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Gauge symmetric �(1232) couplings and the radiative muon capture in hydrogen
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By use of the difference between the gauge symmetric and standard πN� couplings, a contact ππNN

term, quadratic in the πN� coupling, is explicitly constructed. In addition, contribution from the � excitation
mechanism to the photon spectrum for the radiative muon capture in hydrogen is derived from the gauge
symmetric πN� and γN� couplings. It is shown for the photon spectrum, studied experimentally recently for
photon momentum k > 60 MeV, that this contribution is smaller by 4–10% than the one obtained from the
standardly used couplings for the on-shell �’s.
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I. INTRODUCTION

The photon spectrum in the radiative muon capture in
hydrogen,

µ− + p −→ νµ + γ + n, (1.1)

has recently been calculated by several authors [1–5] in search
of a process that enhances the high-energy part of the photon
spectrum, as calculated earlier [6]. It was concluded [3], in the
studies that were made both within the small-scale expansion
scheme [7] and in the heavy baryon chiral perturbation theory
[8], that a combination of various small effects could explain
the experimental spectrum [9,10]. However, the actual sizes of
some of these effects, such as the charge symmetry breaking,
are to be considered in more detail. On the other hand, this
spectrum was calculated in [5] with amplitudes derived from
Lagrangians possessing the hidden local SU(2)L × SU(2)R
symmetry [11,12]. In particular, the vertices containing the
�(1232) isobar field were chosen as

LN�πρa1 = fπN�

mπ

�̄µ
�TOµν(Z)� · (∂ν �π + 2fπgρ �aν)

− gρ

G1

M
�̄µ

�TOµη(Y )γ5γν� · �ρην + H. c. (1.2)

Here �T is the operator of the isospin 1/2 → 3/2 transition.
The operator Oµν(B) is taken in a form [13–15]

Oµν(B) = δµν + C(B) γµ γν, (1.3)

C(B) = − (
1
2 + B

)
. (1.4)

The parameters Y and Z do not influence the on-shell
properties of the � isobar; hence they are called off-shell
parameters. Lagrangian (1.2) has been used frequently [13–17]
for studying the πN reactions and the pion photo-production
and electroproduction on a nucleon and the parameters of the
model, including Y and Z, were extracted from the data.

On the other hand, one can also find an attempt [18] to
show that the off-shell parameters are redundant within the
framework of effective-field theories. For this purpose, Tang
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and Ellis considered the Lagrangian of the πN� system
with the πN� interaction of the type of Eq. (1.2). After
integrating out the � isobar field, they obtained a nonlocal
πN Lagrangian, where the Z dependence is contained in
couplings. This led them to conclude that these couplings
can be redefined so that the Z dependence disappears, and
therefore this parameter is physically irrelevant. However,
after finding that it is difficult to manage the nonlocal part
of the resulting Lagrangian, Tang and Ellis returned to the
starting πN� Lagrangian containing the � field explicitly
and recommended using it with some convenient choice of the
parameter Z, as it is not relevant to the physics. On the other
hand, they did not consider any mechanism to compensate
for the Z dependence of the observables. Indeed, if such a
parameter independence should take place, one should provide
a mechanism to compensate for it if it appears to be due to a
particular process, which can happen more generally.

It is clear [5,15] that the Z dependence of the amplitudes
appears in the form of contact terms. As has recently been
discussed [19,20], the contact nature of the � excitation
amplitudes appears if the interaction vertices contain the
projection operators onto the spin 1/2 space, which leads to
the contribution of this space. Indeed, the � propagator can be
written in terms of projection operators as

S
µν

F = 1

i �p + M�

[
δµν − 1

3
γµγν + 2

3M2
�

pµpν

+ 1

3M�

(γµpν − γνpµ)

]

= − 1

i �p + M�

(P 3/2)µν + 1√
3M�

[(
P

1/2
12

)
µν

+ (
P

1/2
21

)
µν

] + 2

3M2
�

(i �p − M�)
(
P

1/2
22

)
µν

. (1.5)

In its turn, operator (1.3) reads

Oµν(Z) = −(P 3/2)µν − [1 + 3C(Z)]
(
P

1/2
11

)
µν

− [1 + C(Z)]

× (
P

1/2
22

)
µν

−
√

3C(Z)
[(

P
1/2
12

)
µν

+ (
P

1/2
21

)
µν

]
.

(1.6)
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Explicit form of the projection operators can be found in
Ref. [16]. It is seen that if the � propagator S

µν

F is sandwiched
between the vertices of the type of Eq. (1.6), the nonpole
contribution is present. According to [19,20], this feature of
the � interaction is related to the change of the number of
degrees of freedom in comparison with the case allowed by
the kinetic-energy term of the � Lagrangian. As a remedy, it
was proposed [19,20] that the πN� and γN� Lagrangians
would possess the same symmetry as the kinetic-energy term
of the � Lagrangian that is invariant under a type of the gauge
transformation,

�µ(x) → �µ(x) + ∂µξ (x), (1.7)

where �µ(x) is the � isobar field and ξ (x) is a spinor.
Recently, new πN� and γN� Lagrangians were proposed

[19,20]. They possess the property that, with the proper choice
of couplings, the new and traditional Lagrangians provide
identical πN� and γN� vertices for the on-shell particles.
Further, by use of redefinition (1.7), it was shown [20] that the
new and traditional πN� couplings differ by a contact term, a
quadratic in the coupling constant that can be associated with
the contribution of the 1/2 spin space involved because of the
traditional πN� coupling.

This idea is closely related to the representation inde-
pendence (equivalence) theorem that concerns the relation
between different field parametrizations within the framework
of a model of the perturbation theory of fields [21–27].
According to this theorem, different parametrizations of the
interpolating fields can yield different Green’s functions, but
they should arrive at the same S-matrix elements. In other
words, the theorem postulates the independence of observables
for different parametrizations of fields. The equivalence
transformations that are frequently used are (i) the Foldy–
Dyson transformation [28,29] relating the pseudoscalar and
pseudovector πNN couplings: Two chiral Lagrangians of
the πN system, related by this transformation, are phys-
ically equivalent for the on-shell nucleon; (ii) Weinberg’s
parametrization of the nonlinear σ model [30]; (iii) the
Foldy–Wouthuysen transformation [31]. In this connection,
we mention also the Stückelberg transformation [32], relating
the linear and nonlinear σ models, which was constructed six
decades ago. It has recently been applied in the construction
of chiral Lagrangians [33,34] within the approach of hidden
local symmetries.

The domain of applications of the representation indepen-
dence theorem is quite extensive. It is valid not only at the
tree level of nonrenormalizable models, but also at the level of
renormalizable models, in which case, caution is needed in the
case of some regularizations [35]. It was shown [36] that the
theorem is applicable also for a meson moving in the nuclear
environment. In Ref. [37], the theorem was again applied to
a system possessing finite density, with the result that the
observables are independent of the field parametrization.

On the other hand, one should be very careful in the
application of the representation independence theorem be-
yond the perturbation field theory. Here we have in mind
the calculations based on the Bethe-Salpeter equation, the
Schwinger-Dyson equation, etc. It was shown in Ref. [38] that
the theorem is not valid for solutions of the Bethe-Salpeter

equation. Actually, the authors concluded that the theorem is
valid, but in order to satisfy the conditions of its validity in
this case, the kernel of the Bethe-Salpeter equation should
contain a sum of an infinite series of all loop diagrams.
This result can be generalized for other techniques in which
one should sum up an infinite series of connected Feynman
diagrams. A similar conclusion was deduced in Ref. [39]: a
redefinition of fields, relating “consistent” and “inconsistent”
πN� couplings [40,41] results in the equivalence of these
couplings only at the level of the perturbation field theory.
This equivalence does not take place if resummation is
needed. Let us note for completeness that the nonequivalence
between the pseudoscalar and pseudovector πNN couplings
was demonstrated for the Bethe-Salpeter equation [42,43].

The topics of this work, dealing with the � couplings,
contain an important application of the representation indepen-
dence theorem—the problem related to off-shell parameters
and, more generally, to off-shell effects. These effects are
related to a certain vertex, and they occur only if at least one
of the particles at the vertex is off the mass shell. The problem
related to these effects is that their description exhibits not
only a model dependence but also a nonphysical dependence
on the field parametrization.1 The origin of such a dependence
can be seen in the very essence of the off-shell effects. It
holds that the effect of an off-shell vertex, if it is nonzero,
cannot be distinguished from the effect of contact vertices.2 It
is true that the field transformations change off-shell terms in
a Lagrangian to contact terms and vice verse.

This phenomenon has recently been studied and identified
[37,45] as the reshuffling of relevant contributions between
an off-shell two-body interaction and many-body forces was
observed.3 Similarly, it was shown [37] how the Born and the
contact terms are related. Studying the Compton effect [46,47]
belongs in this category.

Erroneous interpretation of the off-shell terms and the
complementary contact terms can lead to an erroneous
understanding of the equivalence of models. Neglecting
complementary contact terms in passing from one field model
to another one makes these models nonequivalent. Typically
this error can appear in passing from the model with one type of
the πNN coupling to the model with another type of the πNN

coupling by use of the equation of motion for the free nucleon
instead of application of the Foldy-Dyson transformation, as
was done [48,49] in calculations of the photon spectrum for
radiative muon capture in hydrogen. This procedure lead to the
loss of the equivalence of the models, thus making the physical
content of both models distinct [50].

1This is why it is demanded in [44] that one should strictly
distinguish between the form factors and form functions, as the form
factors correspond to observables, whereas this is not true for the
form functions.

2In particular, it is shown in this work at the level of the Feynman
diagrams for the process N (π, π )N that the contribution of the off-
shell coupling in the πN� vertex is equivalent to the contribution of
a specific NNππ contact vertex.

3It means that it makes no sense to speak about off-shell parameters
without simultaneously specifying a many-body (contact) sector.
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Similar problems occur in the chiral perturbation theory
also. The substitution from the equation of motion into the
Lagrangian is used to transform redundant structures, con-
taining multiderivatives of chiral fields, into canonical ones.
However, in this case, this substitution can be done correctly.
The added terms, being proportional to the equation of motion,
can be interpreted as off-shell terms. A field transformation
was found [51] that transformed the Lagrangian equivalently,
as did the above-mentioned substitution. It was also shown [51]
that this field transformation generated higher-order contact
terms, producing the same effect as that by the off-shell terms.

The understanding of the nature of off-shell effects is
important for interpretation of experiments, as is the mea-
surement of the photon spectrum (bremsstrahlung) in the
nucleon-nucleon collision, Compton scattering on pions, etc.
It was believed for a long time that the study of the NNγ

vertex in the reaction N + N → N + N + γ can provide
information on the off-shell behavior of the NN amplitude.
However, it has been shown [46,52,53] that the off-shell
properties of the NN amplitude can be changed by use
of a field redefinition. It means that it is impossible to
distinguish experimentally between NN potentials that differ
off-shell. Analogous conclusions are true also for the Compton
scattering on pions [44,46,47,54].4

In our opinion, one can draw the following lesson from the
above discussion:

(i) One should precisely distinguish between dependence on
a model and on the field parametrization of a model. The
model dependence can provide different physical outputs
and therefore can lead to the choice of a certain model
based on the data analysis whereas the dependence on the
field parametrization is deprived of it.

(ii) It makes no sense to keep off-shell terms in a Lagrangian
without simultaneous specification of related contact
terms.

Let us apply these conclusions to our case. As we have
already noted, it was shown [20] that the traditional Lint, and
gauge symmetric L′

int couplings describing the πN� system
are related by field transformation (1.7) as

Lint = L′
int + LC, (1.8)

where LC is quadratic in the coupling constant contact
interaction of the type NNππ , independent of the � isobar
degrees of freedom. If both the Lagrangians and the field
transformation satisfy the conditions of the representation
independence theorem [24], then the description in terms of
Lint or L′

int + LC are equivalent at the level of the S-matrix
elements [20]. However, when the contact Lagrangian LC on
the right-hand side of Eq. (1.8) is neglected, the equivalence
is lost, and one has two independent models of describing the
πN� system that differ by the effect of the contact NNππ

term.

4A detailed discussion not only of the Compton scattering on pions
but also of the off-shell effects generally in the electromagnetic
structure of hadrons can be found in Ref. [55].

Earlier the contact NNππ term [20] was generated by
application of field transformation (1.7). In Sec. II, we show
how one can construct such a contact term directly. For this
purpose, we first use an identity to show that the new and
traditional πN� couplings differ by a sum of the πN� terms
that vanish for the on-shell � isobar. Next we construct, in
the tree approximation, the contribution of the � excitation
to the πN scattering amplitude, and we show that these
πN� terms give rise to a contact term quadratic in the πN�

coupling constant. In Sec. III, we use the new πN� and γN�

couplings to calculate the � excitation contribution to the
photon spectrum for reaction (1.1). We show for the recently
measured spectrum [9,10] that it is suppressed in comparison
with the one obtained earlier by use of the traditional couplings.
It is shown that the difference in the spectra is due to a
contact term, in full agreement with the preceding general
discussion. In Sec. IV, we discuss the results and conclusions
are presented.

II. THE π N� COUPLINGS

The gauge symmetric πN� coupling [19] is

Lg.s.
πN� = f εµναβ (∂µ�̄ν) �T γ5γα � · (∂β �π ) + H. c. (2.1)

With the choice

f = fπN�

mπM�

(2.2)

and for the � isobar on-shell (Z = −1/2), this coupling is
equivalent to the traditional one:

LπN�(Z = −1/2)

= fπN�

mπ

�̄µ
�TOµν(Z = −1/2)� · (∂ν �π ) + H.c. (2.3)

Using the identity

εµναβγ5γα = − δµνγβ + δβνγµ − δβµγν + γνγµγβ, (2.4)

we get

Lg.s.
πN� = LπN�(Z) + δLπN�(Z), (2.5)

where

δLπN�(Z) = f {−(∂µ �̄µ) �T γν � − (∂ν �̄α γα) �T �

+ (∂µ �̄α) γα
�T γµγν � + �̄ν[(γµ

←
∂ µ)

−M�] �T � − C(Z) M� �̄µγµ
�T γν � } · ∂ν �π.

(2.6)

For the on-shell � isobar,

∂µ�µ(x) = γµ�µ(x) = [ �∂ + M�]�(x) = 0. (2.7)

It follows from these equations that for the � isobar on-shell
δLπN�(Z) = 0.

In the tree approximation, the πN scattering via the �

isobar excitation is described by the Feynman graphs of
Figs. 1(a) and (b).

The S-matrix element, corresponding to Fig. 1(a), can be
calculated by use of either the left-hand side of Eq. (2.5) or,
equivalently, its right-hand side. If one considers a part of the
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FIG. 1. The πN scattering amplitudes in the tree approximation: a, b, the � excitation amplitudes; c, the contact term.

S-matrix element, Sp, given by the sum of the partial S-matrix
elements, calculated with the choices

A = LπN�(Z), B = δL+
πN�(Z); (2.8)

A = δLπN�(Z), B = L+
πN�(Z); (2.9)

A = δLπN�(Z), B = δL+
πN�(Z); (2.10)

the difference between the S-matrix elements, calculated
first with the new Lagrangian Lg.s.

πN� and then only with
the traditional Lagrangian LπN�(Z), is obtained. Explicit
calculations yield Sp in the form of the ππNN contact graph
of Fig. 1(c). Defining

Sp = −i(2π )4 δ(4)(Pf − Pi)(χ
b)+ T ba

p (s) χa, (2.11)

we obtain for the amplitude T ba
p (s) the following equation:

T ba
p (s)

= f 2 M� ū(p′
1)

〈
p′

2ν

[
−δνµ + 1

3
γνγµ + i

3M�

(3 �Pδνµ

+ γν �Pγµ − Pνγµ − Pµγν)

]
p2µ

+ 2

3
C(Z)

{
�p′

2 �p2 + i

M�

[(p′
2 · P ) �p2+ �p′

2(P · p2)]

}

+2

3
C2(Z) �p′

2

(
2 + i

�P
M�

)
�p2

〉
(T +)b T a u(p1).

(2.12)

Here P = p1 + p2 = p′
1 + p′

2, (T +)b T a = 2
3δba − 1

3 iεbacτ c,
and τ c are the isospin Pauli matrices. In deriving Eq. (2.12)
we assume C(Z) to be a real function of Z.

The amplitude T ba
p (s) corresponds to an effective contact

Lagrangian:

LππNN (Z)

= −f 2 M� (∂νπ
b)�̄

{
δνµ − 1

3
[1 + 2C(Z) + 4C2(Z)]

× γνγµ − 1

M�

δνµ� ∂ − 1

3M�

[1 + 2C2(Z)]γνγµ� ∂

+ 1

3M�

[ 1 − 2C(Z)] (γν∂µ + γµ∂ν)

}

× (T +)b T a[�(∂µπa)]. (2.13)

Let us take Z = 1/2, which provides C(Z) = −1. Then the
full amplitude reads

T ba
p (s) + T ba

p (u)

= f 2 ū(p′
1)p′

2ν

[
1
2γνµα(p′

1 + p1)α + M�γνµ

]
× [(T +)a T b − (T +)b T a]p2µu(p1), (2.14)

where

γνµα = 1
2 {γνµ, γα}, γνµ = 1

2 [γν, γµ]. (2.15)

Applying the field redefinition, Eq. (1.7), with a particular
choice of the field ∂µ ξ (x) → gξµ(x),

ξµ = − 1

M�

Oµρ(Z = −5/6)Oρν(Z)T a�∂νφ
a, (2.16)

in the Lagrangian (2.3), besides the gauge symmetric La-
grangian (2.1), we obtain the following effective contact
Lagrangian [20]:

L′
ππNN (Z) = −f 2 �̄Oρµ(x)(γµνα∂α − M�γµν)Oνσ (x)

× (T +)b T a � [∂ρ(π+)b](∂σπa), (2.17)

where x = − 1
3 [1 + C(Z)].

Instead of the direct comparison of the Lagrangians (2.13)
and (2.17), we observe that the Lagrangian L′

ππNN (Z) was
used [20] for constructing the amplitude for Z = 1/2(x = 0).
This amplitude, presented in Eq. (21) of Ref. [20], coincides
with our amplitude of Eq. (2.14). So we conclude that
the particular choice of field transformation (2.16) provides
the same contact Lagrangian as our procedure based on
identity (2.4).

III. THE PHOTON SPECTRUM IN THE RADIATIVE MUON
CAPTURE IN HYDROGEN

The new Lagrangians needed for the calculations of the
photon spectrum that are derived from the gauge symmetric
ones [19] read

Lg.s.
πN�a1

= f εµναβ[(∂µ�̄ν) �T γ5γα�] · (∂β �π + 2fπgρ �aβ)

+ H.c., (3.1)

Lg.s.
ρN� = fP gρ εµναβ [(∂µ�̄ν) �T γαγλ �] · �ρλβ

+ fP gρ[(∂µ�̄ν − ∂ν�̄µ) �T γ5γµγλ �] · �ρλν + H.c.

(3.2)
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kp ′

p
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k

∆(Q)

p ′

q

FIG. 2. The � excitation amplitudes contributing to the radiative
muon capture in hydrogen. The weak hadron current Ĵ a

W, µ, interacting
with the nucleon, is exciting it and the � isobar in the intermediate
state appears, which decays into the nucleon and the photon in the
final state.

The value of the coupling constant fP = (G1/MM�) is
obtained from the condition that the new ρN� Lagrangian,
Eq. (3.2), and the standard ρN� Lagrangian, Eq. (1.2), are
equivalent for the on-shell � isobar. The notation of this
section coincides with the notation of Refs. [5,11].

The contribution from the � excitation processes to the
photon spectrum for reaction (1.1) is given by Fig. 2.

From various form factors, calculated in Sec. II. B of
Ref. [5], we need to consider

�g2 = − 8

9M�

fπN� G1
fπ

mπ

η k[−(1 + 2R) + 2(1 − 2R)

×C(Y ) + 2(1 − R)C(Z) + 4(2 − R)C(Y )C(Z)],

(3.3)

and

�g3 = −16

9
λ fπN� G1

fπ

mπ

ηk
1

M� − M
{1 + (1 − R)

× [C(Y ) + C(Z) + 2(2 + R)C(Y )C(Z)]}. (3.4)

Here λ is the photon polarization, k is the photon momen-
tum, η = (mµ/2M) and R = M/M�. The form factor �g2,
Eq. (3.3), is of the contact origin, whereas inspection of
Eq. (3.4) shows that the dependence of the form factor �g3

on the off-shell parameters Y and Z is located entirely in its
contact part.

By using Lagrangians, Eqs. (3.1) and (3.2), and performing
calculations identical to those presented in Sec. II. B of Ref. [5],
one obtains

�g3 = −16

9
λfπN�G1

fπ

mπ

(
M

M�

)2

η k
1

M� − M
. (3.5)

In contrast to the calculations with the standard couplings, now
the form factor �g3 contains only the � pole contribution.

Let us write the contribution �g0
3, given in Eq. (3.4), for

the � isobar on-shell (Y = Z = −1/2),

�g0
3 = −16

9
λfπN�G1

fπ

mπ

ηk
1

M� − M
, (3.6)

and calculate the difference with the form factor �g3:

�g3 − �g0
3 = −16

9
λfπN�G1

fπ

mπ

η
k

M�

(
1 + M

M�

)
.

(3.7)

The difference is equal to a contact term, in agreement with
the more general discussion in Sec. I.

In Fig. 3, we present the change in the photon spectrum that
is due to the difference in the form factors given by Eq. (3.7).
Other contributions are the same as those in Ref. [5]. The
spectrum measured in the TRIUMF experiment [9,10] is given
as

ST = 0.061Ss + 0.854So + 0.085Sp. (3.8)

Here Ss, So, and Sp correspond to the muon-hydrogen singlet
system and to the ortho-molecular and paramolecular pµp

states, respectively. As is clear from Fig. 3, the spectrum ST ,
calculated with �g3 from Eq. (3.5) in the region k > 60 MeV
is suppressed, in comparison with the spectrum obtained by use

806040200 100
k [MeV]

−25

−20

−15

−10

−5

0

5

10

15

ch
an

ge
 in

 s
pe

ct
ru

m
 [%

]

FIG. 3. The change in the photon spectrum calculated as (Ss.c. −
Sg.s.)/Ss.c., where Ss.c. (Sg.s.) is the photon spectrum obtained with
the standard (gauge symmetric) couplings. Solid curve, the spectrum
measured in the TRIUMF experiment; dashed curve, the spectrum
for the muon-hydrogen triplet state; dotted curve, the spectrum for
the muon-hydrogen singlet state.
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of the traditional couplings. It means that the new couplings
cannot resolve the “gP puzzle” either. A minor difference
between the curves of the same sort arises from omitting the
form factor �g2 of Eq. (3.3) in the calculations.

It is clear from Eqs. (3.5) and (3.6) that the form factors �g3

and �g0
3 differ by a factor (M/M�)2 ≈ 0.58. Such a factor will

appear also in the meson exchange current operators with the
� excitation. On the other hand, a suppression factor of 0.8
is needed [56] to reduce the effect of the weak axial-meson
exchange currents with the � excitation in order to explain
the experimental value of the Gamow-Teller matrix element
for the triton β decay if the value of the constant fπN� is
taken from the constituent quark model. In other words, it
means that effectively the value of the constant fπN� turns out
to be unrealistically small or one should speculate about other
processes that suppress the meson exchange current effect [57].
If these weak axial exchange currents are constructed from the
new Lagrangians, the factor (M/M�)2 appears naturally and
the value of the constant fπN� can be taken as larger and
therefore more realistic. Simultaneously, such a factor will
appear also in the vector-meson exchange currents with the �

excitation. However, the precise data on the radiative capture
of neutrons by protons do not demand any damping of the
vector-meson exchange currents effect [58] and the capture
rate for the reaction µ− + 3He → νµ + 3H, which has been
measured in a precise experiment [59,60], is underestimated
[57] by the suppressed weak axial exchange currents. Precise
data, expected from the experiments on the ordinary muon
capture in hydrogen and deuterium [61], will be very helpful
for the axial sector of the weak nuclear interaction.

IV. RESULTS AND CONCLUSION

We studied some aspects of new πN� and γN� couplings
that have recently been proposed [19]. In comparison with the
traditional couplings, the new ones possess an additional gauge
symmetry (1.7) that is present in the kinetic-energy term of the
� Lagrangian. This symmetry guarantees that the couplings
have the same � degrees of freedom as the kinetic-energy
term. As a consequence, the amplitudes of the processes with

the � excitation in the intermediate state do not contain the
contact terms arising from the spin 1/2 space.

In Sec. II we studied the difference between traditional and
gauge symmetric πN� couplings. Using an algebraic identity
between the γ matrices, we first expressed the new coupling
as a sum of the traditional coupling and of terms that are
zero for the on-shell � isobar. The πN scattering amplitude,
constructed from these terms, is a contact term, quadratic in
the coupling constant. Such a term was obtained [20] when
symmetry condition (1.7) was imposed on the traditional
coupling.

In Sec. III we used the gauge symmetric πN� and γN�

couplings [19] to calculate the photon spectra for the radiative
muon capture in hydrogen. As a result, the new form factor
�g3 contains only the � isobar pole contribution. This form
factor differs from the old one, calculated for the on-shell �

isobar by the damping factor (M/M�)2 ≈ 0.58. Consequently
the new photon spectrum, corresponding to the spectrum
measured in the TRIUMF experiment, is suppressed in the
region k > 60 MeV, in comparison with the photon spectrum,
which is calculated from the traditional couplings. Therefore
the problem of extraction of the induced pseudoscalar form
factor gP from the photon spectrum in the radiative muon
capture in hydrogen cannot be solved by use of the gauge
symmetric πN� and γN� couplings.

We note that the damping factor (M/M�)2 will be also
present in the meson exchange current operators with the
� isobar excitation if the gauge symmetric couplings are
used for the construction. However, a comparison of the
existing calculations with the present data on the weak and
electromagnetic reactions in few–nucleon systems does not
allow us to decide if this factor is needed.
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