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Pion, σ meson, and diquarks in the two-flavor color-superconducting phase
of dense cold quark matter
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The spectrum of meson and diquark excitations of dense cold quark matter is investigated within the framework
of a Nambu–Jona-Lasinio-type model for light quarks of two flavors. It was found that a first-order phase transition
occurs when the chemical potential µ exceeds the critical value µc = 350 MeV. Above µc, the diquark condensate
〈qq〉 forms, breaking the color symmetry of strong interaction. The masses of π and σ mesons are shown to
grow with the chemical potential µ in the color-superconducting phase, but the mesons themselves become
almost stable particles. Moreover, we have found in this phase an abnormal number of three, instead of five,
Nambu-Goldstone bosons, together with a color doublet of light stable diquark modes and a color-singlet heavy
diquark resonance with mass ∼1100 MeV. In the color-symmetric phase, i.e., for µ < µc, a mass splitting of
diquarks and antidiquarks is shown to arise if µ �= 0, contrary to the case of a vanishing chemical potential, in
which the masses of antidiquarks and diquarks are degenerate at the value ∼700 MeV.
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I. INTRODUCTION

One of the challenging problems of elementary particle
physics is the investigation of hot and/or dense strongly
interacting matter. At normal conditions (low temperatures and
baryon densities), it is the hardronic phase in which quarks and
gluons are confined and chiral symmetry is broken. It is widely
believed that, at high temperatures, strongly interacting matter
exists as a quark-gluon plasma (QGP). Another example of
matter under extreme conditions is the interior of compact
stars (low temperature and rather high baryon densities),
which presumably consists of nothing except dense cold quark
matter. It is hoped that the properties of quark matter in
extreme conditions become observable in relativistic heavy-
ion collision experiments and/or through modifications of star
evolution processes.

Clearly the underlying theory of strongly interacting matter,
both in the vacuum and in extreme conditions, is QCD.
Unfortunately, a proper and reliable quantitative description
of quark matter in terms of a perturbative expansion of
QCD is available only for asymptotically high values of
temperature and/or chemical potential (densities). Never-
theless, perturbative QCD calculations show that at high
temperature and low baryon density there is actually a QGP
phase, with quarks and gluons being free particles and with
the chiral symmetry being restored. Recently progress has
been made in extending the lattice QCD approach to small
nonvanishing values ( <∼140 MeV) of the chemical potential µ

(see, e.g. [1] and references therein). However, for the range
of interest, i.e., for µ∼ 300−400 MeV, lattice QCD does
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not help. Perturbative QCD considerations, performed at low
temperature and asymptotically high baryon density (large µ),
indicate the occurrence of a new color-superconducting phase
of cold quark matter [2]. The confinement is also absent in it,
but the ground state, unlike the case of QGP, is characterized
by a nonvanishing diquark condensate 〈qq〉.

At moderate baryon densities, the QCD coupling constant
is too large, so perturbation theory fails in this case. Obviously
the investigation of quark matter can then be suitably done
within the framework of an effective quark model, e.g., in a
chiral quark model of the Nambu–Jona-Lasinio (NJL) type
[3] including various channels of four-fermion interactions.
Recently, on the basis of NJL-type models, it was shown
that a color-superconducting phase might yet be present at
rather small values of µ∼ 350 MeV, i.e., for baryon densities
just several times larger than the density of the ordinary
nuclear matter (see, e.g. [4,5] for a review). However, this
density is presumably reached in the cores of compact stars.
On the other hand, the color-superconducting quark matter
inside compact stars, if it exists, can reveal itself through
modifications of the star evolution process. The latter is the
subject of astrophysical observations and might be actually
picked out from the data that are now being collected. For these
reasons, color-superconducting quark matter surely deserves
a more detailed study.

On the microscopic level, the processes running inside
compact stars and in the fireballs created in heavy-ion
collisions are understood as being governed, to a great extent,
by strongly interacting quarks and gluons. Recent experiments
at Brookhaven National Laboratory’s Relativistic Heavy Ion
Collider (RHIC) have shown that the hot and dense quark
matter reached at the collider is far from full asymptotic
freedom; instead, it is “strongly coupled” [6]. In this case,
the correlations between quarks and antiquarks, in particular
those that are due to composite mesons, are not negligible. This
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is why we started an investigation of the pion and σ meson
in quark matter in extreme conditions. These particles are
expected to be numerously produced in heavy-ion collisions.
We also investigated diquarks, because they are important in
determining baryon properties.

In this paper we work with an extended two-flavor NJL
model to study the ground state of cold quark matter and
some lightest meson and diquark excitations in the two-flavor
color-superconducting (2SC) phase. For simplicity, only a
single quark chemical potential µ (common for all quarks)
is used in the model. Moreover, we restrict ourselves to the
region µ � 400 MeV (note that at higher values of µ the
color-flavor-locked phase is more preferable [4]). Insofar as
the phase diagram of quark matter has been discussed in a
lot of other papers, here we focus on only the meson and
diquark excitations. We have already partially addressed this
problem in our previous paper [7], in which we showed that in
the NJL model under consideration an anomalous number of
Nambu–Goldstone (NG) bosons are present when the initial
SU(3)c symmetry of the model is spontaneously broken down
to SU(2)c. Now we are interested in the investigation of the
masses of the remaining heavy diquark as well as of the pion
and the σ meson.

The paper is organized as follows. In Sec. II, we present the
Lagrangian of the extended NJL model as well as an equivalent
Lagrangian that contains meson and diquark fields coupled
with quarks. Using the Nambu–Gorkov formalism, we then
derive an expression for the quark propagator, which is suitable
for the study of the 2SC phase. Its poles provide us with
the (anti)quark dispersion relations. The gap equations for
both the chiral and diquark condensates are also derived. The
meson and diquark masses are calculated in Sec. III; they
are found to be monotonously increasing functions of µ in the
2SC phase. Finally, we discuss the mass splitting between the
diquark and antidiquark states arising in the color-symmetric
phase and the phenomenon of an anomalous number of NG
bosons in the 2SC phase. Section IV contains our conclusions
and discussion. Some technical details are worked out in two
appendixes.

II. TWO-FLAVOR NJL MODEL

A. Lagrangian

In the original version of the NJL model [3], the four-
fermion interaction of a proton (p) and neutron (n) doublet
was considered, and the principle of the dynamical breaking
of chiral symmetry was demonstrated. Later, the (p, n) doublet
was replaced with a doublet of colored up (u) and down
(d) quarks (or even more generally, by a flavor triplet) to
describe phenomenologically the physics of light mesons
[8–11], diquarks [12,13], and the meson-baryon interaction
[14,15]. In this sense, the NJL model may be thought of
as an effective theory for low-energy QCD.1 (Of course,
one should keep in mind that, unlike QCD, quarks are

1Indeed, let us consider two-flavor SU(3)c-symmetric QCD. By
integrating over gluons in the generating functional of QCD and
further “approximating” the nonperturbative gluon propagator by a δ

not confined in the NJL model.) At the present time, the
phenomenon of dynamical (chiral) symmetry breaking is
one of the cornerstones of modern particle physics. It has
been studied, for example, within the framework of NJL-type
models with external magnetic fields [16], in curved space
times [17], in spaces with nontrivial topology [18], etc. In
particular, the properties of normal hot and/or dense quark
matter were also considered within such models [10,19–21].
NJL-type models still remain a simple but useful instrument
for the exploration of color-superconducting quark matter at
moderate densities [4,22,23], in which analytical and/or lattice
computations in QCD are hindered.

Instead of formulating a thermal theory in Euclidean metric
(which is natural in statistical physics when one wants to derive
a grand potential), we extend the Lagrangian for the two-
flavor NJL model in Minkowski metric by the inclusion of the
chemical potential µ and obtain

Lq = q̄[γ νi∂ν − m0 + µγ 0]q + G1[(q̄q)2 + (q̄iγ 5 �τq)2]

+ G2

∑
A=2,5,7

[q̄Ciγ 5τ2λAq][q̄iγ 5τ2λAqC], (1)

where the quark field q is a flavor doublet and a color triplet as
well as a four-component Dirac spinor, qC = Cq̄t , q̄C = qtC

are charge-conjugated spinors, and C = iγ 2γ 0 is the charge
conjugation matrix (t denotes the transposition operation).
Here, the isotopic symmetry of quarks is implied (mu

0 =
md

0 = m0) and the quark chemical potential µ > 0 is the
same for all flavors. Pauli matrices τ a (a = 1, 2, 3) act on
the flavor indices of quark fields, whereas the (antisymmetric)
Gell-Mann matrices λA contract with the color ones; hereafter,
the flavor and color indices are omitted for simplicity. Clearly
the Lagrangian Lq is invariant under transformations by the
color SU(3)c as well as by the baryon U(1)B groups. In
addition, when the current quark masses vanish (m0 = 0), this
Lagrangian resumes the (chiral) SU(2)L × SU(2)R symmetry
(chiral transformations affect flavor indices only).2 Finally,
we remark that Lagrangian Eq. (1) is C-even in the vacuum,
i.e., it is invariant under the charge conjugation if µ = 0
(q → qC ≡ Cq̄t , q̄ → q̄C ≡ qtC), which is not the case for
dense quark matter in which the violation of C parity is induced
by a nonvanishing baryonic chemical potential.

Throughout all our calculations, we assume that the model
parameters, i.e., the ultraviolet cutoff 	,3 the current quark
mass, and the coupling constants do not change with µ. Their
values are fixed in the vacuum so that the model can reproduce

function, one arrives at an effective local chiral four-quark interaction
of the NJL type, describing low-energy hadron physics. Moreover,
after the Fierz transformation of the interaction terms, one obtains
an NJL-type Lagrangian that describes the interaction of quarks in
the scalar and pseudoscalar (q̄q) as well as in the scalar diquark (qq)
channels [see, e.g., Lagrangian Eq. (1) in this section].

2Because Q = I3 + B/2, where I3 = τ3/2 is the third component
of the isospin and Q and B are electric and baryon charges, respec-
tively, Lagrangian Eq. (1) is invariant under U(1)Q transformations
generated by electric charge as well.

3There are divergent integrals in the model, and a regularization is
needed.
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the experimental value of the pion mass Mπ = 140 MeV, the
pion weak-decay constant Fπ = 92.4 MeV, and the value of
the chiral quark condensate 〈q̄q〉 = −(245MeV)3. It has been
shown in previous papers that a convenient set of parameters
for the vacuum case is G1 = 5.86 GeV−2,	 = 618 MeV,
and m0 = 5.67 MeV, leading to a constituent quark mass of
350 MeV. (One can follow, e.g., the parameter-fixing procedure
explained in [8,23] to obtain values close to these.) However,
the definition of the constant G2 that describes the interaction
of quarks in the diquark channel is not quite transparent. This
constant is not bounded by some experimental reason, and
often its value is fixed through a constraint (obtained after
the Fierz transformation) that connects G2 with constants in
the quark-antiquark channels. Starting from the four-quark
vertices provided by the one-gluon exchange, we obtain
the constraint G2 = 3G1/4 that we use in our subsequent
calculations.

In principle, all constants in the diquark channels could
be fixed if all interaction constants in the quark-antiquark
channels were known. Unfortunately, only a few of them
are experimentally available, thereby preventing us from a
unique definition of the constants in the diquark channel at
the moment. There is still a freedom in fixing their values.
This was the reason for using some model assumptions, such
as the constraint that follows from the one-gluon exchange
contribution.4

B. Quark propagator in the case of diquark condensation.
Gap equations

It is convenient to consider a linearized version of
Lagrangian Eq. (1) containing auxiliary bosonic fields, which
is given by the following form:

L = q̄[γ νi∂ν + µγ 0 − σ − m0 − iγ 5πaτa]q

− 1

4G1
[σσ + πaπa] − 1

4G2

∗

A
A

+ i
∗
A

2
[q̄Ciγ 5τ2λAq] − i
A

2
[q̄iγ 5τ2λAqC]. (2)

As usual, the summation over repeated indices a = 1, 2, 3 and
A,A′ = 2, 5, 7 is implied throughout all our calculations. The
equations of motion for the bosonic fields are

σ (x) = −2G1(q̄q), 
A(x) = 2iG2(q̄Ciγ 5τ2λAq),

πa(x) = −2G1(q̄iγ 5τaq), 
∗
A(x) = −2iG2(q̄iγ 5τ2λAqC).

(3)

Substituting Eqs. (3) into Eq. (2), one can easily obtain the
initial Lagrangian Eq. (1). Just in this sense the two theories,
the first one with Lq and the second one with L, are equivalent.
It follows from Eqs. (3) that the meson fields σ, πa are real,
i.e. [σ (x)]† = σ (x), [πa(x)]† = πa(x) (the symbol † stands
for Hermitian conjugation), whereas all diquark fields 
A

are complex [
A(x)]† = 
∗
A(x). Each 
A is an isoscalar

4Some constants in the diquark channel can, however, be extracted
from the nucleon mass, e.g. within the Bethe-Salpeter approach
[14,15].

[SU(2)L × SU(2)R singlet]. Moreover, all diquarks are Lorentz
scalars and form an antitriplet (3̄c) fundamental representation
of the color SU(3)c group, whereas the real scalar σ and
pseudoscalar πa fields are color singlets. A nonvanishing
value of the scalar diquark condensate, associated with a
nonzero ground-state expectation value of some diquark field,
〈
A〉 �= 0, breaks SU(3)c spontaneously down to SU(2)c
[however, it does not violate the chiral SU(2)L × SU(2)R
symmetry], whereas a nonzero expectation value of 〈σ 〉 �= 0
at m0 = 0 indicates that the chiral symmetry is spontaneously
broken. We assume hereafter that P parity is conserved, i.e.,
〈πa(x)〉= 0.

Using the Nambu–Gorkov formalism, we put the quark
fields and their charge conjugates together into a bispinor � =
( q

qc ), and Lagrangian Eq. (2) thereafter simplifies to

L = −σ 2 + �π2

4G1
− 
A
∗

A

4G2
+ 1

2
�̄

(
D+, K
K∗, D−

)
�, (4)

where the following notation is adopted:5

D+ = iγ ν∂ν − m0 + µγ 0 − �,

D− = iγ ν∂ν − m0 − µγ 0 − �t,
(5)

� = σ + iγ 5 �π �τ , �t = σ + iγ 5 �π �τ t ,

K∗ = −
∗
AλAγ 5τ 2, K = 
AλAγ 5τ 2.

Now, let 〈σ 〉 ≡ m − m0 �= 0 and 〈
A〉 �= 0 for some A.
Without loss of generality, one can always take advantage
of the color symmetry of strong interactions and rotate the
basis of diquark fields so that 〈
2〉 ≡ 
, 〈
∗

2〉 ≡ 
∗, 〈
5〉 =
0, 〈
7〉 = 0. As was shown in previous investigations, 
 = 0
in vacuum and for small µ, and the quark matter is thereby
color symmetric. Once 
 acquires a nontrivial value, the
SU(3)c symmetry is spontaneously broken down to SU(2)c
and the 2SC phase is formed. According to the mean-field
approximation approach, which we use here, the mean value
of 
 should be subtracted from the diquark-quark vertices in
Eq. (4) [or Eq. (2)]. By shifting the fields, σ (x) → σ (x) +
〈σ 〉,
∗

2(x) → 
∗
2(x) + 
∗,
2(x) → 
2(x) + 
, we absorb

the mean values of σ and 
 (with the exception of the
quadratic terms) in the inverse quark propagator S−1 and
obtain

L̃ = −σ (m − m0)

2G1
− 

∗

2 + 
∗
2

4G2

− σ 2 + �π2

4G1
− 
A
∗

A

4G2
+ 1

2
�̄(S−1 + V )�, (6)

where σ, πa,

∗
A, and 
A are the fluctuations around the mean

values of mesons and diquarks rather than the original fields,6

5In the derivation of Eq. (4), we used the following well-
known relations: ∂t

ν = −∂ν, Cγ νC−1 = −(γ ν)t , Cγ 5C−1 = (γ 5)t =
γ 5, τ 2 �ττ 2 = −(�τ )t , τ 2 = [ 0,

i

−i

0 ].
6Do not confuse using the same notations for both the original fields

and their fluctuations, because the original fields do not appear in the
rest of the paper.
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FIG. 1. The constituent quark mass m (solid
curve) and the color gap 
 (dashed curve) as
functions of the chemical potential µ.

and

S−1 =
[

iγ ν∂ν − m + µγ 0 
λ2γ
5τ 2

−
∗λ2γ
5τ 2 iγ ν∂ν − m − µγ 0

]
,

(7)

V =
[−σ − iγ5 �π �τ 
Aγ5τ2λA

−
∗
Aγ5τ2λA −σ − iγ5 �π �τ t

]
.

Now we can perform a series expansion, treating the term V,
which contains only fluctuations of meson and diquark fields,
as a perturbation. In the rest of our paper, we keep in mind the
Feynman diagram rules for the calculation of two-point field
correlators (the Green’s functions) in the 2SC phase, without,
however, drawing the corresponding graphs. Indeed, the term
S−1 supplies us with the quark propagator S in the presence
of a diquark condensate 〈qq〉, and the term V is responsible
for quark-meson and quark-diquark vertices. In momentum
space, the quark propagator S(p) = [ S11 S12

S21 S22
] (here p is the

four-momentum of quarks) is represented by a 2 × 2 matrix,
with respect to the Nambu-Gorkov indices (in addition, it is
a 2 × 2, 3 × 3, as well as 4 × 4 matrix in the flavor, color,
and spinor spaces, correspondingly). After some algebra, we
obtain for Sij (p) ( [7], [24]),

Sij (p) = S
rg
ij (p)Prg + Sb

ij (p)Pb, (8)

where Prg = diag(1, 1, 0) and Pb = diag(0, 0, 1) are diagonal
matrices projecting onto the red-green and blue quark compo-
nents in color space, respectively, and

S
rg
11 = p0 + E−

D−(p0)
γ0	̃− + p0 − E+

D+(p0)
γ0	̃+,

S
rg
12 = 
γ5τ2λ2

[
	̃+

D−(p0)
+ 	̃−

D+(p0)

]
,

S
rg
21 = −
∗γ5τ2λ2

[
	̃+

D+(p0)
+ 	̃−

D−(p0)

]
,

S
rg
22 = p0 + E+

D+(p0)
γ0	̃− + p0 − E−

D−(p0)
γ0	̃+, (9)

Sb
11 = γ0	̃−

p0 − E− + γ0	̃+
p0 + E+ ,

(10)

Sb
22 = γ0	̃−

p0 − E+ + γ0	̃+
p0 + E− , Sb

12 = Sb
21 = 0.

In Eqs. (9) and (10) we used the projection operators

	±( �p) = 1

2

[
1 ± γ0( �γ �p + m)

E

]
,

(11)

	̃±( �p) = 1

2

[
1 ± γ0( �γ �p − m)

E

]
to separate the “positive-energy” and “negative-energy” parts
of the quark propagator. Note the following useful properties
of these projectors:

γ0	̃±γ0 = 	∓, γ5	̃±γ5 = 	±.

Finally, the following notation has been used in Eqs. (9) and
(10):

D+(p0) = p2
0 − (E+


)2, D−(p0) = p2
0 − (E−


)2,
(12)

E±

 =

√
(E±)2 + |
|2, E± = E ± µ,

where E =
√

�p2 + m2 is the dispersion law for free quarks.
The poles of the matrix elements of Eqs. (9) and (10) of the
quark propagator give the dispersion laws for quarks in the
medium. Thus we have E−


 for the energy of red-green quarks
and E+


 for the energy of red-green antiquarks. In what follows,
we show that µ > m in the 2SC phase (see Fig. 1), and E can
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reach the value of µ. In this case, to create a red-green quark
in the 2SC phase, a minimal amount of energy (the gap) equal
to |
| at the Fermi level (E = µ) is required. Similarly, the
energy of a blue quark (antiquark) is E− (E+); hence E− = 0
at E = µ, and there is no energy cost in creating a blue quark,
i.e., blue quarks are gapless in the 2SC phase. [In contrast,
to create an antiquark in the 2SC phase, we need the energy√

(m + µ)2 + |
|2 for red-green antiquarks and the energy
(m + µ) for blue ones.] Given the explicit expression for the
quark propagator S(p), we then calculate two-point correlators
of meson and diquark fluctuations over the ground state in the
one-loop (mean-field) approximation.

The two additional quantities m and 
 are not free
parameters of Lagrangian Eq. (6). The constituent quark
mass m is an indicator of the chiral symmetry breaking (if
m0 = 0,m vanishes when the chiral symmetry is restored).
The gap 
 is related to the color-symmetry breaking or
restoration in a similar way. Both of them are found from
the requirement that the ground-state expectation values of
quantum fluctuations must be zeros. It is easy to see from
Eq. (6) that in the mean-field (one-loop) approximation the two
conditions 〈σ 〉 = 0 and 〈
∗

2〉 = 0 are realized if the following
two equations (gap equations) are true:

m − m0

2G1
+ i

2

∫
d4q

(2π )4
Tr[S(q)] = 0,

(13)



4G2
+ i

2

∫
d4q

(2π )4
Tr[S(q)
∗ ] = 0.

Here 
∗ stands for the q-q̄-
∗
2 vertex in the Nambu–Gorkov

representation: 
∗ = [ 0 0
−γ5τ2λ2 0 ]. In Eqs. (13) and in all

subsequent similar formulas, the calculation of the trace
includes also a sum over Nambu–Gorkov indices, in addition to
the spinor, color, and flavor indices. [Using Feynman diagram
terminology, we can say that the first term in each of Eqs. (13)
is a tree term whereas the second one represents the one-loop
contribution.] After some trace calculations, we have from
Eqs. (13)

m − m0

2G1
= 4im

∫
d4q

(2π )4E

{
E+

q2
0 − (E+)2

+ E−

q2
0 − (E−)2

+ 2E+

D+(q0)
+ 2E−

D−(q0)

}
, (14)




4G2
= 4i


∫
d4q

(2π )4

{
1

D+(q0)
+ 1

D−(q0)

}
. (15)

To proceed further, we employ the imaginary-time formal-
ism, used in theories with finite temperature and chemical
potential in Euclidean metric to obtain the Green’s functions.
In these theories, at some finite temperature T, the integration
over the energy variable in each loop is replaced with a sum
over Matsubara frequencies. The case of cold quark matter can
be considered simply as the limit T → 0. We note here that
we are interested in the Green’s functions in Minkowski metric
rather than in Euclidean, and a continuation from one metric
to the other is needed. Let us consider the Green’s functions as
functions of energy, forgetting, only for a moment, about the
three-momentum. At this point, we assume that after the limit

T → 0 is taken, the resulting Green’s functions are defined
in a complex plane, and we associate the points lying on the
imaginary axis with Euclidean metric. We continue the Green’s
functions to the real axis and consider the thus-obtained new
functions as being defined in Minkowski metric. Clearly we
should impose the constraint that such a continuation must
reproduce the result obtained from quantum field theory in
Minkowski metric when we put µ = 0.

To calculate the integrals in Eqs. (14) and (15), we replace
the integration over q0 with a sum over Matsubara frequencies,
ωn = (2n + 1)T , n = 0,±1,±2, . . . , followed by the limit
T → 0:∫

d4q

(2π )4
f (q0, �q) −→ i lim

T →0
T

∑
n

∫
d3q

(2π )3
f (iωn, �q). (16)

Applying rule (16) to Eqs. (14) and (15), we obtain the gap
equations for m and 
 in the cold quark matter (T = 0) (for
more explanations, see Appendix A):

m − m0

2G1
= 4m

∫
d3q

(2π )3E

{
θ (E−) + E+

E+



+ E−

E−



}
, (17)




4G2
= 2


∫
d3q

(2π )3

{
1

E+



+ 1

E−



}
≡ 
I
. (18)

Because the integrals or the right-hand sides of these equations
are ultraviolet divergent, we subsequently regularize them
and the other divergent integrals by implementing a three-
dimensional cutoff 	.

The system of Eqs. (17) and (18) has two different solutions.
As we have already discussed, the first one (with 
 = 0)
corresponds to the SU(3)c-symmetric phase of the model
(normal phase), the second one (with 
 �= 0) to the 2SC phase.
As usual, solutions of these equations give local extrema of
the thermodynamic potential �(m,
)7, so one should also
check which of them corresponds to the absolute minimum
of �. Having found the solution corresponding to the stable
state of quark matter (the absolute minimum of �), we
obtained the behavior of the gaps m and 
 vs chemical
potential (see Fig. 1). The region µ < µc = 350 MeV is the
domain of color-symmetric quark matter because � in this
case is minimized by m �= 0 and 
 = 0. For µ > µc, the
color-symmetric phase becomes unstable because a solution
with 
 = 0 does not minimize �. Here, the solution with
m �= 0 and 
 �= 0, corresponding to the 2SC phase, gives the
global minimum of �, and thereby the color-superconducting
phase is favored (note that in the 2SC phase µ > m, whereas
µ < m in the color-symmetric one). The transition between
these two phases is of first order, which is characterized by a
discontinuity in the behavior of m vs. µ (see Fig. 1).

III. MESONS AND DIQUARKS IN
DENSE QUARK MATTER

We are now interested in the investigation of the modifi-
cation of meson and diquark masses in dense and cold quark

7An expression for the thermodynamic potential for a system of free
fermions can be found elsewhere; see, e.g. [7].
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matter with the color symmetry broken because of the 2SC
diquark condensation. In the vacuum (T = 0, µ = 0), particle
masses are obtained from propagator poles, or alternatively,
from zeros of the one-particle irreducible (1PI) two-point
Green’s functions. Because the Lorentz invariance is preserved
in the vacuum, these functions in (Minkowski) momentum
space depend on p2 = p2

0 − �p2 only. The squared mass of the
particle is thus equal to the value of p2 where the corresponding
two-point 1PI correlators (the Green’s function) vanishes.
Insofar as p2 is a Lorentz invariant, one can, for simplicity,
choose the rest frame ( �p = 0), put p2 = p2

0, and then consider
these correlators as functions of p0 alone. On the contrary,
in a dense medium, the Lorentz invariance is broken, so
the two-point Green’s functions in momentum space should
be treated as functions of two variables: p0 and �p2 (the
rotational symmetry is presumably conserved). The zeros of
1PI two-point Green’s functions in the p0 plane will determine
the particle and antiparticle dispersion laws, i.e., the relations
between their energy and three-momenta. In this case, the
scalar particle mass is defined as the value of the particle energy
at �p = 0 (see, e.g. [25]). Recently, the Bethe-Salpeter equation
approach has been used to obtain diquark masses in the 2SC
phase of cold dense QCD at asymptotically large values of the
chemical potential [26]. There, the mass of the diquark was
defined as the energy of a bound state of two virtual quarks in
the center of mass frame, i.e., in the rest frame for the whole
diquark. Let us note here that just this quantity is measured on
the lattice, where it is given by the exponential falloff of the
particle propagator at large Euclidean time (see, e.g. [27]).8

As in [25,28] and in numerous other papers, we denote in
the following text the rest-frame energy of a composite scalar
particle (meson or diquark), moving in a dense medium, as
“mass.” (In general, the values of the mass depend on the
chemical potential.)

Any 1PI Green’s function can be found from the effective
action Seff , which up to second order in boson fields has the
form

Seff = 1

2

∑
X,Y

∫
d4xd4yX(x)�XY (x, y)Y (y) + · · · ,

where X, Y = πa, σ,
∗
A, 
B , and �XY (x, y) is the coordi-

nate representation of the 1PI Green’s function for the fields
X, Y . Instead of employing functional integration to get Seff

and then �XY , we use implicitly Feynman diagrams. Starting
from Lagrangian Eq. (6), one can expand the resulting effective
action Seff in a power series of meson and diquark fluctu-
ations. Keeping there only the second-order contributions,
we immediately obtain the 1PI two-point correlators in the
one-loop approximation. By considering these functions as
functions of p0 at zero three-momentum ( �p = 0), we next

8In the last case the lattice calculations were performed in some
QCD-like theories (QCD with two colors, etc.), where the fermion
determinant is positive even at nonzero µ. Evidently this mass
definition is borrowed from particle physics. Note that in condensed-
matter physics usually the term “energy gap” is used for this quantity
(see e.g. [29], in which both the terms “mass” and “energy gap” are
used for the rest-frame energy of scalar particles).

analyze their zeros that, as already explained, will give the
masses of resonances.

A. Pion mass

Let us begin with the calculation of the pion mass. In
the momentum representation, the 1PI two-point function
�πaπb

(P ) for the pion has the following form [all calculations
are performed in the rest frame, P = (p0, 0, 0, 0)]:

�πaπb
(P ) = − δab

2G1
+ i

2

∫
d4q

(2π )4
Tr

[
S(P + q)a

πS(q)b
π

]
.

(19)

Here, the vertex of the pion-quark interaction is given by the
2×2 matrix a

π = [ iγ5τa 0
0 iγ5τ

t
a
]. The first term in the right-hand

side of Eq. (19) is the tree contribution from Lagrangian
Eq. (6), and the second term arises from the one-loop diagram
with two pion legs. After intermediate trace calculations, this
function takes the form

�πaπb
(P )

= − δab

2G1
+ 16iδab

∫
d4q

(2π )4

q0(p0 + q0) − E+E− − 
2

D−(q0)D+(p0 + q0)

+ 8iδab

∫
d4q

(2π )4

q0(p0 + q0) − E+E−

[(p0 + q0)2 − (E+)2][(q0)2 − (E−)2]
.

(20)

Implementing the imaginary-time formalism, as described in
the end of the previous section (see also Appendix A for
details), we reduce Eq. (20) to three-dimensional integration
in momentum space:

�πaπb
(P ) = − δab

2G1
+ 8δab

∫
d3q

(2π )3

E+

E−


 + E+E− + 
2

E+

E−




× E+

 + E−




(E+

 + E−


)2 − p2
0

+ 16δab

×
∫

d3q

(2π )3

θ (E − µ)E

4E2 − p2
0

≡ δab�ππ (p0). (21)

Then, up to a sign, the pion unnormalized propagator equals
[�πaπb

(P )]−1, whose pole in p0 is given by the zero of the
function �ππ (p0) from Eq. (21). We have searched for the
roots of the equation �ππ (p0) = 0 numerically; the results for
the pion mass Mπ at various µ are plotted in Fig. 2. A similar
behavior of the pion mass in the Cooper pairing phase of a
dense quark matter was found in [28] in the framework of a
two-colored NJL model.

In the color-symmetric phase, the pion mass is below the
threshold for the pion decay to a quark-antiquark pair, and
the pion therefore is almost stable (only electroweak decay
channels are allowed). Moreover, we have found that in the
2SC phase the pion is also an almost stable particle. This
conclusion is supported by the following arguments. It is
clear that the first and the second integrals in Eq. (21) are
analytical functions in the whole complex p2

0 plane, except
the cuts E2

min < p2
0 < ∞ and (2µ)2 < p2

0 < ∞, respectively
[here Emin =

√
(µ − m)2 + |
|2 +

√
(µ + m)2 + |
|2 is the
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FIG. 2. The masses of the σ meson (solid
line) and pion (dashed line) as functions of µ.

minimum of the expression E−

 + E+


 , which is at the point
| �p| = 0]. Evidently Emin corresponds to the threshold for the
pion decay into a red-green quark-antiquark pair, whereas 2µ

corresponds to the threshold for the pion decay into a blue
quark-antiquark pair. It is easily seen from Fig. 2 that in the 2SC
phase Mπ is less then values of these two thresholds. Because
there are no other singularities in Eq. (21) corresponding to
different channels of the pion decay, we can conclude that in
the 2SC phase the pion is almost stable particle, too.

B. Mixing of σ -�2 in the 2SC phase. Scalar meson mass

An investigation of the 1PI Green’s functions �σX(P ) with
P = (p0, 0, 0, 0) for the fields X = 
∗

A,
B shows that in
the 2SC phase the σ meson is mixed with the 
2 diquark.
(At µ > µc, such a mixing occurs in the NJL model with
two-colored quarks [28], too. Moreover, as our preliminary
results show, the mixing is present even if the condition of
color neutrality of the 2SC phase is imposed.) The mass of the
σ meson in this case is given by the solution of the equation
det(�) = 0, where �(P ) is the 3 × 3 matrix

�(P ) =
�σσ (P ) �σ
2 (P ) �σ
∗

2
(P )

�
2σ (P ) �
2
2 (P ) �
2

∗
2
(P )

�
∗
2σ

(P ) �
∗
2
2 (P ) �
∗

2

∗
2
(P )

. (22)

[Up to a sign, �(P ) is the inverse propagator matrix for the σ

meson and 
∗
2,
2 diquarks.] After tedious but straightforward

calculations, similar to those in the pion case, we get

�σσ (P ) = − 1

2G1
+ 16
2m2

∫
d3q

(2π )3E2

×
{

1

E+



[
4(E+


)2 − p2
0

] + 1

E−



[
4(E−


)2 − p2
0

]}

+ 8
∫

d3q

(2π )3

�q2

E2

E+

E−


 + E+E− + 
2

E+

E−




× E+

 + E−




(E+

 + E−


)2 − p2
0

+ 16
∫

d3q

(2π )3

�q2

E

θ (E − µ)

4E2 − p2
0

; (23)

�σ
2 (P ) = �
∗
2σ

(P ) = �σ
∗
2
(−P ) = �
2σ (−P )

= 4m


∫
d3q

(2π )3

{
2E+ + p0

EE+



[
p2

0 − 4(E+

)2

]
+ 2E− − p0

EE−



[
p2

0 − 4(E−

)2

]}
, (24)

�
2
2 (P ) = �
∗
2


∗
2
(P ) = 4
2I0

(
p2

0

)
,

�
2

∗
2
(P ) = �
∗

2
2 (−P ) = − 1

4G2
+ I
 (25)

+ (
4
2 − 2p2

0

)
I0

(
p2

0

) + 4p0I1
(
p2

0

)
,

where I
 is given by Eq. (18), I0(p2
0) = A+ + A−, I1(p2

0) =
B+ − B−, and

A+ =
∫

d3q

(2π )3

1

E+



[
p2

0 − 4(E+

)2

] ,

(26)

A− =
∫

d3q

(2π )3

1

E−



[
p2

0 − 4(E−

)2

] ,

B+ =
∫

d3q

(2π )3

E+

E+



[
p2

0 − 4(E+

)2

] ,

(27)

B− =
∫

d3q

(2π )3

E−

E−



[
p2

0 − 4(E−

)2

] .

{Formulas (23)–(26) are valid in both the 2SC (
 �= 0) and in
the color-symmetric (
 = 0) phases. In the 2SC phase, the 1PI
Green’s functions �
2


∗
2
(P ),�
∗

2
2 (P ) [Eqs. (26)] get a more
simple form if we use the identity 1 = 4G2I
 following from
the gap equations [see Eq. (18)].} In the general case (m �=
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0,
 �= 0), the equation det(�) = 0 has a rather complicated
form. Fortunately, in the color-symmetric phase with 
 = 0,
i.e., at µ < µc, the nondiagonal terms �σX(P ) (X = 
∗

2,
2)
in Eq. (22), which are responsible for the mixing of the σ

meson and the diquark, vanish because they are proportional
to 
. Therefore, the σ meson mass decouples from the diquark
spectrum and is found from

�σσ (P ) = 0. (28)

On the other hand, in the 2SC phase (see Fig. 1), the constituent
quark mass m is small (or even equal to zero if m0 = 0) in the
2SC phase (see Fig. 1), so we can ignore the nondiagonal
elements �σ
2 (P ),�σ
∗

2
(P ) in � because they are negligibly

small (as proved a posteriori by numerical computations),
and the σ meson mass Mσ is again found from Eq. (28).
The numerical solution of Eq. (28) is presented in Fig. 2,
where one can see that both σ - and π -meson masses are
increasing functions of µ in the 2SC phase.9 At the same
time, the difference between Mσ and Mπ decreases with
µ; δM = Mσ − Mπ becomes negligible at sufficiently high
µ, which is understood as an evidence of chiral symmetry
restoration. The decrease of the dynamical quark mass m at
large µ (see Fig. 1) is also in accordance with this conclusion.

C. Diquark masses

In dense quark matter [at nonzero (baryon) chemical poten-
tial], the symmetry of the Lagrangian under charge conjugation
is violated by the chemical potential. As a consequence, the
mass spectrum of diquarks can split, and diquarks will differ
from antidiquarks not only by charge but also by mass.

1. Diquark masses in the color-symmetric phase (� = 0)

In the color-symmetric phase (µ < µc = 350 MeV), the
ground state of the quark matter is described by 
 = 0,
and there is no mixing between diquarks in the one-loop
approximation. Therefore we can, e.g., consider the propagator
of 
∗

2,
2 alone. It follows from Eqs. (26) that �
2
2 (P ) =
�
∗

2

∗
2
(P ) = 0 at 
 = 0, and we need only

�
2

∗
2
(P ) = �
∗

2
2 (−P ) = − 1

4G2
+ 16

∫
d3q

(2π )3

× E

4E2 − (p0 + 2µ)2
≡ − 1

4G2
+ F (ε). (29)

Here, P = (p0, 0, 0, 0), and ε = (p0 + 2µ)2. [In obtaining
Eq. (29) we have used the relation µ < m, i.e. E− > 0, which
is true for the color-symmetric phase.] Then the 2 × 2 inverse
propagator matrix G−1

2 (P ) in the 
∗
2,
2 sector of the NJL

model has the form

G−1
2 (P ) = −

[
0 �
2


∗
2
(P )

�
∗
2
2 (P ) 0

]
(30)

9Note that the term in Eq. (23) that is proportional to 
2m2 is
comparable with or even less than nondiagonal elements �σX(P )
(X = 
∗

2, 
2); therefore it was neglected in the numerical analysis
of Eq. (28).

Clearly the mass spectrum is determined by the equation
det(G−1

2 ) = �
2

∗
2
(P )�
∗

2
2 (P ) = 0, or by zeros of Eq. (29),
where the function F (ε) is analytical in the whole complex
ε plane, except for the cut 4m2 < ε along the real axis. [In
general, the function F (ε) is defined on a complex Riemann
surface, which is described by several sheets. However, a direct
numerical computation based on Eq. (29) gives its values in
the first sheet only. To find a value on the rest of the Riemann
surface, a special procedure of continuation is needed.] The
numerical analysis of Eq. (29) in the first Riemann sheet
shows that the equation �
2


∗
2
(P ) = �
∗

2
2 (−P ) = 0 has a
root (ε0), on the real axis (0 < ε0 < 4m2), providing us with
the following massive diquark modes:

M
 = 1.998m − 2µ, M
∗ = 1.998m + 2µ. (31)

We relate M
 in Eqs. (31) to the mass of the diquark with
the baryon number B = 2/3 and M
∗ to the mass of the
antidiquark with B = −2/3. (Qualitatively, a similar behavior
of diquark and antidiquark masses vs. µ was obtained in [28]
in the NJL model for two-colored quarks.) It follows from
Eqs. (31) that in vacuum (µ = 0) the diquark-antidiquark mass
is ∼2m. Clearly, in the color-symmetric phase at µ �= 0, both
quantities M
 and M
∗ from Eq. (31) are nothing else but the
rest-frame excitation energies for a diquark and an antidiquark,
respectively.

In the color-symmetric phase for µ < m the diquarks and
antidiquarks are stable. Indeed, the diquark mass M
 is smaller
here than the energy 2(m − µ) necessary to create a pair of
free quarks. Finally, because of the underling color SU(3)c
symmetry, the previous statement is valid also for 
∗

5,
5 and

∗

7,
7. As a result, we have a color antitriplet of diquarks
with the mass M
 of Eq. (31) as well as a color triplet of
antidiquarks with the mass M
∗ . The results of numerical
computations are presented in Fig. 3: The solid line shows the
behavior of the antidiquark triplet mass M
∗ in the region of
µ < µc = 350 MeV whereas the dashed line corresponds to
the antitriplet.

In our analysis we used the constraint G2 = 3G1/4, thereby
fixing the constant G2 through G1. It is useful, however, to
discuss now the influence of G2 on diquark masses. Indeed, it
is clear from Eq. (29) that the root ε0 lies inside the interval
0 < ε0 < 4m2 only if G∗

2 < G2 < G∗∗
2 , where G∗

2 and G∗∗
2 are

defined by

G∗
2 ≡ 1

4F (4m2)

= π2

4{	√
m2 + 	2 + m2 ln[(	 + √

m2 + 	2)/m]} ,

G∗∗
2 ≡ 1

4F (0)
(32)

= π2

4{	√
m2 + 	2 − m2 ln[(	 + √

m2 + 	2)/m]}
= 3mG1

2(m − m0)
.

In this case, there are stable diquarks and antidiquarks in
the color-symmetric phase. The behavior of their masses
qualitatively resembles that given by Eqs. (31). For a rather
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FIG. 3. The masses of diquarks. At µ <

µc = 350 MeV, six diquark states are split into
a (color) triplet of heavy states with mass M
∗

(solid line) and an antitriplet (dashed line) of
light states with mass M
. In the 2SC phase
(µ > µc), one observes three massless diquarks
(dashed line): a doublet of light diquarks with
the mass Mlight (dotted line) and a heavy singlet
state with the mass M (dash-dotted line). The
shaded rectangular area displays the width of
the heavy singlet resonance; its upper border is a
half-width higher than the mass and the bottom
border is a half-width lower.

weak interaction in the diquark channel (G2 < G∗
2), ε0 runs

onto the second Riemann sheet, and unstable diquark modes
(resonances) appear. In contrast, a sufficiently strong interac-
tion in the diquark channel (G2 > G∗∗

2 ) pushes ε0 toward the
negative semiaxis, i.e., (p0 + 2µ)2 < 0. The latter indicates a
tachyon singularity in the diquark propagator, evidencing that
the color-symmetric ground state is not stable. Indeed, as it has
been shown in [30], that at very large G2 the color symmetry is
spontaneously broken even at a vanishing chemical potential.

2. Diquark masses in the 2SC phase (� �= 0)

Let us now focus on the masses of 
∗
2,
2 fields. As we

have already shown in Sec. III B, these diquarks are mixed with
the σ meson in the 2SC phase because of the nonvanishing
terms �σ
2 (P ) and �σ
∗

2
(P ) in the matrix �(P ) of Eq. (22).

However, keeping in mind that the constituent quark mass m is
small in the color-superconducting phase, one can ignore this
mixing. The problem thereby becomes drastically simplified,
and one just has to calculate the determinant of

G−1
2 (P ) = −

[
�
2
2 (P ) �
2


∗
2
(P )

�
∗
2
2 (P ) �
∗

2

∗
2
(P )

]
(33)

and equate it to zero. The resulting equation will determine
the masses of 
∗

2,
2. Taking the expressions for the matrix
elements in Eq. (33) from Eqs. (24) and (26) and using the
relation 1 = 4G2I
 (valid in the 2SC phase only), we get the
mass equation

det
(
G−1

2

) ≡ 4p2
0

{(
p2

0 − 4
2
)
I 2

0

(
p2

0

) − 4I 2
1

(
p2

0

)}= 0. (34)

It has the apparent solution p2
0 = 0, corresponding to a NG

boson.10 The second solution of (34) exists on the second
Riemann sheet for p2

0 only (see Appendix B).

10The equation det[�(p0)] = 0, where �(p0) is given by Eq. (22),
also has a NG solution (p2

0 = 0) in the 2SC phase. Indeed, one can
easily see that the elements of the second and third columns of �(p0)

Near a zero, the determinant det(G−1
2 ) can be approximated

by

det
(
G−1

2

) ∼ p2
0 − M2 + iM. (35)

Here, M is the mass of the resonance, and  is its width. Let
p̃0 be a root of the equation

p̃2
0 − M2 + iM = 0; (36)

the mass and width are then given by

M =
√

Re p̃2
0,  = − Im p̃2

0

M
. (37)

For a small width, we can write for the root of Eq. (36) as

p̃0 ≈ M − i


2
. (38)

The appearance of the imaginary part in approximation (38)
is a consequence of the fact that this diquark is a resonance in
the 2SC phase and can decay into free quarks. Our numerical
estimates for M and  at various µ are plotted in Fig. 3. The
dash-dotted line corresponds to M, and the width is given by
the hight of the shaded block, half-width up and half-width
down.

We would like to point out here that both the resonance and
the above-mentioned NG boson are color singlets with respect
to SU(2)c. Because the obtained mass M is much greater
than even twice the energy

√
(m + µ)2 + |
|2 necessary for

creating an antiquark in the 2SC phase, it is no wonder that
this diquark mode is unstable, unlike the pion and σ , which
are stable because of the Mott effect.

A detailed investigation of the diquark masses in the

∗

5,
5- and 
∗
7,
7 sectors has already been done in our

previous paper [7]. It was found there that in each of these

are equal at p0 = 0, and the determinant of this matrix is thereby
equal to zero at p0 = 0. Because det[�(p0)] is an even function of
p0, one can conclude that this solution is doubly degenerated.
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sectors there was a NG boson as well as a light diquark
excitation with the same mass Mlight proportional to the
color-eight charge density of the quark matter in the 2SC
ground state. Therefore we can conclude that, in total, there
are an abnormal number of three NG bosons in the theory,
instead of the expected five. [Because SU(3)c is spontaneously
broken down to SU(2)c, five group generators affect the
diquark condensate, and therefore five NG bosons should
appear, according to the Goldstone theorem.] This entails
the absence of baryon superfluidity in the 2SC phase (see
also the discussions in [29,31], in which the effect of NG
boson deficiency was observed in other relativistic models
with broken Lorentz invariance). The light diquarks form a
stable SU(2)c doublet with the mass Mlight whose dependence
on µ is also shown in Fig. 3 (dotted line).

IV. SUMMARY AND DISCUSSION

In this paper we have investigated the mass spectrum of
meson and diquark excitations in cold dense quark matter.
We started from a low-energy effective model of the Nambu–
Jona-Lasinio type for quarks of two flavors, including a single
quark chemical potential, for simplicity. Despite of the lack
of confinement, this model quite satisfactorily describes the
masses and dynamics of light mesons in normal quark matter
(at rather small values of chemical potential). Because the
investigation of color superconductivity has become popular
nowadays, NJL models have also been widely used to
explore, in particular, the quark matter phase diagram for
intermediate densities, i.e., under conditions within which all
other approaches fail.

Using the one-loop approximation, we calculated two-point
correlators of mesons and showed that the masses of π and
σ mesons grow with the quark chemical potential in the 2SC
phase (see Fig. 2). The mass difference between them vanishes
at asymptotically large µ, in accordance with chiral symmetry
restoration. Moreover, these mesons are almost stable in the
2SC phase. As far as we know, the properties of π and σ

mesons in the 2SC phase have not been discussed in the
literature before.

In the diquark sector, the situation is more involved in
the 2SC phase. Indeed, when the color SU(3)c symmetry is
spontaneously broken down to SU(2)c, we naturally expect
five (massless) NG bosons to appear. However, we find only
three massless bosonic excitations [7]: a color singlet and a
color doublet [which is due to the residual SU(2)c symmetry].
In spite of the abnormal number of NG bosons (note that
each member of the doublet has a quadratic dependence of its
energy on three-momentum when it is almost at rest), there is
no contradiction with the NG boson counting [32]. Apart from
this, there are also two light and one heavy diquark modes
(see Fig. 3). The first two are stable, whereas the last one is
a resonance with finite width, and its 1PI Green’s function
possesses a zero in the second Riemann sheet for the energy
variable.

We have also found that the antidiquark masses exceed
those of the diquarks in the color-symmetric phase (for
µ < µc = 350 MeV). This splitting of the masses is explained

by the violation of C parity (charge conjugation) in the
presence of a chemical potential. In contrast, at µ = 0
the model is C invariant and all diquarks and antidiquarks have
the same mass, which is slightly lower than two dynamical
quark masses, ∼700 MeV. Our result for the diquark mass in
vacuum (µ = 0) is in agreement with [33], in which a value
as large as ∼800 MeV was claimed to follow from QCD by
means of the solution of a Bethe–Salpeter equation in the
rainbow-ladder approximation.

Of course, all observable particles render themselves as
colorless objects in the hadronic phase, and the diquarks are
expected to be confined, as they are not SU(3)c color singlets.
Nevertheless, one may look at our and other related results
on diquark masses as indications of the existence of rather
strong quark-quark correlations inside baryons, which might
help to explain baryon dynamics. Some lattice simulations
reveal strong attraction in the diquark channel [34] with a
diquark mass of ∼600 MeV. Recently, in [35], the mass and
extremely narrow width, as well as other properties, of the
pentaquark �+ were explained just on the assumption that
it is composed of an antiquark and two highly correlated ud
pairs. At the present time, the nature of the mechanism that
may entail strong attraction of quarks in diquark channels is
actively discussed both in nonperturbative QCD and in other
models (see, e.g. [36] and references therein).

Finally, let us comment on the fact that we considered in
this paper only a single chemical potential µ (common for all
quarks). Obviously, in such a simplified approach, the 2SC
quark matter is neither color nor electrically neutral, as would
be expected for realistic situations, as in the cores of compact
stars. To study color superconductivity in the case of neutral
matter, one has to study more complex NJL models, including
several new chemical potentials [5]. Despite this drawback,
the chosen simplified approach seems to us interesting enough
to get some deeper understanding of the dynamics of mesons
and diquarks in the color-symmetric and 2SC phases of cold
dense quark matter. A generalization of this approach to
more sophisticated NJL models, including several chemical
potentials, is currently under investigation.
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APPENDIX A: LOOP INTEGRALS AT T �= 0 AND µ �= 0

To evaluate loop integrals, we use in our paper the
imaginary-time formalism (see, e.g., [37]). First, it is
supposed that the system is in the thermodynamic equilibrium
with a thermal bath of some temperature T. As usual, to
study a hot and dense system, one has to calculate thermal
Green’s functions (TGFs), which are periodic (for each boson
field) and antiperiodic (for each fermion field) functions of
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imaginary time. Their Fourier images are therefore functions
defined at discrete points in the imaginary axis p0 = iωn, n =
0,±1,±2, . . . , where ωn are Matsubara frequencies. When
calculating a loop diagram, one has to sum over q0 = iωn =
i2nπT for bosons and q0 = iωn = i(2n + 1)πT for fermions.
In accordance with this, the integration over q0 in Eq. (14),
(15), etc., is to be performed in two steps: First, all momenta
are considered in Euclidean metric, and a sum over Matsubara
frequencies is performed. Then the limit T → 0 is reached, and
the resulting TGFs are continued in the complex plane to the
real axis, which corresponds to their definition in Minkowski
metric. As a result, we have then for 1PI Green’s functions the
formulas for which the four-dimensional integration is reduced
to three dimensions.

Let us explain the scheme, briefly outlined above, in a bit
more detail. First, we delay the three-dimensional integration
until the end of the calculations and consider only one-
dimensional q0 integrals. Only one such integration comes
from each diagram in the one-loop approximation for the
1PI Green’s functions with two bosonic legs, and it can be
represented as

F (p0) =
∫

dq0

2πi
f (q0, �q; p0), (A1)

where the function f (q0, �q; p0) is a product of vertices and
quark propagators from a one-loop diagram, whereas the
external three-momentum in each diagram is supposed to
be zero, �p = 0. The dependence of the function F (p0) on
the momentum �q is implied; however, we do not write �q
explicitly, as only the dependence on p0 is important for the
moment.

At T �= 0, we would obtain in the right-hand side of
Eq. (A1) a sum over the fermionic Matsubara frequencies
ωn = (2n + 1)πT instead of the integral. Let us denote the
result of the sum by the function FT (p0). It is defined only at
the values of p0 = iνk = i2kπT , corresponding to bosonic
Matsubara frequencies, because each external line in the
implied one-loop diagram corresponds to a boson. The result
looks like

FT (iνk) = T

∞∑
n=−∞

f (iωn, �q; iνk). (A2)

Let us assume that the function f (ω, �q; iνk) falls sufficiently
quickly in any direction on the complex ω plane and contains
only simple poles everywhere, except for the imaginary axis.
In this case, using the Cauchy theorem, we can replace the sum
over Matsubara frequencies in Eq. (A2) with “closed” contour
integrals and obtain

FT (iνk) = T

∞∑
n=−∞

f (iωn, �q; iνk)

= 1

2

∮
C1+C2

dω

2πi
f (ω, �q; iνk) tanh

( ω

2T

)
, (A3)

where the contour C1 is just the straight line from −i∞ + ε to
i∞ + ε and C2 is the straight line from i∞ − ε to −i∞ − ε.
The contour integral in Eq. (A3) is indeed the sum of two
integrals: C1 and C2. Both C1 and C2 can be closed by infinite

arcs in the right and left halves of the complex plane because
the integration along these arcs vanishes if the integrands fall
quickly enough near infinity. As a consequence, we can then
integrate along the closed contours C̃1 and C̃2. As the integrand
was supposed to have only simple poles, the Cauchy theorem
immediately gives us the result of integrations by means of
a sum of residues of the integrand at these poles, which are
determined by the poles of the quark propagator. It is important
that we keep in mind before taking the limit T → 0 that νk =
2kπT . The point is that after the calculation of all residues the
frequency iνk will appear in the argument of the hyperbolic
tangent tanh(ω/2T ), which is periodic on the imaginary axis,
and the period is just equal to i2πT . Therefore the tangent does
not depend on iνk , and we can put νk = 0 in its argument.
After this, we can reach the limit T → 0 and continue
the function FT |T =0 to real energies p0, which is formally
obtained through the substitution νk → −ip0 in the rest of the
expression.

We follow the scheme just explained to calculate the tadpole
contributions [see Eqs. (13)], which do not depend on external
momenta. Let us consider, as an example, the one-loop tadpole
contribution for 〈
∗

2(x)〉, which is nothing else than the right-
hand side of Eq. (15). Replacing the q0 integral with a sum
over Matsubara frequencies ωn = (2n + 1)πT [see Eq. (16)]
and following other steps, we obtain

I
(T ) = −4T

∞∑
n=−∞

∫
d3q

(2π )3

{
1

D+(iωn)
+ 1

D−(iωn)

}

= −2
∮

C̃1+C̃2

dω

2πi
tanh

( ω

2T

) ∫
d3q

(2π )3

×
{

1

D+(ω)
+ 1

D−(ω)

}
, (A4)

where D±(ω) are defined by Eq. (12) and the two clockwise
contours C̃1 and C̃2 enclose the right and left halves of the
complex ω plane. The integrand in Eq. (A4) has only four
simple poles at ω = ±E+


 and ω = ±E−

 . Finally, we replace

the integral in Eq. (A4) with a sum of the residues at these
poles, multiplied by 2πi (according to the Cauchy theorem),
and take the limit T → 0. This gives for I
 = limT →0 I
(T ),
the expression displayed on the right-hand side of
Eq. (18).

APPENDIX B: SEARCHING FOR THE RESONANCE
SOLUTION OF EQ. (34)

The nontrivial solution of Eq. (34) obeys

(zI0 − 2I1)(zI0 + 2I1) = 0, (B1)

where z2 = p2
0 − 4
2 and I0,1 are given by Eq. (26). In

the following text we ignore, for simplicity, the dynamical
quark mass (i.e., putting m = 0), because we assume (and
this assumption is a posteriori corroborated by numerical
calculations of the heavy diquark mass both for m = 0 and
m �= 0) that this simplification does not strongly affect our
results. First, we integrate over the angles in Eq. (26) and
(27) and introduce a new variable y = (E + µ)2, instead of
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(Λ±µ)20

C1 C2

C
z2

FIG. 4. The deformation of the integration contour on the com-
plex y plane for the functions I0, I1 when the parameter z2 moves
onto the lower half-plane of the second Riemann sheet.

the three-momentum, in the integrals A+ and B+ (recall that
E = |�q|):

A+ = 1

4π2

∫ (	+µ)2

µ2

(
√

y − µ)2dy
√

y
√

y + 
2[z2 − 4y]
,

(B2)

B+ = 1

4π2

∫ (	+µ)2

µ2

(
√

y − µ)2dy√
y + 
2[z2 − 4y]

.

Because

A− =
∫ µ

0
(· · ·) dE +

∫ 	

µ

(· · ·) dE, (B3)

we can introduce the new variables
√

y = µ − E and
√

y =
E − µ for the first and second integrals of Eq. (B3), respec-
tively, and get

A− = 1

4π2

∫ µ2

0

(
√

y − µ)2dy
√

y
√

y + 
2[z2 − 4y]

+ 1

4π2

∫ (	−µ)2

0

(
√

y + µ)2dy
√

y
√

y + 
2[z2 − 4y]
(B4)

and

I0 = A+ + A− = 1

4π2

∫ (	+µ)2

0

(
√

y − µ)2dy
√

y
√

y + 
2[z2 − 4y]

+ 1

4π2

∫ (	−µ)2

0

(
√

y + µ)2dy
√

y
√

y + 
2[z2 − 4y]
.

(B5)

In a similar way, we obtain

I1 = B+ − B− = 1

4π2

∫ (	 + µ)2

0

(
√

y − µ)2dy√
y + 
2[z2 − 4y]

− 1

4π2

∫ (	 − µ)2

0

(
√

y + µ)2dy√
y + 
2[z2 − 4y]

. (B6)

The quantities I0,1 are analytical functions of the complex
variable z2 ≡ a − ib on the whole complex plane, except for
the cut L on the real axis, defined by 0 � z2 � (	 + µ)2 (the
first Riemann sheet). A numerical processing of the integrals
of Eqs. (B5) and (B6) gives the values of functions I0 and I1

on the first Riemann sheet only. However, there is no solution
for Eq. (B1) in the first Riemann sheet because the root of
Eq. (B1) lies on the lower half-plane (b > 0) of the second
Riemann sheet, and to find it, we have to continue I0 and I1 to
the second sheet. When z2 crosses the cut L downward from
the upper half of the first sheet, the integrals I0 [Eq. (B5)] and
I1 [Eq. (B6)] become singular because of the apparent poles
in the integrands. Because an integral does not change when
the contour is being continuously transformed on the complex
plane until it crosses a singularity of the integrand, we carefully
deviate our contour on the complex y plane to circumvent the
singularity in the way shown in Fig. 4. When the contours C1

and C2 overlap each other, the sum of the integrals along them
vanishes, and, as a result, we obtain that I0 and I1 in the lower
half-plane of the second Riemann sheet differ from Eqs. (B5)
and (B6) by an additional integral over the contour C around
the pole z2 (see Fig. 4), which is equal to the residue of the
integrand at z2. Let us denote the continuations of I0 and I1 to
the second Riemann sheet as Ĩ0 and Ĩ1. Then we have

Ĩ0 = I0 − i(z2 + 4µ2)

4πz
√

z2 + 4
2
, Ĩ1 = I1 + izµ

2π
√

z2 + 4
2
,

(B7)

where z = √
z2 = a1 − ib1, with both a1 and b1 being real and

positive:

a1 =
√

1
2a + 1

2

√
a2 + b2, b1 = b/

√
2a + 2

√
a2 + b2,

apart from √
z2 + 4
2 = ã1 − ib̃1,

where

ã1 =
√

1
2 (a + 4
2) + 1

2

√
(a + 4
2)2 + b2,

b̃1 = b/

√
2(a + 4
2) + 2

√
(a + 4
2)2 + b2.

Let us now consider the function F (z2) = √
z2I0(z2) +

2I1(z2) [it is the second multiplier in Eq. (B1)]. Its continuation
to the second Riemann sheet is F → F̃ (z2) = √

z2Ĩ0 + 2Ĩ1 =
F (z2) − i(

√
z2 − 2µ)2/(4π

√
z2 + 4
2). Numerical solution

of the equation F̃ (z2) = 0 at various µ > µc gives one
root per one value of µ: z2

0 + 4
2 = M2 − iM. For ex-
ample, if we put 
 = 115 MeV, µ = 350 MeV, and 	 =
618 MeV, we get the mass M = 1111 MeV and the width
 = 446 MeV.
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