2.3 × 10−4 eV for the 4+

1 state (which is comparable
to the value 2.1 × 10−4 eV used in [1]) and 2.0 × 10−3 or
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TABLE III. Resonance parameters of 20Mg states used in the
18Ne(2p, γ )20Mg reaction calculations.

State This work lower This work upper

J π E (keV) �γ (eV) E (keV) �γ (eV)

4+
1 3570 2.1 × 10−4 3451 5.6 × 10−4

2+
2 4072 1.3 × 10−3 3857 8.9 × 10−2

0+
2 4456 1.4 × 10−3 4317 1.4 × 10−3

4+
2 4850 2.6 × 10−3 4699 2.6 × 10−3

2+
3 5234 2.9 × 10−1 4978 2.9 × 10−1

1.3 × 10−3 eV for the 2+
2 state (which is significantly less than

the 8.9 × 10−2 eV used in [1]). We combine the largest and
the lowest γ widths from Refs. [1] and [35] to estimate the
upper and the lower boundaries for the rate (see Table III). To
incorporate the sensitivity to the level scheme in this estimate,
we also use for the lower estimate the energies of the states
from 20O. The distance between levels here is expected to be
somewhat larger than in 20Mg [1], and the reaction rate thus
should further decrease.

The results of calculations are shown in Table IV. The upper
boundary in our calculations is in good agreement with results
of [1] (factor of 2) at T � 0.8 GK. It was shown in [1] that
below 0.8 GK, the nonresonant contribution to the reaction
rate dominates, which explains the discrepancy in Table IV at
low temperatures.

C. 38Ca(2 p, γ )40Ti reaction

For the 38Ca(2p, γ )40Ti reaction, one three-body decaying
state has been omitted in Ref. [1]. According to isobaric
symmetry, there should be a 0+

2 state located at about
2.121 MeV excitation energy. The two-proton separation
energy used in Ref. [1] is S2p = 1.582 MeV. Another estimate
(e.g. [36]) is S2p = 1.370 MeV. In the first case, the 2p

emission energy for the 0+
2 state is 539 keV, and (following

Refs. [19,21]) the two-proton width can be estimated as about
10−21 MeV. In the second case, the 2p energy is 751 keV
and the estimated two-proton width is around 10−18 MeV.
For other states, we use parameters from Ref. [1] (see

TABLE IV. Reaction rates multiplied by N2
A (in cm6/s) for

18Ne(2p, γ )20Mg reaction.

T (GK) Ref. [1] This work lower This work upper

0.3 4.4 × 10−21 9.3 × 10−28 2.5 × 10−25

0.5 3.3 × 10−17 4.3 × 10−20 1.8 × 10−18

0.6 4.8 × 10−16 3.0 × 10−18 8.3 × 10−17

0.8 1.8 × 10−14 5.1 × 10−16 9.5 × 10−15

1.0 2.4 × 10−13 9.6 × 10−15 1.8 × 10−13

1.5 6.8 × 10−12 3.7 × 10−13 1.1 × 10−11

2.0 9.7 × 10−11 2.0 × 10−12 8.0 × 10−11

3.0 4.8 × 10−10 1.5 × 10−11 4.4 × 10−10

5.0 2.4 × 10−9 1.4 × 10−10 1.2 × 10−9

TABLE V. Resonance parameters of 40Ti states used in the
38Ca(2p, γ )40Ti reaction calculations. In the Type column, the type
of width is specified, which defines the contribution of the state to
reaction rate. The Lower set of widths is used in the calculations with
S2p = 1.370 MeV; the Upper set, with S2p = 1.582 MeV.

J π E (keV) Type Lower � (eV) Upper � (eV)

0+
2 2121 �2p 10−12 10−15

2+
2 2524 �p 1.0 × 10−5 1.0 × 10−5

4+
1 2892 �γ 2.0 × 10−4 2.0 × 10−3

2+
3 3208 �γ 1.0 × 10−2 1.0 × 10−1

Table V), which mainly come from the isobaric mirror partner
40Ar. To estimate the upper boundary for the reaction rate
we increase the γ widths of 4+

1 and 2+
3 states by an order

of magnitude. As already discussed, one could expect a
significant increase in the γ widths when we come to the
proton-rich mirror partner. To estimate the sensitivity to
the level scheme (which is not known for 40Ti), we use
the smaller 2p separation energy S2p = 1.370 MeV for the
estimate of the lower boundary and S2p = 1.582 MeV for
the upper boundary. Again, as in the case of 20Mg, the in-
crease of the state energy above the 2p threshold leads to a
decrease of the corresponding reaction rate. For that reason, we
use the larger 2p width as the estimate of the lower boundary
(Table V, line 1): the larger two-proton width corresponds to
the case of larger energy of states above the 2p separation
threshold.

The results of calculations for 38Ca(2p, γ )40Ti are given in
Fig. 3 and Table VI. Our results are somewhat larger (one to
two orders of magnitude) than results of [1] for temperatures
T > 1 GK. They more or less overlap at lower temperatures.
The effect of inclusion of the 0+

2 2.121 MeV state can be
seen in Fig. 3: the range between upper and lower boundaries
shrinks at T < 0.35 GK because the contribution of the 0+

2

FIG. 3. Reaction rate for 38Ca(2p, γ )40Ti reaction. Solid curve
shows the result from [1]. Gray curves indicate upper and lower
boundaries for our results (see Table VI) due to existing uncertainties
in the input.
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TABLE VI. Reaction rates multiplied by N2
A (in cm6/s) for

38Ca(2p, γ )40Ti reaction.

T (GK) Ref. [1] This work lower This work upper

0.3 2.1 × 10−25 7.0 × 10−28 2.3 × 10−24

0.5 1.0 × 10−19 7.8 × 10−21 1.1 × 10−18

0.6 2.4 × 10−18 4.0 × 10−19 3.1 × 10−17

0.8 1.1 × 10−16 5.3 × 10−17 3.0 × 10−15

1.0 1.3 × 10−15 1.2 × 10−15 7.1 × 10−14

1.5 7.0 × 10−14 1.3 × 10−13 6.0 × 10−12

2.0 5.2 × 10−13 1.5 × 10−12 5.1 × 10−11

3.0 3.0 × 10−12 1.4 × 10−11 3.2 × 10−10

5.0 8.0 × 10−12 5.0 × 10−11 8.2 × 10−10

state is much larger in the lower parameter set, which otherwise
provides a smaller reaction rate.

D. 4He(nα, γ )9Be reaction

The stellar reaction rate for 4He(nα, γ )9Be process has been
studied several times in recent years [4–9]. The results are
in overall agreement, except for the latest paper [9]. In this
work, the rate obtained is significantly higher (for temperatures
T > 3 GK) than the rates in the previous studies.

In our studies here, we have found that the sequential
formalism underestimates the reaction rate only if the width of
the state for direct decay into the continuum is dominating (see
Sec. II A). The low-lying (E � 3 MeV) 9Be states typically
have strong 8Be + n decay branchings. Only the 5/2−
2.429 MeV state is an exception: the branching to the three-
body channel is 93–95% Refs. [28,29]. The γ width of this
state is 0.091 eV [28]. The results of our calculations are shown
in Fig. 4 and Table VII. In these calculations, we use a version
of Eq. (16) without an assumption about narrow widths of the
resonances, and the capture cross section is parametrized as in
Ref. [8] (with the exception that the 5/2− state is included).

FIG. 4. Reaction rate for 4He(nα, γ )9Be reaction. Solid curve
shows our result (see also Table VII). Dashed curve is the same, but
without 5/2− 2.429 MeV state contribution (this coincides with result
of Ref. [8]). Dash-dotted curve is contribution from the near threshold
1/2+ state. Dotted curve shows calculations of Ref. [9].

TABLE VII. Reaction rates multiplied by N2
A (in cm6/s) for

4He(nα, γ )9Be reaction.

T (GK) Ref. [8] Ref. [8] upper This work

2 1.80 × 10−7 2.20 × 10−7 1.83 × 10−7

4 5.48 × 10−8 6.99 × 10−8 5.94 × 10−8

6 2.88 × 10−8 3.83 × 10−8 3.20 × 10−8

8 1.81 × 10−8 2.47 × 10−8 2.02 × 10−8

10 1.23 × 10−8 1.70 × 10−8 1.36 × 10−8

The results obtained are in very good agreement with [8].
The rate increase due to addition of the 5/2− state is 11%
at most in the temperature range up to 10 GK. This small
change is connected with a comparatively small γ width of
this state: the γ widths of the other states in the capture cross
section parametrization used in [8] are around 0.45–0.9 eV. So,
the uncertainty in the reaction rate due to uncertainties in the
experimental data found in [8] is significantly larger than the
correction connected with the 5/2− state (see Table VII).

This experimental uncertainty could be even larger than
indicated in Ref. [8]. The analysis provided in Ref. [7] in
the framework of the semimicroscopic model demonstrated
that the older photodisintegration data for 9Be [37–39] could
be more preferable than the more up-to-date results [40] (on
which, e.g., the parametrization of the cross section used in
Ref. [8] is based). The reaction rate found in [7] (as well as
in the early work [4]) is around 35% larger than the rate in
Ref. [8].

Paper [9] is generally dedicated to the R-matrix analysis
of the β-delayed particle decay of 9C via the excited states
in 9B. The authors utilize the R-matrix parameters obtained
in the decay studies of 9B for the capture calculations in 9Be.
The reaction rate calculated in this work is consistent with the
other results at low temperatures, but is qualitatively different
at T > 3 GK (see Fig. 4, dotted curve). The rise of the reaction
rate at higher temperatures is connected, according to [9], with
the contribution of the sequential capture of an α particle on
the broad ground state of 5He. Such a capture path has never
been considered elsewhere.

It should be noted that in the framework of sequential
formalism, this is a valid question: How narrow should the
intermediate state be to be considered within this formalism?
Really, the sequential formalism is evidently correct in the
limit of an infinitely narrow intermediate state. However, in
the other limit (an infinitely broad state), we have just the
nonresonant continuum, and the sequential formalism should
fail at some point. This issue is qualitatively discussed in
Sec. II C. Our work resolves this question in a very natural
way: we state that contributions of different sequential and
three-body channels should add up in a way that makes their
relative contributions unimportant. So, inclusion of capture via
5He into formalism should not lead to any significant changes
(compared to conventional sequential capture via 8Be g.s.)
until there exist states with a dominating three-body decay
branch (which are not accounted for in sequential formalism)
and large γ widths. No such states are known in the energy
range of interest. The reaction rate from Ref. [9] can be
reproduced within our formalism only if we assume that the γ
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width for the 3 MeV state in 9Be is about 15 eV and that one
more state at about 5 MeV has a γ width above 1 keV. Such
assumptions are quite unrealistic.

Unfortunately, there is evidence of problems in Ref. [9]
which probably have led to the discussed strange result. In
Eq. (32) of that work, the penetrability is present in the
first power, while it should be in the second (as we speak
about elastic cross section). Possibly this is the reason for the
qualitatively incorrect behavior of the intermediate population
values (see Fig. 8 in Ref. [9]). For example, the population
〈σ (E)v/�(E)〉 for 5He g.s. should decrease as T at low
temperature. In Fig. 8 of Ref. [9], this value has a rapid rise at
low temperature. Using Eq. (32) from Ref. [9] “as is” one gets
behavior T −1/2 at low T in agreement with this figure.

So, the difference found in our approach due to inclusion
of three-body decaying states is not significant in the case
of 4He(nα, γ )9Be reaction. It is much smaller than the other
uncertainties (see Refs. [7] and [8]). However, our formalism
excludes such a possibility as a contribution of a broad
intermediate 5He state (as in Ref. [9]) to the capture rate.

IV. CONCLUSION

We use the formalism based on the S matrix for 3 → 3
scattering to derive the reaction rate for the three-body resonant
radiative capture. This derivation makes especially evident that
(i) all the three-body states should be included in the treatment
(even if there is no opportunity of a sequential capture to the
state), (ii) the detailed knowledge of the intermediate states
is unnecessary to calculate the resonant rates, and (iii) only
the knowledge of particle and γ widths for the three-body

states is needed to calculate the resonant rates (not the relative
contribution of direct and sequential mechanisms).

This formalism, together with the modern results on 2p and
γ widths of 17Ne states, allows us to update significantly the
capture rate for the 15O(2p, γ )17Ne reaction. The updated rate
is four to nine orders of magnitude larger (in the temperature
range of astrophysical interest). The experimental derivation
of the 2p width of the first excited state in 17Ne is found to
be very important for refining this rate. The 38Ca(2p, γ )40Ti
reaction rate has also been a increased considerably. Thus,
the conclusions about importance of the 2p capture reactions
could possibly be more optimistic than in Ref. [1]. We also
discuss the impact of our approach on the 18Ne(2p, γ )20Mg
and 4He(nα, γ )9Be reaction rates. Our studies emphasize
the importance of better γ width information for 2p cap-
ture rates (experimental or theoretical, if the first is not
available).

The studies of this work are restricted to resonant re-
actions (and correspondingly to relatively high tempera-
tures). We are planning to perform accurate three-body
studies of the nonresonant contributions in a forthcoming
paper.
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