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sample calculations
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We study EMC ratios on the basis of a relation between structure functions (SF) for a nucleus and for a
nucleon, which is governed by a SF f PN,A(x,Q2) of an unphysical nucleus, composed of point nucleons (PN).
We demonstrate that the characteristic features of EMC ratios µA are determined by the above f PN,A and the SF of
free nucleons. We account for the positions of the points x1,2 in the interval 0.2 <∼ x <∼ 0.9, where µA(x,Q2) = 1
and also for the minimum xm in that interval. We similarly describe the oscillations in µA for Q2 <∼ 3.5 − 4.0 GeV2

in the quasielastic peak region 0.95 <∼ x <∼ 1.05 and for its subsequent continuous increase up to x ≈ 1.4. Finally
we compute µA over the entire range above for A = 4He, C, Fe, and Au and several Q2 values. The results are
in reasonable agreement with both directly measured and indirectly extracted data.
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I. INTRODUCTION

After the first measurements some 20 years ago, a keen
interest developed in understanding EMC ratios µA(x,Q2) =
FA

2 (x,Q2)/F D
2 (x,Q2) of structure functions (SF) per nucleon

of any target A and of D (x is the Bjorken variable 0 � x =
Q2/2Mν � A; ν,Q2 are the energy loss and minus the squared
four-momentum transfer; M is the nucleon mass). Over the
years, reanalysis of older data and a generation of new
experiments have been performed, the latter frequently at
much larger Q2 and often down to very small x. Disregarding
the range x <∼ 0.20, in all EMC experiments with parallel
measurements of FA

2 , F D
2 , the Bjorken variable x lies in the

“classical” EMC regime 0.2 <∼ x <∼ 0.9. The canon of direct
experiments was closed some 10 years ago. References [1,2]
report on the status up to about a decade ago.

Indirect information on µA(x >∼ 0.9) comes from sepa-
rately measured inclusive cross sections on targets A and on
D. Before 1999 all extractions of their ratios for x >∼ 0.9 were
for relatively low Q2 [3–5]. References [6–9] contain data
for, respectively, 3He, A � 4 (SLAC NE3 experiment), and
Al. Deuterium data for more or less the same kinematics are
from Refs. [10–12]. Below we shall exploit the more recent
JLab E89-008 experiment for the extraction of EMC ratios at
substantially larger Q2 from data on several targets A [13,14]
and on D [14,15]. Finally we mention the Drell-Yan process
as an additional source of information (see, for instance,
Ref. [16]).

The combined pools of information leads to the following
observations:

(i) In the classical regime 0.2 <∼ x <∼ 0.9, |1 − µA(x,Q2)|
hovers between ≈0 and 0.15–0.20 with little A or Q2

dependence.
(ii) In the adjacent range 0.95 <∼ x <∼ 1.05 around the

quasielastic (QE) point x = 1, extracted EMC ratios for
Q2 <∼ 3.5 GeV2 show a sharp rise, followed by an abrupt

decrease toward minima around x ≈ 1, the depth of which
depends on A and Q2.

(iii) In the “deep” quasielastic (DQE) region 1.05 <∼ x <∼ 1.4,
immediately beyond the range (ii), EMC ratios resume
the rise mentioned in (ii) with a slope increasing with
Q2. Those ratios reach maxima of the order 4–7 and level
off, eventually. The very small, and increasingly imprecise
data on the composing F

A,D
2 causes considerable experi-

mental scatter in µA for the largest x.

Attempts to understand the above observations [1,2] con-
centrated primarily on the classical range, where the preferred
tool of analysis has been the plane wave impulse approxi-
mation (PWIA) [17–20]. Different versions did not converge
to a unanimously accepted understanding. Some authors
concluded that the crucial ingredients in the PWIA, namely
Fermi averaging and binding corrections, do not account for
the data (see, for instance, Refs. [21–23]), while others reached
the opposite conclusions [20,24,25]. From that rather frus-
trating situation sprang alternative and occasionally far-flung
approaches. We mention the use of Bethe-Salpeter equations
for nuclear vertex functions or bound state wave functions
[26], medium modifications of nucleons [23], the introduction
of, in the EMC field, exotic chiral solitons [21], and more.

For two reasons it seems timely to reopen the nearly stalled
discussion. First, a new inclusive scattering experiment JLab
E03-103 is currently running on D, 3He, and 4He targets [27].
We shall soon have sorely missing accurate EMC data on 3He
and 4He, covering a wide range of x, which crosses the QE
point x = 1. Those will be of special interest, because for
the lightest nuclei, EMC ratios differ from the mainstream of
heavier targets, among which the A dependence ot those ratios
is sizably weaker. Moreover, only for the former class of nuclei
can one perform accurate calculations.

The second reason is the recurrently expressed wish for
a simple, qualitative understanding of EMC ratios. Here one
is warned against pitfalls of over simplification, for instance,
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in attempts to understand the steeply rising µA, setting in
at x ≈ 0.9. Off-hand one expects F D

2 (x <∼ 1) to become very
small. In fact, the SF F D

2 for two noninteracting component
nucleons vanishes for x = 1, and one does not expect binding
effects to be significant. The above is correct, but a similar,
and even more pronounced effect occurs for SFs of all heavier
targets. As a result, deep minima, and not maxima occur in
EMC ratios at x = 1.

In spite of the above skepsis, we shall attempt below such a
description, invoking a relation between nuclear and nucleonic
SFs, which is mediated by a SF f PN,A of a fictitious nucleus,
composed of point nucleons (PN) [28]. That SF is a covariant
generalization [29] of a similar one in the nonrelativistic
Gersch-Rodriguez-Smith (GRS) theory for inclusive scattering
[30]. It implicitly contains the equivalent of Fermi averaging
and binding effects, which are the emphasized ingredients of
the PWIA, and goes beyond it: it enables a relatively simple
computation of the dominant final state interaction (FSI). For
these reasons, it does not permit a direct comparison with
PWIA calculations, where binding effects and Fermi-smearing
are added elements.

The covariant GRS approach has been successfully ap-
plied to an extensive body of inclusive scattering data with
Q2 >∼ (2.5 − 3.0) GeV2 [31–34] and to observables, related to
nuclear SF FA

k [35]. It is thus natural to study EMC ratios in
that approach. Actually, a first version of the model has years
ago been shown to reasonably account for the measured µFe

in the classical region [32].
This note is organized as follows:

(1) We re-state the relation between nuclear and nucleon SF
by means of f PN,A and list distinct properties of the latter.

(2) We demonstrate that virtually all features of EMC ratios
FA

2 /F D
2 in the entire range of our interest 0.20 <∼ x <∼ 1.50

can be qualitatively understood from the x,Q2, and
in particular from the outspoken A dependence of the
above SF f PN,A. In the classical EMC regime 0.20 <∼
x <∼ 0.90, those characteristics are the positions of the
points x1,2, where the EMC ratios cross the value 1,
including the A dependence of x2 and the approximate
position of an intermediate minimum. In addition, we
describe how for Q2 <∼ 3−4 GeV2 a sharp rise in µA,
setting in for x ≈ 0.9, abruptly turns into a deep minimum
close to x = 1, and continues its rise for x >∼ 1.05 in a
Q2-dependent fashion. For increasing Q2 >∼ 4−5 GeV2,
the above minima degenerate into some minor structure.

(3) In support of the above qualitative considerations, we
present results for actual calculations and compare them
with directly measured and extracted EMC data.

(4) In conclusion, we compare our approach with an approxi-
matively equally successful, but less transparent, distorted
wave impulse approximation (DWIA) description.

II. GENERALITIES

We start with a previously postulated relation between SF
F

N,A
k for nucleons (N = p, n) and a nucleus [28,29]

FA
2 (x,Q2)

[≡F
A,δN
2 (x,Q2)

]
=

∫ A

x

dzf PN,A(z,Q2)F 〈N〉
2

(
x

z
,Q2

)
, (2.1)

=
∫ 1/x

1/A

duBA(u,Q2)F 〈N〉
2 (xu,Q2), (2.2)

with

BA(u,Q2) = f PN,A(1/u,Q2)/u2. (2.3)

In both forms (2.1) and (2.2) the integrands separate x and A
dependence. Above we use a weighted p, n nucleon SF with
δN the neutron excess. Thus

F
〈N〉
2 = Fn

2 + F
p

2

2
+ δN

2A

(
Fn

2 − F
p

2

)
. (2.4)

The connection between the nuclear and averaged nucleon SF
above is provided by f PN,A, which is the SF of a fictitious
target A, composed of point nucleons.

The relations (2.1) and (2.2) are exact in the Bjorken limit
and have empirically been shown to hold for finite Q2 � Q2

0 ≈
2.0 − 2.5 GeV2 [33,36]. Also the PWIA for FA

2 is of the form
(2.1) with f → f PWIA.

Equations (2.1) and (2.2) describe partons which originate
exclusively from nucleons. The same from virtual bosons [37],
as well as (anti-)screening effects [38], are negligible for x >∼
0.2; we shall restrict ourselves to that region. Finally, in view
of the relatively high Q2 involved, one may neglect the mixture
of FN

1 in the integrand in Eq. (2.1) [39,40].
It will be useful to separate F 〈N〉 = F 〈N〉,NE + F 〈N〉,NI into

components NE, NI, which correspond to processes in which
the nucleon absorbs the exchanged virtual photon elastically
(γ ∗ + N → N ) or inelastically (γ ∗ + N → hadrons, partons).
For our purposes it suffices to recall that F

〈N〉,NE
2 = δ(1 −

x)G2(Q2), with G2(Q2) some linear combination of squared
static nucleon form factors. Substitution of the above into
Eq. (2.1) trivially produces for the corresponding NE part of
any nuclear SF

F
A,NE
2 (x,Q2) = f PN,A(x,Q2)G2(Q2). (2.5)

The above SF f PN,A are constructed from many-body target
density matrices, which are diagonal in all except one
coordinate. They can be calculated with precision only for
the lightest nuclei, A � 4. The computation of f PN,A requires
in addition information on (off-shell) NN scattering (see, for
instance, Ref. [32]).

We summarize salient properties of the SF f PN,A [35]:

(a) The normalized SFs f PN,A(x,Q2) are smooth functions
of x and are approximately symmetric around a Q2-
dependent maximum xA

M (Q2) ≈ 1, close to the QE peak
(Fig. 1). We note from Eqs. (2.1) and (2.2) that the A
dependence of nuclear SFs is largely governed by the
same in f PN,A.

(b) For given Q2, peak values of f PN,A strongly decrease with
increasing A from D, He, to general A, and show only few
percent differences between nuclei with A > 12, because
of normalization; also their widths show marked variations
with A < 12 (Fig. 1).
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FIG. 1. The point-nucleon nuclear SF f PN,A(x, Q2) for D, 4He,
Fe, C, and Au; Q2 = 5 GeV2.

(c) The above peak-values increase with Q2 (see Figs. 2 and
3) and reach rather slowly an asymptotic limit.

(d) Ratios of peak values f PN,A(x ≈ 1,Q2)/f PN,A′
(x ≈

1,Q2) are only weakly Q2-dependent.

The above properties of f PN,A determine those of BA,
Eq. (2.3), which in Figs. 4 and 5 are displayed for a few targets
and for Q2 = 3.5, 10 GeV2. BA obviously peaks around u ≈
1. It decreases on both sides with increasing |1 − u| and,
because of the factor 1/u2 in its definition (2.3), in a more
asymmetric fashion than does f PN,A. In the following, we use
Ā to specify a generic target with A � 12. Inspection of Figs. 4
and 5 shows that the various BĀ intersect BD at ui ≈ 0.9 and
1.1, while BD and B

4He cross at values slightly closer to 1. The
above enables BA to be ordered as function of A. Practically
independent of Q2, one finds

BD > B
4He > BĀ, 1.1 >∼ u >∼ 1.0, (2.6)

BD 	 B
4He ≈ BĀ, u <∼ 0.9, u >∼ 1.1. (2.7)

More details on BA and other functions to be mentioned are
entered in Table I.
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FIG. 2. Same as Fig. 1, but for D; Q2 = 3.5, 5, 10 GeV2.
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FIG. 3. Same as Fig. 1, but for C; Q2 = 3.5, 5, 10 GeV2.

III. CHARACTERISTIC FEATURES OF EMC RATIOS

Unless stated otherwise, we focus on the usually dominant
NI parts of both SFs in EMC ratios.

A. The classical range 0.2 <∼ x <∼ 0.90

(I) It is an experimental fact that the slope of F
p,D
2 (x,Q2),

which varies smoothly as function of Q2, vanishes for x1 ≈
0.18–0.20 (see, for instance, Ref. [41]). Since also the x
derivative of those functions around that x is small, standard
reasoning justifies in the neighborhood of x1 the “primitive”
relation [18,42]

Fn
2 (x,Q2) ≈ 2F D

2 (x,Q2) − F
p

2 (x,Q2). (3.1)

Using the above in Eq. (2.4), one has in that x region
F D

2 ≈ F
p

2 ≈ Fn
2 ≈ F

〈N〉
2 . From Eqs. (2.1), (3.1) and property

(a) in Sec. II, one extracts for any A approximate information
on the nucleonic components of nuclear SFs and their
derivatives. For x ′ < x0 ≈ 0.18 	 x ≈ 1 and independent of
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FIG. 4. Function BA(x,Q2), Eq. (2.3), for our chosen targets;
Q2 = 3.5 GeV2. The circle marks the nearly identical crossing point
uA

i for D and A > 4, different from that for 4He and D.
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TABLE I. Target ordering of BA(u,Q2), Eq. (2.5), as function of u, Q2. The same for nuclear SF F A
2 (x,Q2) and EMC ratios µA(x,Q2) as

function of x, Q2 (Q2 is in units GeV2). When not distinguishing between different targets, we just use A.

Function u, x interval u, x interval u, x interval u, x interval
ordered targets

0.6 � u � 0.9 0.95 � u � 1.05 1.05 � u � 1.1 u � 1.1

BA(u, Q2 � 10) A 
 D D 
 He > A He > A 
 D A > He 
 D

0.4 � x � 0.8 0.85 � x � 0.95 0.95 <∼ x <∼ 1.05 1.1 <∼ x <∼ 1.5
F A

2 (x, 3.5−5.0) D > He > C >∼ Fe D >∼ A C > He ≈ Fe 
 D C > Fe, He 
 D

F A
2 (x, 10.0) D > He > C >∼ Fe C > He > Fe 
 D C > He > Fe 
 D C 
 He, Fe 
 D

0.3 <∼ x <∼ 0.75 0.85 � x � 0.95 0.95 <∼ x <∼ 1.05 x >∼ 1.05

µA(x, 3.5) 1 > He > A > Fe He >∼ A >1 C > He >A C > A >Au
µA(x, 5.0) 1 > He > A > Fe He >∼ A >1 C > He > A C 
 A > He
µA(x, 10.0) 1 > He > A > Fe He >∼ A > 1 C > He>A C 
 A >Fe

Q2 = 3.5 1> µHe > µA > µFe µHe > µA > 1 µC > µHe > µA µC > µA > µAu

Q2 = 5.0 1> µHe > µA > µFe µHe > µA > 1 µC > µHe > µA µC 
 µA > µHe

Q2 = 10.0 1> µHe > µA > µFe µHe > µA > 1 µC > µHe > µA µC 
 µA > µFe

A, one finds

FA
2 (x ′,Q2) =

∫ A

x ′
dzf PN,A(z,Q2)F 〈N〉

2

(
x ′

z
,Q2

)

≈ F
〈N〉
2 (x ′,Q2)

∫ A

0
dzf PN,A(z,Q2)

= F
〈N〉
2 (x ′,Q2), (3.2)

∂FA
2 (x ′,Q2)

∂x ′ ≈ ∂F
〈N〉
2 (x ′,Q2)

∂x ′ . (3.3)

Strictly speaking, Eqs. (3.2) and (3.3) hold for x ′ = 0. How-
ever, the nucleonic parts of F

〈N〉
2 (x ′) and ∂F

〈N〉
2 (x ′)/∂x ′ hardly

change up to x ′ <∼ x0; hence, for those sufficiently small x1,
and independent of A and Q2, µA(x1 ≈ 0.18–0.20,Q2) ≈ 1.
This is indeed observed for all EMC data [1,43].

(II) Next we consider the interval x1 <∼ x <∼ 1 and focus on
the integrand of Eq. (2.2), i.e., the product of the A-dependent
BA(u,Q2) and the weighted nucleon SF F

〈N〉
2 (xu,Q2). The
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FIG. 5. Same as Fig.4; Q2 = 10 GeV2.

former is dominated by the peak region u ≈ 1, while F
〈N〉
2

smoothly decreases with increasing argument xu and is
practically negligible for xu >∼ 0.80 (we shall return below
to the physical NE boundary x = 1).

Whereas the above-mentioned ordering in A of BA(u)
depends only on u, the same for its product with F

〈N〉
2 , and

thus of the integral FA
2 , Eq. (2.1) is crucially influenced by x,

in particular, in the deep inelastic (DI) x range 0.2 <∼ x <∼ 0.8.
There the argument xu of F

〈N〉
2 in the integrand of the u integral

(2.2) is usually <∼0.8 in regions around u ≈ 1, where BA is
large. The above-mentioned A dependence of BA then allows
the prediction

µĀ < µ
4He < 1, 0.2 <∼ x <∼ 0.8. (3.4)

In order to obtain nonnegligible F
〈N〉
2 (xu) for increasing x >∼

0.8 one needs u < 1, (x > 1 or equivalently ν < νQEP). Those
u are on the elastic, lower u side of the peak, where BA is
appreciably smaller than at the peak. Figure 6 illustrates the
above for BA(u)F 〈N〉

2 (xu) for He, Fe, and Au: in each step
between the sample values x = 0.15, 0.5, 0.85, and 1.2, the
above product drops by roughly a factor 10.

Returning to the EMC ratios, we already established that on
the elastic side, u < 1 of the peak, the functions BA are ordered
as BD < B

4He ≈ BĀ (see also Table I) and one therefore
expects that

µ
4He ≈ µĀ > 1, 0.85 <∼ x <∼ 0.95. (3.5)

As x grows, the contributing u region tends to contract to
small values of u, where BD 	 BA and therefore µA 
 1. We
emphasize that the understanding of the presented orderings
do not require precise values for the frequently very small
values of the involved nuclear SF, but derive from well-defined,
qualitative features of BA(u,Q2) [i.e., on f PN,A(x,Q2)] and
from the simple functional behavior of F

〈N〉
2 (xu,Q2).

(III) From the inequalities (3.4) and (3.5) and the smooth-
ness of all factors in the integrand, one predicts a second
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FIG. 6. Integrand BA(x,Q2)F 〈N〉
2 (xu,Q2) in Eq. (2.2), which

determines the size of the integrals for F A
2 , for He, Fe, Au (drawn,

dotted, and dashed lines) and fixed Q2 = 5.0 GeV2. The sets of curves
show that the products decrease about a factor of 10 for increasing
x = 0.5 → 0.85 → 1.2.

intersection point at xA
2 ≈ 0.85. In particular, the noted A

dependence of ui for which BD(ui) = BA(ui) causes xA
2 to

be larger for 4He than for A >∼ 12. The same results from a
relativistic PWIA calculation [44]. (See also Ref. [45] for a
different method leading to the same conclusion.)

We mention here a different approach, where one exploits a
sum rule for the nucleonic parts of the involved NI components
of SF [cf. Eq. (3.2)]∫ A

0

dx

x
FA

2 −
∫ 2

0

dx

x
F D

2 ≈
∫ xU

x0

dx

x

[
FA

2 − F D
2

]
= 0. (3.6)

The approximations in Eq. (3.6) are based on the widths of
f PN,A in the SFs, which effectively cut the supports of x, and
allow the above upper and lower limits of integration to be
replaced by common xU , x0. As a consequence, the difference
FA

2 − F D
2 (and, in fact, FA

2 − FA′
2 , for any A,A′) has to

change sign at least once in the interval 0.20 <∼ x <∼ 0.90 [45],
or alternatively their ratio has to pass there through 1.

(IV) Next we comment on the slopes sA(x,Q2) =
∂µA(x,Q2)/∂x at x1,2. Equations (3.2) and (3.3) imply that all
SFs and their slopes are about equal in some interval around
the small x ≈ 0.2, leading to a small negative and nearly
A-independent slope of EMC ratios around x1. One estimates

sA(x ≈ x1) ≡ µA

[
∂
(
logFA

2

)
∂x

− ∂
(
logF D

2

)
∂x

] ∣∣∣∣∣
x1

≈ s(x ≈ x1) ≈ −0.3. (3.7)

While FA
2 hardly depends on A for x ≈ x2, its slope

∂FA
2 (x)/∂x|x≈xA

2
does so strongly. Consequently, and in

contrast to the same around x ≈ x1, s
A(x ≈ xA

2 ) is positive
and large, in agreement with observation [1,43].

The above arguments locate the position of a minimum
for constant slopes at xm >∼ (x1 + xA

2 )/2 ≈ 0.65, about as
observed. A more quantitative estimate for the actual value of
µA(x,Q2) at the minimum requires details of the x variation
of the slopes sA(x).

B. The immediate QE peak region |x − 1| <∼ 0.05

(V) We already mentioned that for increasing x, the rapid
fall-off of F

N,NI
2 (ux,Q2) in the integral (2.2) requires u 	 0.8,

which Figs. 3 and 4 place in the elastic tails of BA(u). In that
region BA > BD and consequently µA 
 1.

Until this point, we considered NI components, which
dominate the nuclear SF and thus the EMC ratios in the
classical region. However, in particular for the lightest targets
around the QE peak x ≈ 1 and for Q2 <∼ 2.5−3.0 GeV2, the
NE components in SFs may take over.

For a discussion of their role, it is convenient to in-
troduce relative weights γ A = F

A,NI
2 /F

A,NE
2 in the total

FA
2 = F

A,NI
2 + F

A,NE
2 and additional auxiliary EMC ratios

µA,NI, µA,NE for pure NI and NE components of the con-
tributing SF. For instance, from Figs. 4 and 5 one then finds

µA = µA,NI [1 + (γ A)−1]

[1 + (γ D)−1]
, (3.8)

≈ µA,NI, Q2 >∼ 4 GeV2; x <∼ 0.95, x >∼ 1.05, (3.9)

= µA,NE [1 + γ A]

[1 + γ D]
, (3.10)

≈ µA,NE, Q2 <∼ 2.5 − 3.0 GeV2;

|x − 1| <∼ 0.05, x >∼ 1.25. (3.11)

Eq. (3.9) states that, when dominant, NI components are
hardly perturbed by NE. However, for A � 4 and Q2 <∼
2.5−3.0 GeV2, one may have a reversed situation with γ A 	
1. In that case, Eq. (2.5) implies

µA(x ≈ 1,Q2) ≈ µA,NE(x ≈ 1,Q2)

= f PN,A(x ≈ 1,Q2)

f PN,D(x ≈ 1,Q2)
	 1, (3.12)

roughly symmetric around x ≈ 1, as is the case for the SF
f PN,A [see the discussion at point (a) of Sec. III A]. The sharp
increase beyond the value 1 in µA for x2 ≈ 0.85–0.90, and for
Q2 in the above range, is thus followed by an equally abrupt
decrease of µA into a deep local minimum. The relative A
dependence of the minimum is read off of Fig. 1 as

µĀ(x ≈ 1) < µHe(x ≈ 1) <∼ 1. (3.13)

For low Q2, the depth of the minimum is ≈0.35 for A � 12
and only ≈0.50 for A = 3, 4.

As long as the NI admixtures in FA
k are small [cf.

Eq. (3.11)], the position of the minimum at x ≈ 1 is only
weakly dependent on Q2, because the ratio (3.12) is so.
For increasing Q2, NI components grow rapidly relative to
NE ones. As a result NI components are never completely
negligible and compete, even when NE is maximal [35]. This
affects the specific NE effect above: the narrow minimum
at x ≈ 1 is contaminated by NI components, and ultimately
vanishes in an asymmetric way around x = 1. The resulting
µA for sufficiently large Q2 will show a practically smooth,
steep increase from x ≈ 0.85 on (see Figs. 7–10).

At this point we mention that a heuristic explanation of
the above was given many years ago [3]. We reemphasize
the occurrence of the above oscillating behavior, of which the
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FIG. 7. µ
4He for Q2 = 3.5, 5.0, 10.0 GeV2.

Data in the classical range are from Ref. [43]
(open circles) and Ref. [47] filled circles. No
extracted data exist beyond that range.

shape and localization in x are quite remarkable. Our general
description again predicts both A and Q2 behavior.

Also of relevance is a paper by Ciofi and collaborators who
addressed within the PWIA the relative size NE/(NE+NI) [46].
For example, in Fig. 15 of that paper it can be seen that for
x ≈ 1 the NE part is predicted to dominate for Q2 <∼ 4 GeV2.

C. The DQE region

(VI) Further increasing x > 1, one can no longer have
simultaneously an argument xu <∼ 0.8 of F

〈N〉
2 (xu,Q2), in

Eq. (2.3), and u in BA(u) anywhere close to 1. Con-
sequently, both small factors in the integrand combine
to yield strongly reduced values for nuclear SF FA

2 (cf.
Fig. 6). The crucial issue is a reliable prediction for the ratios
µA = FA

2 /F D
2 .

The approximation µA ≈ µA,NE, Eq. (3.11), also holds
for x >∼ 1.25, where NI components decrease faster in x,
ultimately leading to NE 
 NI.

Figures 4 and 5 show that for sufficiently small u, all BA

decrease with a characteristic A dependence. For fixed u, again,
the effect is most prominent for D. Compared to it, the decrease
is less and about similar for He and Fe, and even smaller for the
other targets considered. Comparison of Figs. 4 and 5 shows
a clear Q2 dependence. Consequently, EMC ratios rapidly
increase for x � 1.05 to values far in excess of 1 in an A and
Q2-dependent fashion.

This concludes a more than heuristic description. There
is little doubt that the simple, outspoken x,A dependence
of the SF f PN,A for a nucleus of point nucleons describes
all characteristic features of EMC ratios in the (deep) inelas-
tic classical regime 0.2 <∼ x <∼ 0.95, through the QE region
0.95 <∼ x <∼ 1.05, and up into the DEP region 1.05 <∼ x <∼ 1.4.
Actual quantifications of the above observations are obviously
required.

We close this section with a remark on generalized EMC
ratios. Up to this point, we dealt with EMC ratios of FA

2
and F D

2 . Similar considerations can be forwarded when
comparing FA

2 with F
〈N〉
2 , the properly weighted SF of a
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FIG. 8. Same as Fig. 7, but for µC. Data sets
in the classical range are from Refs. [43,48]. Ex-
tracted data are for varying Q2 ≈ 3.4–4.2 GeV2

(open diamonds) and for varying Q2 ≈ 4.5–
5.2 GeV2 (filled diamonds) [14,15]. Data are
too sparse for interpolation toward Q2 = 3.5
and 5.0 GeV2, for which calculated results are
presented.
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FIG. 9. Same as Fig. 7, but for µFe. Data from
Refs. [43,49]; see text in Sec. IV.

nucleon. The situation is different for generalized EMC ratios
µA,A′

, A′ � 12, which from the above are seen to deviate
from 1 by no more than a few percent [50]. Again the
He isotopes occupy a special position. For instance, in the
classical regime, |1 − µA,4He| < |1 − µA,3He| < |1 − µA,D|.
Indeed, data on EMC ratios µA,3He show all features of µA,D,
but in a more temperate fashion [51].

IV. INPUT, RESULTS

In the following we present computed EMC ratios, which
should underscore the above qualitative considerations. We
start with some input elements.

(a) SFs f PN,A for nuclei composed of point nucleons can
only be computed with great precision for the lightest nuclei,
[33,34]. For heavier nuclei, approximations are unavoidable,
and we used the one discussed in Ref. [31]. For all A, we
calculated f PN,A(x,Q2) from a related function φA(yG, |q|)

defined in terms of different kinematic variables, namely |q|,
the three-momentum transfer, and yG, the Gurvitz scaling vari-
able [52], which is typical for the underlying, nonperturbative
method (see Ref. [31])

yA
G = 2yG

1 + √
1 + 2νyG/(MA−1|q)

, (4.1)

yG = Mν/|q |[1 − 〈�〉/M − x], (4.2)

δ(x) ≈ −δ〈�〉
M

. (4.3)

Above, yA
G for a recoiling spectator nucleus with finite mass

MA−1 is in Eq. (4.1) expressed in terms of the same, Eq. (4.2),
for an infinite mass spectator. Only for the lightest nuclei does
one have to retain the recoil correction in Eq. (4.1) [29,34].

In expression (4.2) appears an average separation energy
of a nucleon in the target, which for 4He, C, Fe, Au we took
as 〈�〉 = 20.2, 40, 45, and 45 MeV. Equation (4.3) expresses
for given yG the change in x, due to the same in 〈�〉. The
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FIG. 10. Same as Fig. 7, but for µAu. Data
from Ref. [43]; see text in Sec. IV.
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above is important if f PN,A varies rapidly with x, i.e., in the
neighborhood of x = 1. A consequence of this fact will be
shortly encountered.

(b) Since for all applications Q2 � 3.5 GeV2, we employ
for F

p

2 a parametrization of resonance-averaged data [41],
instead of one for F

p

2 itself for Q2 <∼ 4.0–4.5 GeV2 [53].
(c) Fn

k is not directly accessible and we follow a previously
introduced method for its extraction from inclusive scattering
data on targets, where neutrons are bound [54]. There, one
parametrizes the ratio

C(x,Q2) = Fn
2 (x,Q2)

/
F

p

2 (x,Q2) =
2∑

k=0

dk(Q2)(1 − x)k,

(4.4)

and determines a minimal set of parameters in Eq. (4.4) from
the known values C = 1 for x = 0 and C = 0.75 for the small
x = 0.2, for which the primitive relation (3.1) holds. Beyond
the lowest inelastic threshold, C(x,Q2) = 0, except at the
physical boundary x = 1, where C depends solely on static
form factors

C(x = 1,Q2) =
[
Gn

E(Q2)
]2 + η

[
Gn

M (Q2)
]2[

G
p

E(Q2)
]2 + η

[
G

p

M (Q2)
]2 . (4.5)

The form factors above are those advocated in [55] from cross-
section data (see also Ref. [23]).

At this point we remark on extracted EMC ratios. For
relatively low Q2, they are overwhelmingly from SLAC NE3
data [8] and have been discussed before [3–5,9]. We therefore
limit ourself to EMC ratios extracted from JLab E89-008 data
with Q2 >∼ 3.5 GeV2 [13] and to which the remarks at the end
of (a) in this section apply. A proper analysis of those data for
fixed scattering angles θ , for which Q2 varies with x, requires
an interpolation to a few given Q2, but there are not enough data
points to do so reliably. In the end we performed computations
for A = D,4He, C, Fe, and Au at fixed Q2 = 3.5, 5.0, and
10 GeV2 and 0.2 <∼ x <∼ 1.5. Actually shown data points for
x >∼ 1.1 may well differ by <∼10% from those for the above
fixed Q2.

Here we pose the question, which F D
2 should be used in the

denominator of µA. Offhand it seems best to use experimental

values. Nevertheless, we advocate using the computed F D
2 ,

which has been calculated in the same approach for all
FA

2 . Those carry therefore the same systematic imperfections
that may partly cancel in ratios. The choice is of minor
practical relevance, since the computed F D

2 agree well with
the parametrized resonance-averaged data [41].

In Figs. 7–10 we display data and computed EMC ratios
for 4He, C, Fe, and Au, at Q2 = 3.5, 5.0, and 10.0 GeV2

over two separated ranges 0.2 <∼ x <∼ 0.90 and x � 0.80 with
different vertical scales. For the classical range, we used the
original data from Refs. [47–49] (open circles), while revised
results and additional data [56,57] are given as closed circles.
Occasionally, we used averages as compiled in Ref. [43]. In
all figures, bars on data points refer only to statistical errors.
One finds confirmed the near-insensitivity to Q2, except for
Q2 = 3.5 GeV2. Ratios of slightly irregular FA

2 cause some
structure in predictions around x = 0.7.

In the DI region, there is reasonable but not perfect
agreement. At the QE peak x = 1, data show noticeable
inelastic NI effects on the NE ratios µA,NE, Eq. (3.13). Beyond,
for x � 1.0, we entered data for actual, noninterpolated
Q2 = 3.4–4.2 GeV2, marked by empty squares (see also
Refs. [3–5]). Those extracted for Q2 = 4.5–5.3 GeV2 are
shown as filled squares. Theoretical curves are for fixed
Q2 = 3.5 and 5.0 GeV2.

In the DQE region, all data show a strong Q2 and a much
more tempered A dependence, which computations follow to
within better than ≈15%, except for the largest x for Fe. A
glance at Fig. 11 shows that barely visible changes in the tail
can easily make up for, or increase the difference. In detail,
the figures show the following:

4He: no data; a maximum is predicted with a subsequent
decrease (Fig. 7).

C: Predictions follow the steep increase of the data, but fall
short of them by about 15% (Fig. 8).

Fe: As for C, but the data (with large error bars!!) continue to
increase for x >∼ 1.25, whereas calculations for Q2 � 5 GeV2

show a leveling off (Fig. 9).
Au: Good agreement. No data beyond x ≈ 1.25, where

theory predicts maxima for all Q2 (Fig. 10).
Given the sensitivity and small numbers involved, the

agreement in the DQE region to x ≈ 1.2 is satisfactory. One
observes that all results are much in line with the spelled-out,
qualitative predictions with regard to intersection points and
minima in the classical regime, including their A dependence,
the structure and Q2 dependence of the minima around
x = 1, and a subsequent increase beyond. In both regimes
µ

4He is clearly different from other µA. For the He isotopes,
the presently running Jlab EMC experiment E03-103 will
provide a test for the Q2 dependence of µA, in particular
for the predicted gradual fading of the minimum at x = 1 for
increasing Q2.

V. DISCUSSION, COMPARISON, AND CONCLUSION

In the present work, we have studied nuclear SFs FA
2 , F D

2
and their EMC ratios over the kinematic range 0.2 <∼ x <∼ 1.5.
All along we emphasized that both composing nuclear SFs in
those ratios decrease two orders of magnitude between x ≈ 0
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(FA
2 ≈ 0.37) and x ≈ 1. In that interval the EMC effect, i.e.,

the deviations of EMC ratios from 1 are less than 20% and
on the average 10%. The above requires the accuracy of the
computed ratios to be better than the size of the EMC effect.

Further increasing x to about 1.4–1.5, the involved SF
decrease by another two orders of magnitude, and it seems
extremely hard to fulfill even far less stringent requirements
than imposed on the classical region. The above has not
deterred attempts to compute EMC ratios.

The tool of our analysis has been a postulated relation
between nuclear and nucleon SFs, linked by f PN,A, the
SF of an unphysical nucleus, composed of point particles.
The computation of the latter requires many-particle density
matrices, diagonal in all nuclear coordinates except one, which
are constructed from nuclear ground state wave functions.
Such a calculation is presently only feasible for the D and
He isotopes and approximate methods had to be invoked for
A � 12. In addition, one needs information and models for
off-shell NN elastic scattering.

Calling on characteristic properties of f PN,A as function
of x,Q2 and A and on the x,Q2 dependence of the properly
weighted nucleon SF F

〈N〉
2 , we first qualitatively accounted

for all characteristic features of EMC ratios in the classical
regime 0.2 <∼ x <∼ 0.95, the QE peak area 0.95 <∼ x <∼ 1.05, and
continuing into the DQE region 1.05 <∼ x <∼ 1.4, including the
A dependence of µA. The same considerations carry over to
generalized EMC ratios µA,He, in particular for 3He, and recent
data for the latter confirm those [51].

The above qualitative considerations lead only to ordering
of relevant quantities, or alternatively, to inequalities. In the
end we performed actual calculations of EMC ratios to under-
score the above qualitative considerations. It is not surprising
that, contrary to the reliable, qualitative considerations, the
very small values of the SF involved do not guarantee a
similar accuracy in directly calculated results. Nevertheless
we obtained reasonable agreement with data in the classical
regime 0.2 <∼ x <∼ 0.9 and beyond, with extracted EMC ratios
for 0.9 <∼ x <∼ 1.25.

The emphasis above has been on an explanation solely
based on the properties of the SFs f PN,A and F

〈N〉
2 : We are

not aware of an alternative simple description, which is not a
judgment against other approaches. We reassert the obvious:
In principle, “complete” treatments of various approaches to
nuclear SF produce identical results. However, in practice,
theories are worked out to some order in a parameter, which is
characteristic of the chosen approach. An issue emerges when
comparing two results in two approaches to different orders in
different parameters.

At this point we recall a proof, explicitly showing that the
GRS and DWIA approaches produce similar results if both are
compared to the same order in a common expansion parameter,

e.g., the lowest order in NN rescattering [58]. Therefore, it
does not come as a surprise to find similar agreement for EMC
ratios, computed in the afore-mentioned two theories.

In spite of the above, it is of interest to note different insights
in some aspects of EMC ratios, for instance around the minima
in µA(x ≈ 1). The DQE region x >∼ 1 has repeatedly been
discussed [3,4], with as most complete treatment (essentially,
a DWIA), the one by Benhar et al. [5]. No particular role is
allocated there to the QE point. In fact, the earlier treatment
by Frankfurt et al. [3] allocates the above to the ratio of the
longitudinal momentum distributions. In order to reach that
result in the DWIA, one has to neglect FSI, which indeed are
relatively small around the QEP. However, in order to reach
the longitudinal momentum distribution from the PWIA, one
has to concentrate the spread of the spectral function into a
single peak. The cited steps are not manifestly equivalent to the
dominance of the NE contributions in the GRS approach and
its consequences. One would also have to show that the above
ratio of Q2-independent longitudinal momentum distribution
equals the Q2-dependent ratio of f PN,A(x ≈ 1,Q2).

Our last remark addresses the treatment of the DQE region.
For relatively low Q2, the EMC ratios have mostly been
extracted from FA

2 (SLAC NE3 experiment [8]) against F D
2

and from a single recent experiment of the same against
F

3He
2 [51]. Those data show that, after an initial increase, the

EMC ratios µA ultimately reach plateaus of approximately
constant values. For increasing Q2, Eq. (3.11) is no longer
valid. As a consequence, EMC ratios continue to rise, possibly
reaching a plateau at a much larger x.

In a very simplistic description, the appearance of the latter
at lower Q2 have been interpreted as due to correlations
between the struck and 2, 3, . . . spectator particles [3,59].
It is clearly of interest to see whether such a chain of
approximations applied to the GRS expressions lead to the
above-mentioned simple result. Those steps will be elaborated
in a separate note.

In conclusion, we continue to be amazed and do not fully
understand why theoretical EMC ratios appear to agree with
data out to large x, where each participating nuclear SF is
extremely small. It is hard to believe that the relative uncer-
tainties in the participating FA

2 are practically A independent
and cancel in EMC ratios. In our opinion, understanding the
above remains a challenge.

Note added in proof: The proof of the sign changes in FA
2 -FD

2
can be found also in Ref. [60,61], where it was discussed long
before the present work.
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