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Nuclear “pasta” structures and the charge screening effect
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I. INTRODUCTION

There emerged many studies of the mixed phases at
various first-order phase transitions such as hadron-quark
deconfinement transition [1–6], kaon condensation [7–15],
color superconductivity [16–18], superfluidity in atomic traps
[19], nuclear pasta [20–30], etc.

At very low densities, nuclei in matter are expected to
form the Coulomb lattice embedded in the neutron-electron
seas that minimizes the Coulomb interaction energy. With an
increase of the density, nuclear “pasta” structures emerge [20]:
the stable nuclear shape may change from droplet to rod,
slab, tube, and bubble. Pasta nuclei are eventually dissolved
into uniform matter at a certain nucleon density below the
saturation density ρ0 � 0.16 fm−3. Existence of pasta phases
instead of the separated crystalline lattice of nuclei and the
liquid npe phase would modify some important processes
by changing the hydrodynamic properties and the neutrino
opacity in supernova matter and in the matter of newly born
neutron stars [31]. Also, the pasta phases may influence
neutron star quakes and pulsar glitches via the change of
mechanical properties of the crust matter [32].

A number of authors have investigated low-density nuclear
matter using various models [20–29]. Roughly speaking, the
favorable nuclear shape is determined by a balance between
the surface and Coulomb energies. In most of the previous
studies, the rearrangement effect of the density profile of the
charged particles due to the Coulomb interaction is discarded.
In Ref. [30] the electron screening effect was studied, and it
was found that this effect is of minor importance. However,
the rearrangement of the proton profiles as the consequence of
the Coulomb repulsion was not shown in their model.

A naive application of Gibbs conditions to separate bulk
phases at the first-order phase transitions, when one ignores
the surface and Coulomb interaction, demonstrates a broad
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region of the structured mixed phase, cf. [1,8]. However, the
charge screening effect (caused by the nonuniform charged
particle distributions) should be very important when the
typical structure size is of the order of the minimal Debye
screening length in the problem. It may largely affect the
stability condition of the geometrical structures in the mixed
phases. We have been recently exploring the effect of charge
screening in the context of the various structured mixed phases
[4–6,14,15,33]. In fact, we have examined the mixed phase of
the quark-hadron transition, kaon condensation, and nuclear
pasta and found that in cases of the quark-hadron transition and
kaon condensation the mixed phase might be largely limited
by the charge screening and surface effects.

Our purpose here is, following our preliminary study
[15,33], to investigate the nuclear pasta structures by means
of a relativistic mean field (RMF) model, which on the one
hand does not need the introduction of surface tension and
on the other hand includes the Coulomb interaction in a
proper way. We determine how the charge screening effects
modify the results obtained disregarding these effects. In
Sec. II, we formulate the model and describe our numerical
procedure. In Sec. III, we demonstrate the efficiency of the
model in the description of properties of finite nuclei. Then in
Sec. IV, we first describe nonuniform pasta structures at a fixed
proton-to-baryon number ratio that may have an application
to the supernova matter and to the matter of a newly born hot
protoneutron star. Then we investigate nuclear pasta at the β

equilibrium, as they occur in cold neutron stars. In Sec. V, we
elucidate the effects of the surface and the charge screening.
Finally in Sec. VI, we arrive at our conclusions.

II. DENSITY FUNCTIONAL THEORY WITH
RELATIVISTIC MEAN FIELD

A. Thermodynamic potential and equations of motion

Following the idea of the density functional theory (DFT)
with the RMF model [34], we can formulate equations of
motion to study nonuniform nuclear matter numerically. The
RMF model with fields of mesons and baryons introduced in a
Lorentz-invariant way is rather simple for numerical calcula-
tions, but realistic enough to reproduce the bulk properties of
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nuclear matter. In our framework, the Coulomb interaction
is properly included in equations of motion for nucleons,
electrons, and meson mean fields, and we solve the Poisson
equation for the Coulomb potential VCoul self-consistently with
them. Thus, the baryon and electron density profiles, as well as
the meson mean fields, are determined in a way fully consistent
with the Coulomb potential.

Note that our framework can be easily extended to other
situations; for example, if we take into account kaon or pion
condensations, which are likely realized in a high-density
region, we should only add the relevant meson field terms.
In Ref. [14], we included the kaon degree of freedom in such
a treatment to discuss kaon condensation in a high-density
regime.

To begin with, we present the thermodynamic potential for
the system of neutrons, protons, and electrons with chemical
potentials µa (a = n, p, e), respectively,

�=�N + �M + �e, (1)

where

�N =
∑

a=p,n

∫
d3r

[∫ kF,a

0

d3k

4π3

√
m∗

N
2 + k2 − ρaνa

]
, (2)

with the local Fermi momenta kF,a(r) (a = n, p) for nucleons,

�M =
∫

d3r

[
(∇σ )2 + m2

σ σ 2

2
+ U (σ )

− (∇ω0)2 + m2
ωω2

0

2
− (∇R0)2 + m2

ρR
2
0

2

]
, (3)

for the scalar (σ ) and vector mean fields (ω0, R0) and

�e =
∫

d3r

[
− 1

8πe2
(∇VCoul)

2 − (µe − VCoul)4

12π2

]
,

(4)

for electrons and the Coulomb potential VCoul(r), where
νp(r) = µp + VCoul(r) − gωNω0(r) − gρNR0(r),νn(r) = µn −
gωNω0(r) + gρNR0(r),m∗

N (r) = mN − gσNσ (r), and the non-
linear potential for the scalar field U (σ ) = 1

3bmN (gσNσ )3 +
1
4c(gσNσ )4. Temperature is assumed to be zero in this study.

Here we use the local-density approximation for nucleons
and electrons. Strictly speaking, the introduction of the density
variable is meaningful if the typical length of the nucleon
density variation inside the structure is larger than the inter-
nucleon distance. We must also bear in mind that for small
structure sizes, quantum effects, which we disregard, become
prominent. For the sake of simplicity, we also discard nucleon
and electron density derivative terms [34]. In cases when we
suppress derivative terms of nucleon densities, they follow
changes of the other fields that have derivative terms. In our

case, these fields are the meson mean fields and the Coulomb
field. Here we consider large-size pasta structures and simply
discard the density variation effect, as a first-step calculation,
while it can be easily incorporated in the quasiclassical manner
by the derivative expansion within the density functional
theory [34]. We also could use the fact that the resulting Debye
screening lengths of electrons and protons characterizing the
Coulomb field profile are typically much larger than those for
all meson mean fields. Then we could reduce the contribution
of the latter to the surface tension term. If the nucleon
(neutron and proton) length scales were shorter than those
of changes of the meson mean fields, one could simplify the
problem by dropping them and introducing instead a surface
tension term. This simplified treatment is discussed in detail
elsewhere [35]. In this paper, we avoid this simplification and
solve numerically the coupled equations for the meson mean
fields and the Coulomb field. Parameters of the RMF model
are set to reproduce saturation properties of nuclear matter:
the minimum energy per baryon −16.3 MeV at ρ = ρ0 =
0.153 fm−3, the incompressibility K(ρ0) = 240 MeV, the ef-
fective nucleon mass m∗

N (ρ0) = 0.78mN with mN = 938 MeV,
and the symmetry energy coefficient asym = 32.5 MeV. Cou-
pling constants and meson masses used in our calculation are
listed in Table I.

From the variational principle δ�
δφi (r) = 0 (φi = σ,R0, ω0,

VCoul) and δ�
δρa (r) = 0 (a = n, p, e), we get the coupled equa-

tions of motion for the mean fields and the Coulomb potential,

∇2σ (r) = m2
σ σ (r) + dU

dσ
− gσN

[
ρ(s)

n (r) + ρ(s)
p (r)

]
, (5)

∇2ω0(r) = m2
ωω0(r) − gωN [ρp(r) + ρn(r)], (6)

∇2R0(r) = m2
ρR0(r) − gρN [ρp(r) − ρn(r)], (7)

∇2VCoul(r) = 4πe2ρch(r), (8)

with the scalar densities ρ(s)
a (r) (a = n, p), and the charge den-

sity ρch(r) = ρp(r) + ρe(r). Equations of motion for fermions
yield the standard relations between the densities and chemical
potentials,

µn = µB =
√

k2
F,n(r) + m∗

N (r)2 + gωNω0(r) − gρNR0(r),

(9)

µp = µB − µe =
√

k2
F,p(r) + m∗

N (r)2

+ gωNω0(r) + gρNR0(r) − VCoul(r), (10)

ρe(r) = −[µe − VCoul(r)]3/3π2, (11)

where we have assumed that the system is in chemical
equilibrium among nucleons and electrons and introduced the
baryon number chemical potential µB and the electron number
chemical potential µe. Note that first, the Poisson equation for

TABLE I. Parameter set used in RMF in our calculation.

gσN gωN gρN b c mσ (MeV) mω (MeV) mρ (MeV)

6.3935 8.7207 4.2696 0.008659 0.002421 400 783 769
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the Coulomb field (8) is highly nonlinear in VCoul(r), since
ρch(r) in the right-hand side includes it in a complicated
way. The Coulomb potential always enters equations through
the gauge invariant combinations µe − VCoul(r) and µp +
VCoul(r).

B. Numerical procedure

To solve the above coupled equations numerically, we
use the Wigner-Seitz cell approximation: the whole space is
divided into equivalent cells with a geometry. The geometrical
shape of the cell changes: sphere in three-dimensional (3D)
calculation, cylinder in 2D, and slab in 1D. Each cell is
globally charge neutral, and all the physical quantities in a
cell are smoothly connected to those of the next cell with
zero gradients at the boundary. Every point inside the cell is
represented by the grid point (Ngrid ≈ 100), and the differential
equations for fields are solved by the relaxation method for a
given baryon number density under the constraint of the global
charge neutrality.

To illustrate how to numerically solve equations of motion
for the mean fields, let us consider, for simplicity, two fields
f1(r), f2(r) and their coupled Poisson-like equations under 3D
calculation,

∇2f1(r) = m1
2f1(r) + W1[f1, f2],

(12)∇2f2(r) = m2
2f2(r) + W2[f1, f2],

where Wi (i = 1, 2) are functions of the fields f1 and f2.
Introducing a relaxation “time” t artificially, we solve the
equation,

∂fi(r; t)

∂t
= ci(∇2fi(r; t) − m2fi(r; t) − Wi[f1, f2]). (13)

If the coefficients ci are appropriately chosen, the above fi (r; t)
will converge to be constant in time and we get the solution of
Eq. (12).

The profiles of the nucleon densities are solved with the
help of the “local chemical potentials” µa(r) (a = n, p), which
are different from the constant chemical potentials which we
initially introduced. Assuming µa(r) is an increasing function

of the neutron or proton number density ρa(r) in Eqs. (9) and
(10), the relaxation equation for the neutron or proton density
profile,

∂ρa(r; t)

∂t
= ca(r; t)ρa(r; t)∇2µa(r; t), (14)

is solved to get rid of the spatial dependence of the local
chemical potentials µa(r; t). The coefficients ca(r; t) (a =
n, p) are not constant so as to conserve the total proton
and neutron numbers. When we impose the β equilibrium
condition, proton and neutron densities are adjusted to
achieve µn(r) = µp(r) + µe(r). Finally we get the density
profiles ρn(r) and ρp(r) relating to the constant chemical
potentials µn(r) = µn and µp(r) = µp. Although the basic
idea is to attain the constant chemical potentials µa(r) =
µa (a = n, p) at the convergence, there is an exception:
in regions where ρa(r) = 0, the local chemical potentials
µa(r) are larger than the constant value in the regions where
ρa(r) �= 0.

The electron density profile ρe(r) is calculated directly
from Eq. (11). The value of µe is adjusted at any time step
to maintain the global charge neutrality: we decrease µe when
the total charge in a cell is positive and increase when it is
negative.

All the above relaxation procedures are performed simul-
taneously.

III. BULK PROPERTIES OF FINITE NUCLEI

Before applying our framework to the problem of the pasta
phase in nucleon matter, let us check how well it works in
describing finite nuclei. In this calculation, for simplicity,
we assume the spherical shape of nuclei. The electron
density is set to zero. Therefore, neither the global charge
neutrality condition nor the local charge-neutrality condition is
imposed.

In Fig. 1 (left panel) we show the density profiles of
some typical nuclei. One can see how well our framework
may reproduce the density profiles. To obtain a still better
fit, especially around the surface region, we might need to
include the derivative terms of the nucleon densities, as we
have already remarked. Fine structures seen in the empirical
density profiles, which may come from the shell effects (see,
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FIG. 1. Properties of finite nuclei obtained
with the present RMF model. Left: density pro-
files of typical nuclei. Proton number densities
(solid curves) are compared with the experiment.
Right: binding energy per nucleon and proton
number ratio of finite nuclei.
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FIG. 2. Examples of the density profiles in the cell for symmetric nuclear matter with Yp = 0.5 (left panel) and for asymmetric matter with
Yp = 0.3 (center panel) and 0.1 (right panel).

e.g., a proton density dip at the center of a light 16O nucleus),
cannot be reproduced by the mean-field theory. The effect of
the rearrangement of the proton density distribution is seen
in heavy nuclei. Protons repel each other, which enhances
their contamination near the surface of heavy nuclei. This
effect is analogous to the charge screening effect for the
Coulomb potential in the sense that the proton distribution
is now changed not on the scale of the nuclear radius but
on another length scale, which we will call the proton Debye
screening length [see Eq. (16) below]. It gives rise to important
consequences for the pasta structures since typically the proton
Debye screening length is less than the droplet size. The
optimal value of the proton Z to the total baryon A number
ratio Yp = Z/A is obtained by imposing the β equilibrium
condition for a given baryon number. Figure 1 (right panel)
shows the baryon number dependence of the binding energy
per baryon and the proton number ratio. We can see that the
bulk properties of finite nuclei (density, binding energy, and
proton-to-baryon number ratio) are satisfactorily reproduced
for our present purpose.

Note that in our framework we must use a sigma mass
mσ = 400 MeV [36], a slightly smaller value than usually
used, to get an appropriate fit. If we used a popular value
mσ ≈ 500 MeV, finite nuclei would be overbound by about
3 MeV/A. The actual value of the sigma mass (as well as
the omega and rho masses) has little relevance for the case
of infinite nucleon matter, since it enters the thermodynamic
potential only in the combination C̃σ = gσN/mσ . However,
meson masses are important characteristics of finite nuclei and
of other nonuniform nucleon systems, such as those in pasta.
The effective meson mass characterizes the typical scale for the
spatial change of the meson field, and consequently it affects
the value of the effective surface tension [35].

IV. NONUNIFORM STRUCTURES IN NUCLEON MATTER

A. Nucleon matter at fixed proton number ratios

First, we are concentrated on the discussion of the behavior
of the nucleon matter at a fixed value of the proton number ratio
Yp. Particularly, we explore the proton number ratios Yp = 0.1,
0.3, and 0.5. The cases Yp = 0.3–0.5 should be relevant for the
supernova matter and for newly born neutron stars. Figure 2
shows some typical density profiles inside the Wigner-Seitz
cells. The geometrical dimension of the cell is denoted as 3D
(three-dimensional sphere), etc. The horizontal axis in each
panel denotes the radial distance from the center of the cell. The
cell boundary is indicated by the hatch. From top to bottom,
the configuration corresponds to droplet (3D), rod (2D), slab
(1D), tube (2D), and bubble (3D). The nuclear pasta structures
are clearly manifested. For the lowest Yp case (Yp = 0.1),
the neutron density is finite at any point: the space is filled
by dripped neutrons. The neutron-drip value of Yp is around
0.26 in our 3D calculation, for example. For a higher Yp, the
neutron density drops to zero outside the nucleus. The proton
number density always drops to zero outside the nucleus. We
can see that the charge screening effects are pronounced. Due
to the spatial rearrangement of electrons, the electron density
profile becomes no more uniform. This nonuniformity of the
electron distribution is more pronounced for a higher Yp and
a higher density. Protons repel each other. Thereby the proton
density profile substantially deviates from the step function.
The proton number density is enhanced near the surface of the
nucleus.

The equation of state (EOS) for the sequence of geometric
structures is shown in Fig. 3 (top panels) as a function
of the averaged baryon number density. Note that the en-
ergy E − mN also includes the kinetic energy of electrons,
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FIG. 3. (Color online) Binding energy per nucleon, pressure, and cell and nuclear sizes for symmetric nuclear matter with Yp = 0.5 (left
panel), and for asymmetric matter with Yp = 0.3 (center panel) and 0.1 (right panel).

which makes the total pressure positive (middle panels). The
lowest-energy configurations are selected among various geo-
metrical structures. The most favorable configuration changes
from the droplet to rod, slab, tube, bubble, and to the uniform
one (the dotted thin curve) with an increase of density. The
appearance of nonuniform structures in matter results in a
softening of EOS: the energy per baryon gets lower up to
about 15 MeV/A compared to the uniform matter.

The bottom panels in Fig. 3 are the cell radii Rcell and
nuclear radii Rd versus averaged baryon number density. The
radius Rd is defined by way of a density fluctuation as

Rd =


Rcell

〈ρp〉2〈
ρ2

p

〉 , (for droplet, rod, and slab)

Rcell

(
1 − 〈ρp〉2〈

ρ2
p

〉 )
, (for tube and bubble),

(15)

where the bracket “〈 〉” indicates the average along the radial
(for 3D and 2D cases) or perpendicular (1D) direction in
the cell. Dashed curves show the Debye screening lengths
of electron and proton calculated as

λ
(e)
D =

(
−4πe2 dρav

e

dµe

)−1/2

, (16)

λ
(p)
D =

(
4πe2

dρav
p

dµp

)−1/2

, (17)

where ρav
p is the proton number density averaged inside the

nucleus (the region with finite ρp) and ρav
e is the electron charge

density averaged inside the cell. Actually, to do this more
carefully, we should introduce four Debye screening lengths
λ

(a,<)
D and λ

(a,>)
D with a separate averaging for the interior

and the exterior of the nuclei. However, we observe that the

proton number density is always zero in the exterior region, and
thereby λ

(p,>)
D = ∞. Electrons λ

(e,<)
D and λ

(e,>)
D are in general

different but both are large and of the same order of magnitude
in the pasta case under consideration. Therefore, we actually do
not need a more detailed analysis of these quantities. Note that
these values are obviously gauge invariant. Numerically, the
cell radii Rcell for droplet, rod, and slab configurations at Yp =
0.5 and 0.3 were proven to be close to the electron screening
length. For the tube, Rcell is larger than λ

(e)
D . For Yp = 0.1, in

all cases Rcell is substantially smaller than λ
(e)
D , and thus the

electron screening should be much weaker. In all cases, except
for bubbles (at Yp = 0.5 and 0.3), the structure radii Rd are
smaller than λ

(e)
D . This means that the Debye screening effect of

electrons inside these structures should not be pronounced. For
bubbles at Yp = 0.5 and 0.3, λ

(e)
D is substantially smaller than

the cell size and the electron screening should be significant
(see Fig. 9 below). For Yp = 0.5, 0.3, 0.1 in all cases (with
the only exception Yp = 0.1 for slabs), the value λ

(p,<)
D is

shorter than Rd . Hence, the density rearrangement of protons
is essential for the pasta structures, as it is indeed seen from
Fig. 2.

Using the baryon number density and nuclear radius from
Fig. 3, one may estimate the atomic number of the nucleus.
In the case of droplets and for Yp = 0.5, the atomic number
of the droplet is �25 in the low-density limit and �65 at the
maximum density of the droplet phase ρ

(max)
B,d � 0.025 fm−3.

B. Nucleon matter in β equilibrium

Next, we consider the neutron star matter at zero temper-
ature and explore the nonuniform structures for the nucleon
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FIG. 4. Density profiles in the cell for nuclear matter in
β equilibrium with baryon number densities 0.01, 0.03, and
0.05 fm−3.

matter in β equilibrium. Figure 4 shows the density profiles for
different baryon number densities. The droplet structure itself
is quite similar to the case of the fixed proton number ratio
Yp = 0.1 considered above. The apparently different feature
in this case is that only the droplet configuration appears as a
nonuniform structure. It should be noticed, however, that the
presence or absence of the concrete pasta structure sensitively
depends on the choice of the effective interaction.

In Fig. 5, we plot the energy per baryon (top), the cell and
nuclear sizes (middle), and the proton number ratio (bottom).
The effect of the non-uniform structure on EOS (the difference
between the energy of uniform matter and that of non-uniform
one) is small. However, the proton number ratio is significantly
affected by the presence of the pasta at lower densities. In the
zero-density limit, the proton number ratio should converge to
that of the normal nuclei. The droplet radius and cell radius
in the middle panel of Fig. 5 are always smaller than the
electron Debye screening length λ

(e)
D . Thereby, the effect of

the electron charge screening is small. Unlike the fixed Yp
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FIG. 5. (Color online) Binding energy (top), cell and nuclear sizes
(middle), and proton number ratio (bottom) in the cell for nuclear
matter in β equilibrium.

cases, the droplet radius is comparable to the proton Debye
screening length, which means that the effect of the proton
rearrangement is not pronounced in this case. In fact, there is
no enhancement of the proton number density near the surface
in Fig. 4, in contrast to that in Fig. 2.

It would be useful for further applications to present a table
containing the subnuclear EOS in β equilibrium. To this end,
Table II shows pressure, energy density, and proton number
fraction versus baryon number density.

V. COMPARISON WITH OTHER CALCULATIONS

In this section, we compare our DFT calculation with others
to explore the effects of the surface, the charge rearrangement,
and the fully consistent treatment of the density distribution.

TABLE II. EOS of matter in β equilibrium. Pressure P, energy density ε − mNρB , and proton number ratio Yp are listed
for baryon number density ρB .

ρB P ε − mNρB Yp ρB P ε − mNρB Yp

(fm−3) (MeV/fm3) (MeV/fm3) (fm−3) (MeV/fm3) (MeV/fm3)

Droplet Uniform

0.005 0.0039483 0.0063025 0.042926 0.061 0.2418000 0.2319342 0.015024
0.010 0.0065066 0.0176880 0.025492 0.065 0.2989100 0.2647905 0.016435
0.015 0.0080088 0.0301290 0.018096 0.070 0.3813600 0.3111640 0.018241
0.020 0.0100940 0.0431160 0.014486 0.075 0.4767400 0.3638775 0.020093
0.025 0.0147800 0.0568900 0.012485 0.080 0.5856100 0.4233920 0.021986
0.030 0.0236970 0.0719850 0.011608 0.085 0.7085500 0.4901440 0.023914
0.035 0.0383230 0.0890085 0.011340 0.090 0.8460400 0.5645520 0.025874
0.040 0.0599000 0.1085920 0.011497 0.095 0.9985700 0.6470070 0.027863
0.045 0.0896340 0.1313550 0.011926 0.100 1.1666000 0.7379000 0.029877
0.050 0.1280100 0.1578800 0.012708
0.055 0.1756500 0.1886940 0.013734
0.060 0.2313900 0.2242440 0.014902
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FIG. 6. (Color online) Bulk calculations
with the surface tension parameter τsurf = 1.03
and 0.5 MeV/fm2.

First let us focus on a very simplified treatment that has
been used in the literature. We consider the bulk calculation
supplemented by a simplified treatment of the finite-size
effect. For description of the latter, we introduce the surface
tension and a bare (nonscreened) Coulomb interaction. This
calculation assumes a sharp boundary between dense and
dilute phases, uniform baryon density distribution inside each
phase, and uniform electron density distribution all over the
cell. To further specify this approximation, we use the term “no
Coulomb + sharp surface.” We totally discard the Coulomb
potential in equations of motion and drop the Poisson equation
(“no Coulomb”) and we reduce the mean fields to their constant
bulk values in the interior and the exterior of the structure
(“+sharp surface”). The Coulomb energy, evaluated with the
step-function-like density profiles, and the surface energy,
expressed via the surface tension parameter τsurf , are added
to the total bulk energy.

The volume fraction of each phase is simply calculated
without taking into account the finite-size effect (“bulk
calculation”). Details of the “no Coulomb + sharp surface”
calculation are presented in Appendix A.

Figure 6 shows the EOS obtained by the “no Coulomb +
sharp surface” calculation performed at different values of
the surface tension. In this case for Yp = 0.5, the dilute phase
includes no baryon. The value of the surface tension parameter
τsurf � 1.03 MeV/fm2 fits the liquid-drop binding energies of
finite nuclei. Note that the appearance or disappearance of the
pasta structure essentially depends on the value of the surface
tension. With a larger value of the surface tension, the density
region of the pasta structure reduces and even some of the
structures, e.g., “tube” and “bubble,” disappear. With a smaller
value of the surface tension, the region of the pasta structure
broadens and all kinds of pasta structures appear if we take
τsurf � 0.3 MeV/fm2. However, if we put the surface tension
at zero, the mixed phase develops from zero to the saturation
density ρ0 without any specific geometry. Therefore, from the
given example we see that the surface tension plays a crucial
role in the appearance of pasta structures. Remember that in
the case under consideration, the pasta structures are realized
by a balance of the surface tension and the bare Coulomb

interaction, which reads Esurf = 2ECoul, where Esurf is the
surface energy and ECoul the bare Coulomb energy. Therefore,
the Coulomb interaction is important as well. Please also note
that the surface tension introduced here simulates effects of
the spatial changes of the meson mean fields. In our “full
calculation,” the latter effects are taken into account explicitly,
whereas purely “bulk calculations” completely disregard these
effects.

Next we compare three kinds of calculations with different
treatments of the Coulomb interaction. One is the “full
calculation” which we have done here. The second is the cal-
culation that disregards electron screening (“no e-screening”):
a constraint is used that the electron density should be uniform.
In this calculation, the Coulomb potential VCoul in Eq. (11) is
replaced by a constant V0 = 0,

ρe = −(µe − V0)3/3π2. (18)

In the full calculation, the value of V0 is arbitrary, and one
can take V0 for the sake of convenience, e.g., as V0 = 0, or
set it equal to the averaged value of VCoul(r) over the cell:
recall that VCoul or µe alone does not have a physical meaning
but only the combination µe − VCoul is meaningful because
of the gauge invariance, cf. [4,5]. However, in the case of
no e-screening, the gauge invariance is violated as seen in
Eq. (10), since we replace VCoul to V0 = 0 in the equation for
the electron chemical potential but retain VCoul in the equation
for the proton chemical potential and thus in the expression
for the proton number density. We do this procedure just to
demonstrate the efficiency of the proton rearrangement while
artificially suppressing that of the electron one. The third
calculation, called “no Coulomb,” is performed by totally
discarding the Coulomb potential VCoul in equations of motion.
Accordingly, the Poisson equation is discarded as well. After
obtaining the density profiles, the Coulomb energy, being eval-
uated using charge densities thus determined, is added to the
total energy. This calculation is similar to the no Coulomb +
sharp surface calculation discussed above. The difference is
that the effect of the density variation near the structure surface
is automatically incorporated in the no Coulomb calculation,
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FIG. 7. Comparison of the density profiles for different treatments of the Coulomb interaction. From the left: full calculation, without
electron screening, and “no Coulomb” calculation. The proton number ratio Yp = 0.5 for all cases.

while in the no Coulomb + sharp surface calculation this effect
is hidden in the value of the surface tension.

In Fig. 7, the density profiles are compared for different
treatments of the Coulomb interaction. The left panel is the
same as that in Fig. 2. It demonstrates the full calculation.
It seems that there is almost no difference between the nucleon
density of the full calculation and that of the no e-screening
calculation (center). The case of no Coulomb calculation
(right), however, shows a significant difference, especially in
the proton number density. The reason is simple: the electron
Debye screening length is large, whereas the proton Debye
screening length is rather short. Thus the proton screening
effects are much more pronounced than the electron ones.

The EOS as a whole (upper panels in Fig. 8) shows almost
no dependence on the treatments of the Coulomb interaction.
This agrees with a general statement that the variational
functional is always less sensitive to the choice of the trial
functions than the quantities linearly depending on them.
Nevertheless, sizes of the cell and the nucleus (lower panels
in Fig. 8) especially for tube and bubbles are different. In
the cases of the full calculation and no e-screening, the cell
radii of tube, bubble and slab structures at the higher-density
side get larger with an increase of density, while they are
monotonically decreasing in the no Coulomb calculation. We
see almost no difference between the full and no e-screening
calculations, which again demonstrates the weakness of the
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FIG. 8. (Color online) Comparison of the density profiles for different treatments of the Coulomb interaction. From the left: “full”
calculation, “no electron screening”, and “no Coulomb” calculation. The proton number ratio is Yp = 0.5 for all cases.
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FIG. 9. (Color online) Comparison of the phase diagrams be-
tween different treatments of the Coulomb interaction.

electron screening effects. The most significant point seen
in Fig. 9 is the disappearance of the bubble structure in the
no Coulomb calculation for Yp = 0.1. The other effect is a
difference in the density range for each pasta structure. The
full treatment of the Coulomb interaction slightly increases
the region of the nuclear pasta. For Yp = 0.1, the differences
between full and no e-screening calculations are completely
eliminated.

VI. SUMMARY AND CONCLUDING REMARKS

We have discussed the low-density nuclear matter structures
called nuclear pasta and elucidated the charge screening effect.
Using a self-consistent framework based on density functional
theory and relativistic mean fields, we took into account the
Coulomb interaction in a proper way and numerically solved
the coupled equations of motion to extract the density profiles
of nucleons.

First we checked how realistic our framework is by
calculating the bulk properties of finite nuclei, as well as the
saturation properties of nuclear matter, and found that it can
describe both features satisfactorily. One could still improve
the consideration fitting other experimental data. For example,
we could more carefully fit different terms in the Weiczecker
equation such as the surface energy and the shell terms. For that
we might need an improvement of our relativistic mean-field
model that does not include the gradient terms of proton and
neutron densities.

In isospin-asymmetric nuclear matter for fixed proton-to-
baryon number ratios, we have observed the nuclear pasta
structures with various geometries at subnuclear densities.
These cases are relevant to the discussion of supernova
explosions and the description of newly born neutron stars.
The appearance of pasta structures significantly lowers the
energy, i.e., softens the equation of state, while the en-
ergy differences between various geometrical structures are
rather small. The spatial rearrangement of the proton and
electron charge densities (screening) affect the geometrical
structures.

By comparing different treatments of the Coulomb inter-
action, we have seen that the self-consistent inclusion of the
Coulomb interaction changes the phase diagram. In particular,
the region of the pasta structure is broader for a full calculation
compared to that with simplified treatments of the Coulomb
interaction, which have been used in previous studies. The
effect of the rearrangement of the proton distributions on the
structures is much more pronounced compared to the effect
of the electron charge screening. The influence of charge
screening on the equation of state, on the other hand, was
found to be small.

We also studied the structure of nucleon matter in the
β equilibrium. We found that only one type of structure is
realized: proton-enriched droplets embedded in the neutron
sea. No other geometrical structures such as rod, slab, etc.,
appeared.

In our calculation, the transition between pasta structures
occurs suddenly as the baryon number density changes. This
situation may not be realistic. At the transient region between
two different structures, a kind of complex and intermediate
structure may appear. Such a situation is also relevant to the
dynamical (time-dependent) change of density. In Ref. [37],
transition of pasta structures during compression of supernova
matter was demonstrated by a molecular dynamics simulation.
During the transition, complex and intermediate structures,
e.g., a spongelike structure between a rod and a slab, were
observed in the simulation. We expect, however, that such
intermediate structures do not affect the EOS of matter since
the energy difference is very small between different pasta
structures.

In application to newly formed neutron stars, as in su-
pernova explosions, finite temperature and neutrino trapping
effects become important, as well as the dynamics of the first
order phase transition with formation of the structures. It would
be interesting to extend our framework to include these effects.
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APPENDIX A: “BULK” AND “NO COULOMB +
SHARP SURFACE” CALCULATION OF LOW-DENSITY

NUCLEON MATTER

The bulk calculation proceeds like this [2,3,7,16,20]: first
consider two semi-infinite matters, (I) dense and (II) dilute
phases, with a sharp boundary. The Coulomb and surface
interactions are discarded for now. Conditions of thermal
equilibrium at zero temperature are imposed for pressure P
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and chemical potential µa (a = n, p) between the two phases:

P (I) = P (II),

µ(I)
p = µ(II)

p , (A1)

µ(I)
n = µ(II)

n .

In Sec. IV A, the case is considered when the β equilibrium is
not imposed but the proton-to-baryon number ratio Yp is fixed.

The averaged densities are ρp = fρ(I)
p + (1 − f )ρ(II)

p and
ρn = fρ(I)

n + (1 − f )ρ(II)
n . Here f is the volume fraction

of phase (I). The chemical potentials are calculated us-
ing the RMF model presented in this paper. Taking
into account the above conditions (A1), we obtain a set
of ρ(I)

n , ρ(II)
n , ρ(I)

p , ρ(II)
p , P (I) = P (II), f , and the bulk energy

density εbulk in each phase for given ρn and ρp. At this point
εbulk does not include the surface and Coulomb contributions.
If one cannot find the solution with finite ρ(II)

n and ρ(II)
p , the

proton or neutron density of the dilute phase is set to zero.
In this case the corresponding chemical potential is larger in
phase (II) than in phase (I), and the complete set of the Gibbs
conditions is not fulfilled.

Now let us specify the no Coulomb + sharp surface
calculation. To consider the structure of the mixed phase, the
balance between the Coulomb and surface interactions should
be taken into account. Introducing an adjusting parameter

of the surface tension τsurf , we calculate the surface energy
density for the given geometrical dimension D as

εsurf = τsurff D

Rd

, (A2)

where Rd is the droplet radius. The Coulomb energy density
can be calculated [20] as

εCoul = 2πe2
(
ρ(I)

p − ρ(II)
p

)2
Rd

2f �, (A3)

� ≡
[

2 − Df 1−2/D

D − 2
+ f

]
1

D + 2
. (A4)

By minimizing εsurf + εCoul in Rd (the relation εsurf = 2εCoul),
we get

Rd =
[

τsurfD

4π
(
ρ

(I)
p − ρ

(II)
p

)2
�

]1/3

, (A5)

εCoul + εsurf = 3f D

[
πτ 2

surf

(
ρ(I)

p − ρ(II)
p

)2
�

2D

]1/3

. (A6)

Comparing the energy density of the uniform matter ε and
those of mixed phases εbulk + εsurf + εCoul with different
geometrical dimension D, we can determine the most favorable
configuration and its energy density.
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