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T. Melde, W. Plessas, and R. F. Wagenbrunn
Theoretical Physics, Institute for Physics, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria
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We present covariant predictions for π and η decay modes of N and � resonances from relativistic constituent-
quark models based on one-gluon-exchange and Goldstone-boson-exchange dynamics. The results are calculated
within the point-form approach to Poincaré-invariant relativistic quantum mechanics applying a spectator-model
decay operator. The direct predictions of the constituent-quark models for covariant π and η decay widths show
a behavior completely different from previous ones calculated in nonrelativistic or so-called semirelativistic
approaches. The present theoretical results agree with experiment only in a few cases but otherwise always
remain smaller than the experimental data (as compiled by the Particle Data Group). Possible reasons for this
behavior are discussed with regard to the quality of both the quark-model wave functions and the mesonic decay
operator.
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I. INTRODUCTION

Hadronic transitions between baryon states represent a wide
field of physical phenomena to be understood ultimately on the
basis of quantum chromodynamics (QCD), the fundamental
theory of strong interactions. While there is a wealth of
experimental data available, theory lags behind with regard
to a comprehensive explanation. This is mainly due to the
persisting difficulties of solving QCD rigorously in the low-
and intermediate-energy regimes. There one has to resort to
effective theories or models based as far as possible on the
genuine properties of QCD. Furthermore, they should provide
a comprehensive framework covering also other hadron phe-
nomena (e.g., interactions with electroweak probes, etc.). The
quark-model description of light and strange baryons has seen
a number of interesting and important new developments over
the last few years. In addition to the traditional constituent-
quark model (CQM), whose hyperfine interaction derives
from one-gluon exchange (OGE) [1], alternative types of
CQMs have been suggested such as those based on instanton-
induced (II) forces [2,3] or Goldstone-boson-exchange (GBE)
dynamics [4]. The GBE CQM [5,6] aims at incorporating the
basic properties of low-energy QCD, as following from the
spontaneous breaking of chiral symmetry (SBχS).

Properties of baryon resonances should be calculated in
a fully relativistic approach. In this paper, the theory is
formulated along relativistic, i.e., Poincaré-invariant, quantum
mechanics [7]. Specifically, we adhere to its point-form
version [8,9], since this allows us to calculate observables
in a manifestly covariant manner [10]. This approach is a
priori distinct from a field-theoretic treatment. It relies on a
relativistically invariant mass operator with the interactions
included according to the Bakamjian-Thomas construction
[11]. In this way, all the required symmetries of special
relativity can be fulfilled. Relativistic CQMs have already been
applied in the description of electroweak nucleon form factors
[12–17] and electric radii as well as magnetic moments of all
octet and decuplet baryon ground states [18,19]. In this context,
the point-form approach has turned out surprisingly successful.

Here we are interested in determining if an analogous treatment
of strong decays also leads to a satisfactory description of
this type of hadronic reaction, in agreement with existing
experimental data.

Mesonic resonance decays have always been considered
as a big challenge, with early attempts dating back to the
1960s [20–24]. With the refinement of CQMs over the years,
more studies on different aspects of mesonic decays have
been performed. In the course of the past two decades, a
number of valuable insights have thus been gained by various
groups, e.g., in Refs. [25–33]. The focus of interest has been,
notably, the performance of various CQMs as well as the
adequacy of different decay operators for the mechanism
of meson creation/emission. Despite the considerable efforts
invested, we still do not have a satisfactory microscopic
explanation of especially the N and � resonance decays.
Also, complementary attempts outside the CQM approach
have not had much more success with hadron decays or, more
generally, with providing a comprehensive working model of
low-energy hadronic physics based on QCD. This situation
is rather unsatisfactory from the theoretical side, especially
in view of the large amount of experimental data accumulated
over the past years and the ongoing high-quality measurements
at such facilities as the Thomas Jefferson National Accelerator
Facility (JLab), Mainz Microtron (MAMI), and others (for an
overview of the modern developments, see the proceedings of
the recent N∗ Workshops [34–36]).

So far, the GBE CQM has been tested in calculating
mesonic decays of resonances of light and strange baryons
in a semirelativistic framework [37–39]. These studies have
revealed that relativistic effects have a big influence on the
results, both in an elementary-emission and a quark-pair-
creation model of the decay operator. In the present work,
we perform a covariant calculation of π and η decay modes
of N and � resonances using a rather simplified model for the
decay operator. Our primary goal is to set up a fully relativistic
(covariant) CQM formulation of mesonic decays; later on,
one may still improve on the decay operator. In particular,
we assume a decay operator in the point-form spectator
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model (PFSM) with a pseudovector coupling. It has been seen
in previous studies that such an operator includes effective
many-body contributions due to the symmetry requirements of
Poincaré invariance (especially in order to satisfy translational
invariance of the transition amplitude) [40,41]. We produce
the corresponding predictions for decay widths from the
GBE CQM and analogous results from a CQM with a
OGE hyperfine interaction, namely, the relativistic version
of the Bhaduri-Cohler-Nogami CQM [42] as parametrized in
Ref. [39]. In addition, a comparison is provided with results
from the II CQM obtained with a similar (spectator-model)
decay operator in a Bethe-Salpeter approach [19]. The rela-
tivistic results are also contrasted with several nonrelativistic
and so-called semirelativistic calculations. Preliminary results
have already been presented in proceedings contributions
[43–45].

In Sec. II, we outline the theory for a covariant calculation of
the mesonic decay widths from a relativistic CQM. In Secs. III
and IV, we present the results of our calculation, discuss their
qualitative and quantitative features, and compare them with
the results of decay calculations from other models and/or
approaches. In the Appendix, some details of the relativistic
point-form calculation of mesonic baryon decays are given.

II. THEORY

Generally, the decay width � of a particle is defined by

� = 2πρf |F (i → f )|2 , (1)

where F (i → f ) is the transition amplitude and ρf is the
phase-space factor. To get the total decay width, one has to
average over the initial and sum over the final spin-isospin
projections.

In nonrelativistic calculations, the strong decays of hadron
resonances are treated with a transition amplitude that is not
Lorentz invariant. Consequently, one is left with an arbitrary
choice of the phase-space factor [26,32,46]. In the rest frame
of the decaying resonance, either a purely nonrelativistic form,

ρf = M ′m
M

q, (2)

or the relativistic form,

ρf = E′ωm

M
q, (3)

has been used. In Eq. (2), M is the mass of the initial resonance
while M ′ and m are the masses of the final state and the emitted
meson, respectively; q is the magnitude of the momentum
transfer. Correspondingly, in Eq. (3), E′ and ωm are the
energies of the decay products. An alternative choice was
made by Capstick and Roberts [30] using the phase-space
factor

ρf = M̃ ′m̃
M̃

q, (4)

first introduced by Kokoski and Isgur [46] for meson decays.
Here the quantities with the tilde represent some effective
(parametrized) masses. Clearly, the particular choice of the
phase-space factor has a pronounced effect on the final

results. The ambiguity concerning the phase-space factor is
immediately resolved by imposing relativistic invariance on
the formalism. This can evidently be done either along a
relativistic field theory or in relativistic (Poincaré-invariant)
quantum mechanics.

In the present work, we formulate a Poincaré-invariant
description of the decay amplitude. Out of the possible forms of
relativistic dynamics minimally affected by interactions [8,9]
we make use of the point form. In this case, one has the
advantage that only the four-momentum operator P̂ µ contains
interactions. Consequently, the generators of the Lorentz
transformations remain purely kinematic, and the theory is
manifestly covariant [10]. The interactions are introduced into
the (invariant) mass operator following the Bakamjian-Thomas
construction [11]. Hereby the free mass operator M̂free is
replaced by a full mass operator M̂ containing an interacting
term M̂int:

M̂free → M̂ = M̂free + M̂int. (5)

The four-momentum operator is then defined by multiplying
the mass operator M̂ by the four-velocity operator V̂ µ

P̂ µ = M̂V̂ µ. (6)

In the point form, following the Bakamjian-Thomas construc-
tion, the four-velocity operator is kinematic and thus remains
independent of interactions, i.e., V̂ µ = V̂

µ

free. The eigenstates of
the four-momentum operator P̂ µ are simultaneous eigenstates
of the mass operator M̂ and the four-velocity operator V̂ µ; this
is simply a consequence of Poincaré invariance. For a given
baryon state of mass M and total angular momentum J with
z projection �, the eigenvalue problem of the mass operator
reads

M̂|V,M, J,�〉 = M|V,M, J,�〉. (7)

Here we have written the eigenstates in obvious notation as
|V,M, J,�〉, where V indicates the four eigenvalues of V µ,
of which only three are independent. Alternatively, we can
express these eigenstates as

|V,M, J,�〉 ≡ |P, J,�〉, (8)

where P represents the four eigenvalues of P̂ µ, whose square
gives the invariant mass operator.

For the actual calculation in the point form, it is advanta-
geous to introduce a specific basis of free three-body states,
the so-called velocity states, by

|v; �k1, �k2, �k3; µ1, µ2, µ3〉
= UB(v) |k1, k2, k3; µ1, µ2, µ3〉

=
∑

σ1,σ2,σ3

3∏
i=1

D
1
2
σiµi

{RW [ki, B(v)]}|p1, p2, p3; σ1, σ2, σ3〉.

(9)

Here B (v), with unitary representation UB(v), is a
boost with four-velocity v on the free three-body states
|k1, k2, k3; µ1, µ2, µ3〉 in the c.m. system, i.e., for which∑ �ki = 0. The second line in Eq. (9) expresses the corre-
sponding Lorentz transformation as acting on general three-
body states |p1, p2, p3; σ1, σ2, σ3〉. The momenta pi and ki
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are related by pi = B (v) ki , where ki = (ωi, �ki). The D
1
2

are the spin- 1
2 representation matrices of Wigner rotations

RW [ki, B (v)]. It is advantageous to use the velocity-state basis
(instead of the basis of general free three-body states) since
in this case Lorentz transformations rotate all particles by the
same angle, and the spin coupling can be done in the usual
way [7,47]. Some further details concerning velocity states
are given in the Appendix.

The relativistic transition amplitude for the mesonic decay
of a baryon resonance |V,M, J,�〉 to the nucleon ground
state |V ′,M ′, J ′, �′〉 is defined by the reduced matrix element
of the mesonic decay operator D̂m

F (i → f ) = 〈V ′,M ′, J ′, �′|D̂m,rd|V,M, J,�〉
= 2

MM ′
∑
σiσ

′
i

∑
µiµ

′
i

∫
d3�k2d

3�k3d
3�k′

2d
3�k′

3

×
√ (∑

ωi

)3

2ω12ω22ω3

√√√√ (∑
ω′

i

)3

2ω′
12ω′

22ω′
3

×
�
M ′J ′�′(�k′

i ; µ
′
i)

∏
σ ′

i

D
� 1

2

σ ′
i µ

′
i
{RW [k′

i ; B(V ′)]}

×〈p′
1, p

′
2, p

′
3; σ ′

1, σ
′
2, σ

′
3|D̂m,rd

× |p1, p2, p3; σ1, σ2, σ3〉
×

∏
σi

D
1
2
σiµi

{RW [ki ; B(V )]}
MJ�(�ki ; µi).

(10)

The wave functions 
�
M ′J ′�′ and 
MJ� denote velocity-state

representations of the baryon states 〈P ′, J ′, �′| and |P, J,�〉,
respectively. For the decay operator D̂m,rd, we assume a
spectator model with pseudovector coupling and express its
matrix element by

〈p′
1, p

′
2, p

′
3; σ ′

1, σ
′
2, σ

′
3|D̂m,rd|p1, p2, p3; σ1, σ2, σ3〉

= 3
igqqm

2m1 (2π )
3
2

√
M3M ′3(∑

ωi

)3 (∑
ω′

i

)3 ū(p′
1, σ

′
1)

× γ5γ
µλmu(p1, σ1)Qµ2p20δ( �p2 − �p′

2)

× 2p30δ( �p3 − �p′
3)δσ2σ

′
2
δσ3σ

′
3
, (11)

where gqqm is the meson-quark coupling constant, λm the flavor
operator for the particular decay channel, and m1 the mass
of the quark coupling to the generated meson. In the actual
calculations for the theoretical predictions of the CQMs to
be presented in the next section, the meson-quark coupling
constant is assumed to be g2

qqm/4π = 0.67. This value is
consistent with the one used in the parametrization of the
GBE CQM (for both the π -quark and η-quark couplings) [5].
The dependence of the results for strong decay widths on
the size of the meson-quark coupling constant is discussed
in Sec. IV.

Equation (11) defines the spectator-model decay opera-
tor, here specifically in point form (PFSM). The transition
amplitude in Eq. (10) is Poincaré invariant, and the overall
momentum conservation Pµ − P ′

µ = Qµ has already been
exploited in the integral. Regarding the spectator model
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FIG. 1. (Color online) Nucleon (a) and � (b) spectra from
three different types of relativistic CQMs. In each column, the left
horizontal lines represent the results of the relativistic version of
the Bhaduri-Cohler-Nogami CQM [39], the middle ones of the II
CQM (Version A) [2], and the right ones of the GBE CQM [5]. The
shadowed boxes give the experimental data with their uncertainties
after the latest compilation of the Particle Data Group [49].

of the decay operator, it should be noted that in PFSM
the impulse delivered to the quark that emits the meson
is not equal to the impulse delivered to the nucleon as
a whole. However, the momentum transfer q̃ to this sin-
gle quark is uniquely determined from the momentum Q
transferred to the nucleon and the two spectator conditions
[cf. Eq. (A.10)] [40]. The square-root normalization factor has
been introduced in accordance with the previous PFSM studies
in the electromagnetic case [13–15,18].

III. DIRECT PREDICTIONS OF DECAY WIDTHS

It is well known that the underlying quark dynamics of
CQMs has a pronounced effect on the baryon spectra [48]. In
Fig. 1, we a compare the N and � spectra for three different
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TABLE I. Covariant predictions for π decay widths by the GBE CQM [5] and the OGE CQM [39]
along the PFSM in comparison to experiment [49] and a relativistic calculation for the II CQM along
the Bethe-Salpeter approach [19]. In the last two columns, the nonrelativistic results from an EEM are
given. In all cases, the theoretical resonance masses as predicted by the various CQMs have been used
in the calculations.

Decay Experiment Relativistic Nonrel. EEM

→ Nπ (MeV) GBE OGE II GBE OGE

N (1440) (227 ± 18)+70
−59 33 68 38 6.7 27

N (1520) (66 ± 6)+ 9
− 5 17 16 38 38 37

N (1535) (67 ± 15)+28
−17 90 119 33 554 1183

N (1650) (109 ± 26)+36
− 3 29 41 3 160 358

N (1675) (68 ± 8)+14
− 4 5.4 6.6 4 13 16

N (1700) (10 ± 5)+ 3
− 3 0.8 1.2 0.1 2.2 2.7

N (1710) (15 ± 5)+30
− 5 5.5 4.6 n/a 8.1 5.8

�(1232) (119 ± 1)+ 5
− 5 37 32 62 89 84

�(1600) (61 ± 26)+26
−10 0.1 1.8 n/a 92 85

�(1620) (38 ± 8)+ 8
− 6 11 15 4 77 178

�(1700) (45 ± 15)+20
−10 2.3 2.3 2 11 9.2

CQMs. While the N -� splittings are correct in all cases,
only the GBE CQM succeeds simultaneously to reproduce
the proper level ordering of positive- and negative-parity
excitations. Now, it is interesting to learn how the CQMs with
different dynamics predict the widths of various mesonic decay
modes.

In Table I, we present the covariant predictions of the
relativistic CQMs for π decay widths of N and � resonances
from the PFSM calculation. In this table, the theoretical masses
of the baryon states as produced by the respective CQMs have
been used. For the GBE CQM, only two decay widths, namely
N(1535) and N(1710), apparently coincide with experimental
data within their error bars. All the others are smaller than
experiment. In most cases, a considerable underestimation
of the experimental data is found. The situation is similar
for the OGE CQM, where only the N(1710) coincides with
experiment. Again, all other predictions remain (considerably)
smaller than the data. The situation is even worse for the
II CQM, calculated in the Bethe-Salpeter approach [19],
where none of the predictions strictly agree with experiment;
each is too small, some by far. In general, all relativistic
calculations, independently of the framework applied, show
similar characteristics: They yield results always smaller than
the experimental data or at most reaching their values from
below.

For comparison with nonrelativistic results, we applied the
elementary emission model (EEM), which can be viewed as
the nonrelativistic analog of the spectator model used for our
covariant calculations. The comparison of the relativistic and
nonrelativistic results in Table I tells us that there are huge
differences between them. While there is a common trend
in the relativistic results (practically none of the predictions
overshoot the data), the nonrelativistic decay widths scatter
below and above the experimental values. Incidentally, for the

nonrelativistic results, agreement with experiment is found
in more cases than for the relativistic ones. However, this
observation should not be interpreted as a better quality of
the nonrelativistic results. From the viewpoint of theory, the
relativistic calculations are much more appealing. In particular,
the corresponding predictions are covariant. Furthermore, the
fact that they generally underestimate the data may turn out
to be an advantage, especially when a more complete decay
operator is employed than the simple spectator model used
here.

In the literature, results for decay widths are often calculated
employing phenomenological resonance masses instead of
theoretical ones (as predicted by the respective CQM). There-
fore, in Table II we also give the decay widths calculated with
the physical resonance masses (but with the same CQM wave
functions as before). For the GBE CQM, only slight variations
are seen as compared to Table I. This is not surprising,
since the GBE CQM yields a rather good reproduction of
the experimental resonance masses. For the OGE CQM, some
bigger deviations are observed, especially in case of the
positive-parity resonances N(1440), N(1710), and �(1600),
where differences of more than 50% may occur. For the OGE
CQM, the mass-shift effect is also visible for the negative-
parity resonance �(1700). Also the nonrelativistic results
exhibit an analogous behavior. We learn that the resonance
masses have a pronounced influence on the magnitudes of
the decay widths. For a given resonance (and a given wave
function), the decay width will come out bigger the larger
its mass. It is therefore an essential prerequisite that any
CQM reproduces the excitation spectra in fair agreement with
experiment.

By comparing the GBE and OGE columns in Table II one
can see the influences of different wave functions on the decay
widths (since here the employed resonance masses are the
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TABLE II. Same as Table I, but with experimental resonance masses instead, of theoretical ones.

Decay Experiment Relativistic Nonrel. EEM

→ Nπ (MeV) GBE OGE GBE OGE

N (1440) (227 ± 18)+70
−59 30 37 6.2 14

N (1520) (66 ± 6)+ 9
− 5 17 16 38 36

N (1535) (67 ± 15)+28
−17 93 123 574 1230

N (1650) (109 ± 26)+36
− 3 29 38 160 332

N (1675) (68 ± 8)+14
− 4 6.0 6.2 15 15

N (1700) (10 ± 5)+ 3
− 3 0.9 1.2 2.9 2.9

N (1710) (15 ± 5)+30
− 5 4.1 2.3 6.0 3.2

�(1232) (119 ± 1)+ 5
− 5 34 32 81 84

�(1600) (61 ± 26)+26
−10 0.1 0.5 56 30

�(1620) (38 ± 8)+ 8
− 6 10 15 75 178

�(1700) (45 ± 15)+20
−10 2.9 3.1 14 15

same in both cases, namely, the experimental ones). Obviously
the different components in the respective wave functions
also can have a respectable effect. For example, the OGE
wave function produces a considerably larger π decay width
for N(1535) than the GBE. A similar behavior is found for
�(1620) and to some extent also for N(1650). All of these
resonances have JP = 1

2
−

. The OGE result is also higher
in the case of the Roper resonances N(1440) and �(1600).
All the other π decay widths have very similar magnitudes
for both types of wave functions. Only in the case of the
N(1710) resonance does the result with the GBE wave function
come out appreciably larger than with the OGE. An analogous
behavior is found in the nonrelativistic results for the EEM
[with the exception of �(1600)].

It is interesting to examine the theoretical results from a
different viewpoint. In Table III, we present the covariant

predictions of the various CQMs as percentage values relative
to the experimental π decay widths. Evidently, since all
of the predictions tend to be too small by their absolute
values, these percentages also turn out too small. The only
exception is N(1535), in which case, an appreciable percentage
is reached (evidently because the theoretical prediction is
of the magnitude of the experimental decay width). If we
look at the corresponding experimental Nππ branching ratio,
incidentally, we observe that it is very small. On the other
hand, the Nππ branching ratios are observed to be quite
large in other cases, such as N(1675), N(1700), �(1600),
and �(1700). Here, they may become 60–90%. Interestingly,
in these cases the theoretical π decay widths assume only
very small percentages of the experimental decay widths.
While the situation is not as clearcut with respect to the
N(1440), N(1520), and N(1710) resonances—they appear to

TABLE III. Covariant predictions for π decay widths of the GBE, OGE, and II CQMs (as in Table I) presented as percentages of the
experimental π decay widths in comparison to experimental Nππ branching ratios.

Decays J P Experiment Relativistic % of Exp. Width Experimental

→ Nπ (MeV) GBE OGE II GBE OGE II Nππ Branching Ratio

N (1440) 1
2

+
(227 ± 18)+70

−59 33 68 38 14 30 17 30−40%

N (1520) 3
2

−
(66 ± 6)+ 9

− 5 17 16 38 26 24 58 40−50%

N (1535) 1
2

−
(67 ± 15)+28

−17 90 119 33 134 178 49 1−10%

N (1650) 1
2

−
(109 ± 26)+36

− 3 29 41 3 27 38 3 10−20%

N (1675) 5
2

−
(68 ± 8)+14

− 4 5.4 6.6 4 8 10 6 50−60%

N (1700) 3
2

−
(10 ± 5)+ 3

− 3 0.8 1.2 0.1 8 12 1 85−95%

N (1710) 1
2

+
(15 ± 5)+30

− 5 5.5 4.6 n/a 37 31 n/a 40−90%

�(1232) 3
2

+
(119 ± 1)+ 5

− 5 37 32 62 31 27 52 n/a

�(1600) 3
2

+
(61 ± 26)+26

−10 0.07 1.8 n/a ≈0 3 n/a 75−90%

�(1620) 1
2

−
(38 ± 8)+ 8

− 6 11 15 4 29 39 11 70−80%

�(1700) 3
2

−
(45 ± 15)+20

−10 2.3 2.3 2 5 5 4 80−90%
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TABLE IV. Covariant predictions for η decay widths by the GBE CQM [5] and the OGE
CQM [39] along the PFSM in comparison to experiment [49]. In the last two columns, the
nonrelativistic results from an EEM are given. In all cases, the theoretical resonance masses as
predicted by the various CQMs have been used in the calculations.

Decay Experiment Relativistic Nonrel. EEM

→ Nη (MeV) GBE OGE GBE OGE

N (1520) (0.28 ± 0.05)+0.03
−0.01 0.04 0.04 0.04 0.04

N (1535) (64 ± 19)+ 28
− 28 30 39 127 236

N (1650) (10 ± 5)+ 4
− 1 71 109 285 623

N (1675) (0 ± 1.5)+ 0.3
− 0.1 0.6 0.9 1.1 1.8

N (1700) (0 ± 1)+ 0.5
− 0.5 0.2 0.4 0.2 0.3

N (1710) (6 ± 1)+ 11
− 4 1.0 1.6 2.9 9.3

be intermediate in this behavior—one would have expected
the N(1650) decay width to be larger. Its Nππ branching ratio
remains smaller than 20%. In this case, however, we should
also observe that the Nη decay width is of an appreciable
magnitude experimentally; in addition, it becomes far too large
in the CQMs (see the discussion below).

In the context of this comparison, looking at the π decay
widths relative to the magnitudes of the branching ratios to
other decay channels, we identify a principal shortcoming
of the present approach to mesonic decays. A single-channel
decay operator appears to be insufficient, and a more complete
decay mechanism, including channel couplings, is called for.

In Table IV, we also present the covariant predictions of the
GBE and OGE CQMs for η decay widths. Again the theoretical
resonance masses were employed, and a comparison to the
nonrelativistic EEM is given. In the η decay mode, only two
resonances, N(1535) and N(1650), show a sizable decay width.
This behavior is exactly met by the CQMs. In particular, the
N(1535) decay width is reproduced within the experimental
error bars by both relativistic CQMs. One should recall that
this is the same resonance for which the π decay widths were
reproduced best, practically in agreement with experiment
(see Table I). The experimental η decay width of N(1650)
is overshot by both CQMs. These deficiencies might be
connected with the ones in the π decay widths, which came out
unexpectedly small. Again large differences are found between
the covariant predictions and the nonrelativistic EEM results.

Table V shows the η decay widths calculated with experi-
mental resonance masses. Compared with the data in Table IV,
the mass-shift effects are clearly visible (in the same manner
as for the π decay widths above). Again, the comparison of
the GBE and OGE columns in Table V shows the influences
of the different CQM wave functions. For both the N(1535)
and the N(1650), the OGE wave function leads to higher values
for the η decay widths. In all other cases, the predictions are
very similar (and small). A completely analogous behavior is
found for the nonrelativistic EEM.

In this section, we have presented covariant results for π and
η decay widths as direct predictions by the relativistic GBE
and OGE CQMs with the PFSM decay operator. We have
discussed them in comparison with experiment and (as far as
existing) to covariant results by the II CQM. Huge differences
were found as compared with nonrelativistic predictions along
the EEM.

IV. COMPARISON WITH OTHER DECAY CALCULATIONS

Let us now look at our results in the light of mesonic decay
calculations existing in the literature. We used the EEM in the
comparisons made in the previous section as a (nonrelativistic)
reference model, since it serves as the best analog of the
relativistic PFSM. However, past studies showed that the
EEM is not sufficiently sophisticated to provide a reasonable
description of the mesonic decays. A more elaborate decay

TABLE V. Same as Table III, but with experimental resonance masses instead of theoretical ones.

Decay Experiment Relativistic Nonrel. EEM

→ Nη (MeV) GBE OGE GBE OGE

N (1520) (0.28 ± 0.05)+0.03
−0.01 0.04 0.03 0.05 0.04

N (1535) (64 ± 19)+ 28
− 28 36 46 155 282

N (1650) (10 ± 5)+ 4
− 1 72 95 288 543

N (1675) (0 ± 1.5)+ 0.3
− 0.1 0.8 0.8 1.6 1.5

N (1700) (0 ± 1)+ 0.5
− 0.5 0.4 0.4 0.4 0.3

N (1710) (6 ± 1)+ 11
− 4 1.0 1.4 2.2 4.6
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TABLE VI. Scaled predictions for π decay widths by the GBE CQM [5] and OGE CQM [39]
along the PFSM in comparison to results existing in the literature from calculations along PCMs by
Stancu and Stassart [28] (SS), by Capstick and Roberts [30] (CR), and by Theussl, Wagenbrunn,
Desplanques, and Plessas [39] (TWDP).

Decay Experiment [49] PFSM PCM

→ Nπ (MeV) GBE OGE SS CR TWDP

N (1440) (227 ± 18)+70
−59 106 253 433 493 517

N (1520) (66 ± 6)+ 9
− 5 55 60 71 100 131

N (1535) (67 ± 15)+28
−17 290 443 40 207 336

N (1650) (109 ± 26)+36
− 3 93 153 5.3 115 53

N (1675) (68 ± 8)+14
− 4 17 25 31 33 34

N (1700) (10 ± 5)+ 3
− 3 2.6 4.5 17 36 6

N (1710) (15 ± 5)+30
− 5 18 17 3.2 12 54

�(1232) (119 ± 1)+ 5
− 5 119 119 115 104 120

�(1600) (61 ± 26)+26
−10 0.2 6.7 0.04 40 43

�(1620) (38 ± 8)+ 8
− 6 35 56 0.4 21 26

�(1700) (45 ± 15)+20
−10 7.4 8.6 23 27 28

mechanism is furnished by the so-called pair-creation model
(PCM). Corresponding studies were performed, for example,
by Stancu and Stassart [28], Capstick and Roberts [30], and
by Theussl, Wagenbrunn, Desplanques, and Plessas [39].
In all of these calculations, some adjustments or additional
parametrizations were applied on top of the direct predic-
tions by the CQMs employed. For instance, one introduced
by phenomenological parametrizations different forms and
extensions of the interaction (meson-creation) vertex or one
adjusted the pair-creation strength. Mostly the size of the π

decay width of the �(1232) was used as a reference. In the
works of SS and CR, additional input was advocated to fit
further ingredients in the calculations that were not determined
by the underlying CQM.

Clearly, since the π decay width of the �(1232) was always
used as a constraint in the fits, this quantity is usually realistic
in the PCM calculations. We have therefore decided to scale
the PFSM results in an analogous manner by adjusting the
quark-pion coupling in the decay operator so as to reproduce
the �(1232) in coincidence with experiment (this corresponds
to a value g2

qqm/4π = 2.15 in the case of the GBE CQM and
g2

qqm/4π = 2.49 in the case of the OGE CQM). Table VI
gives the corresponding comparison of the results. Evidently,
all the PFSM decay widths are now scaled to larger values
with the consequence that the comparison to experiment is
much improved. In particular, for the GBE CQM, the π

decay widths of N(1520), N(1650), N(1700), N(1710), and
�(1620) now appear to be correct. One is therefore tempted
to accept that the tuning of the quark-pion coupling in the
PFSM decay operator improves the description of the decay
widths. The PFSM calculation is now at least of a similar
overall quality in reproducing the data as the PCMs. While
there is no common trend in the PCM calculations by the
different groups, the scaled PFSM decay widths are either

correct or still remain smaller than the experimental data,
with the notable exception of N(1535). The N(1535) decay
width that was correct before (see the previous section) is now
grossly overestimated. Consequently, by tuning the quark-pion
coupling strength, one can influence the predictions for the
decay widths.

We have also studied the dependence of the results on the
size of the quark-pion coupling constant in more detail. It
is well known that the quark-meson coupling can vary in a
certain range depending on the way it is deduced from the
experimentally measured nucleon-meson couplings (which
also have uncertainties). In Ref. [6], an allowed range of
the quark-pion coupling constant of 0.67 <∼ g2

qqπ/4π <∼ 1.19
was determined. In the actual parametrization of the GBE
CQM the value g2

qqπ/4π = 0.67 was employed; the same
value was used for the results in the previous section for
consistency reasons. If we now take the liberty of changing
the strength of the quark-pion coupling in the decay operator
of Eq. (11), we can scale it such that the decay widths are all
increased from the results in Table I. Following the principle
that neither one of the decay widths exceeds the experimental
range, we can allow g2

qqπ/4π to assume the value of 0.82. In
this case the decay width of N(1535), which results largest as
compared to experiment, is still within the experimental range
(cf. Table VII). Evidently, all other decay widths get increased
too and thus come closer to the experimental values. If we push
the value of g2

qqπ/4π to the highest allowed value of about 1.2,
the results in the last column of Table VII are obtained. Here,
only the decay width of N(1535) is overshot, while all the other
ones are still improved.

Regarding the PCM calculations discussed above, one
should also bear in mind that they are not covariant. In view of
the large relativistic effects found in the PFSM study, one must
take the corresponding results with some doubt. We conclude
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TABLE VII. Predictions for π decay widths by the GBE CQM [5] and OGE CQM [39] along the
PFSM for different magnitudes of the quark-meson coupling constant gqqπ .

Decay Experiment
g2
qqπ

4π
= 0.67

g2
qqπ

4π
= 0.82

g2
qqπ

4π
= 1.19

→ Nπ GBE OGE GBE OGE GBE OGE

N (1440) (227 ± 18)+70
−59 33 68 40 83 64 131

N (1520) (66 ± 6)+ 9
− 5 17 16 21 20 33 31

N (1535) (67 ± 15)+28
−17 90 119 110 145 174 230

N (1650) (109 ± 26)+36
− 3 29 41 35 50 56 79

N (1675) (68 ± 8)+14
− 4 5.4 6.6 6.6 8.1 10 13

N (1700) (10 ± 5)+ 3
− 3 0.8 1.2 1.0 1.5 1.5 2.3

N (1710) (15 ± 5)+30
− 5 5.5 4.6 6.7 5.6 11 8.9

�(1232) (119 ± 1)+ 5
− 5 37 32 45 39 71 62

�(1600) (61 ± 26)+26
−10 0.1 1.8 0.1 2.2 0.2 3.5

�(1620) (38 ± 8)+ 8
− 6 11 15 13 18 21 29

�(1700) (45 ± 15)+20
−10 2.3 2.3 2.8 2.8 4.4 4.4

that considerable efforts are still needed to find the proper
decay mechanism/operator. Of course, such studies must be
done in a fully relativistic framework.

V. SUMMARY

We have presented covariant predictions for π and η decay
widths of N and � resonances by two different types of rela-
tivistic CQMs. The results have been obtained by calculating
the transition matrix elements of the PFSM decay operator
directly with the wave functions of the respective CQMs, and
no additional parametrization has been introduced a priori.
In general, the relativistic predictions usually underestimated
the experimental data. These findings are congruent with the
ones recently made in a Bethe-Salpeter approach [19]. The
reproduction of the experimental data by the CQMs can be
improved by an additional tuning of the quark-meson coupling
in the PFSM decay operator.

We have also determined large relativistic effects in the
decay widths. Thus it appears mandatory to perform any
(future) investigation of mesonic decays in a relativistic
framework. In this respect, Poincaré-invariant relativistic
quantum mechanics provides a viable approach to treating
CQMs.

Upon a closer examination of the π decay widths, we
detected a certain correlation of their magnitudes to the
Nππ branching ratios. Whenever the latter are large, the
theoretical decay widths are far too small. We take this finding
as a hint to a principal shortcoming of the applied decay
mechanism. Very probably a more elaborate decay operator
that includes channel couplings is needed. In this regard,
point-form relativistic quantum mechanics opens the way
toward a covariant treatment of a coupled-channel system.
Corresponding investigations have already been performed
in the meson sector [50,51]. It will be an ambitious goal to
construct a coupled-channel theory also for baryons.
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APPENDIX: DETAILS OF THE CALCULATION

Here we explain several details relevant to the evaluation
of the decay widths from the matrix elements of the decay
operator. The notation follows the one of Ref. [53] utilizing
relativistically invariant scalar products of states, spinors,
etc.

The velocity states defined in Eq. (9) have the following
completeness relation

1 =
∑

µ1µ2µ3

∫
d3v

v0

d3k2

2ω2

d3k3

2ω3

(ω1 + ω2 + ω3)3

2ω1

× |v; �k1, �k2, �k3; µ1, µ2, µ3〉〈v; �k1, �k2, �k3; µ1, µ2, µ3|,
(A.1)

and the corresponding orthogonality relation reads

〈v; �k1, �k2, �k3; µ1, µ2, µ3|v′; �k′
1,

�k′
2,

�k′
3; µ′

1, µ
′
2, µ

′
3〉

= 2ω12ω22ω3

(ω1 + ω2 + ω3)3 δµ1µ
′
1
δµ2µ

′
2
δµ3µ

′
3

× v0δ
3(�v − �v′)δ3(�k2 − �k′

2)δ3(�k3 − �k′
3). (A.2)

For the actual calculation, one needs the overlap matrix
element

〈p′
1, p

′
2, p

′
3; σ ′

1, σ
′
2, σ

′
3|v; �k1, �k2, �k3; µ1, µ2, µ3〉

=
3∏

i=1

D
1
2

σ ′
i µi

{RW [(ki, B(v)]}2p0
i δ( �pi − �p′

i). (A.3)

015207-8



COVARIANT CALCULATION OF MESONIC BARYON DECAYS PHYSICAL REVIEW C 72, 015207 (2005)

The velocity-state representation of the baryon eigenstates of
Eq. (8) then becomes

〈v; �k1, �k2, �k3; µ1, µ2, µ3|V,M, J,�〉

=
√

2

M
v0δ

3(�v − �V )

√
2ω12ω22ω3

(ω1 + ω2 + ω3)3

MJ�(�ki ; µi). (A.4)

This representation has the advantage of separating the motion
of the system as a whole and the internal motion. The latter
is described by the wave function 
MJ�(�ki ; µi), which is also
the rest-frame wave function. It depends on the individual
spin projections µ1, µ2, µ3 and on the individual momenta
�k1, �k2, �k3, restricted by

∑ �ki = 0; it is normalized as

δMM ′δJJ ′δ��′ =
∑

µ1µ2µ3

∫
d3k2d

3k3

×
�
M ′J ′�′(�ki ; µi)
MJ�(�ki ; µi). (A.5)

These wave functions are obtained by solving the eigenvalue
problem of the interacting mass operator M̂ .

In the practical calculation of decays, one adheres to a
special frame of reference. For convenience, one chooses the
rest frame of the decaying resonance with the momentum
transfer in z direction [53]. In the chosen reference frame,
the boosts to be applied in the transition matrix element are
given by

B(vin) = 14 (A.6)

B(vf ) =




cosh � 0 0 sinh �

0 1 0 0
0 0 1 0

sinh � 0 0 cosh �


 (A.7)

where

sinh � = Q

M
, (A.8)

cosh � =
√

1 + Q2

M2
, (A.9)

and M is the mass of the nucleon.
With these boost transformations, we can rewrite the

spectator conditions in Eq. (11) as

2p0
i δ( �pi − �p′

i) = 2ω0
i δ[B−1(vf )B(vin)�ki − �k′

i]. (A.10)

For the active quark, one obtains∑
σ1σ

′
1

D
� 1

2

σ ′
1µ

′
1
{RW [k′

1; B(vf )]}ū(p′
1, σ

′
1)γ5γ

µλm

× u(p1, σ1)D
1
2
σ1µ1{RW [k1; B(vin)]}

= ū(k′
1, µ

′
1)S[B−1(vf )]γ5γ

µλmS[B(vin)]u(k1, µ1)

= ū(k′
1, µ

′
1)

(
cosh

�

2
− γ0γ3 sinh

�

2

)
γ5γ

µλmu(k1, µ1),

(A.11)

where the boost transformations on the Dirac spinors, repre-
sented by S[B−1(vf )] and S [B (vin)], respectively, have been
written out explicitly in the last line. These expressions are
to be used in the evaluation of the matrix element of the
decay operator, where the quark spinors can be represented
conveniently in the form

u(k1, µ1) = √
ω1 + mq


 1

σ1�k1

ω1 + mq


 χ (µ1) , (A.12)

with mq the quark mass and the Pauli spinors χ (µ1) normal-
ized to unity.
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