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Boltzmann equation in classical and quantum field theory
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Improving upon the previous treatment by Mueller and Son, we derive the Boltzmann equation that results
from a classical scalar field theory. This is obtained by starting from the corresponding quantum field theory
and taking the classical limit with particular emphasis on the path integral and perturbation theory. A previously
overlooked Van Vleck determinant is shown to control the tadpole type of self-energy that can still appear in the
classical perturbation theory. Further comments on the validity of the approximations and possible applications
are also given.
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I. INTRODUCTION

There are many situations in nature where classical field
theory is the most direct and efficient way of describing the
system under study. This happens when the occupation number
becomes large enough that the quantum commutator becomes
irrelevant. Such situations include most of macroscopic elec-
tromagnetic systems and the dense systems created in colliding
heavy ions. In studying heavy-ion collisions, both the particle
degrees of freedom and the classical field degrees of freedom
becomes relevant: The final state of a collision consists mostly
of the particle degrees of freedom, whereas the initial state
of two approaching nuclei can be efficiently described by a
classical non-Abelian gauge field [1–3]. A natural framework
which encompasses both elements is the coupled system of
classical field equation and the Boltzmann type of kinetic
equation with the mean field [4].

An important problem in this framework is the conversion
of classical field degrees of freedom into particle degrees of
freedom and their subsequent thermalization. In this respect,
the equivalence of the classical field theory and the Boltzmann
equation proposed by Mueller and Son [5] is significant
because it has a potential of providing a consistent framework
for the thermalization in heavy-ion collisions. The current
article improves on the work of Mueller and Son in the
following aspects.

First, going from quantum to classical many body the-
ory almost always involves the Wigner function [4,6,7]. In
Ref. [5], this point was overlooked. In this work, we show that
the Wigner functional does appear in the formulation because
of the fact that the density operator is in general nondiagonal.

Second, the Feynman rules used in Ref. [5] for the classical
field are a mixture of quantum and classical ones: The vertex
rule is classical but the propagators are quantum mechanical.
We show that consistent formulation involves only classical
vertices and propagators.

Third, formulation of classical path integral involves a
functional determinant related to the Jacobi field. Therefore,
perturbation theory based on classical path integral involves
ghost fermions [8,9]. It turned out that the classical per-
turbation theory as formulated in Ref. [5] still contains a
quantum effect in the form of the tadpole self-energy. The ghost

contribution is shown to compensate this remaining quantum
effect, thus making the theory consistently classical.

Despite these gaps in the formulation, the final result in
Ref. [5] is essentially correct in the f � 1 limit. The goal
of this article is to provide a more consistent derivation of
the kinetic equation corresponding to the classical scalar field
starting from the quantum scalar field. We take particular
care in treating the path integral and the perturbation theory
in a consistent manner. We also comment on the validity
of this classical method and possible use in the context of
understanding the thermalization in heavy-ion collisions.

II. CLASSICAL PATH INTEGRAL FROM QUANTUM
PATH INTEGRAL

To be specific, consider a real scalar field theory defined by
the following Hamiltonian:

H =
∫

d3x

[
π2

2
+ (∇φ)2

2
+ V (φ)

]
. (1)

The equations of motion are as follows:

φ̇ = δH

δπ
= π (2)

π̇ = −δH

δφ
≡ E(φ), (3)

where we defined E(φ) = ∇2φ − V ′(φ) for notational conve-
nience.

In many publications since the 1980’s, E. Gozzi and his
collaborators have been extensively studying the properties of
classical path integrals (see Refs. [8,9] and references therein).
The starting point in these studies is the following transition
probability between two points in the phase space:

P
[
ϕf , π

ϕ

f ; tf
∣∣ϕi, π

ϕ

i ; ti
] = δ

[
ϕf − ϕc

(
tf

∣∣ϕi, π
ϕ

i

)]
× δ

[
π

ϕ

f − πϕ
c

(
tf

∣∣ϕi, π
ϕ

i

)]
. (4)

Here ϕ and πϕ are the generalized coordinate and mo-
mentum and ϕc and π

ϕ
c are the solutions of Eqs. (2) and

(3) with the boundary conditions ϕc(ti |ϕi, π
ϕ

i ) = ϕi and
π

ϕ
c (ti |ϕi, π

ϕ

i ) = π
ϕ

i . The evolution of the initial phase-space
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density ρcl[ϕ, πϕ ; ti] is given by the following expression:

ρcl[ϕ, πϕ ; t] =
∫

[dϕi]
[
dπ

ϕ

i

]
×P

[
ϕ, πϕ ; t

∣∣ϕi, π
ϕ

i ; ti
]
ρcl

[
ϕi, π

ϕ

i ; ti
]
. (5)

In this article we use the square bracket notation
∫

[dφ] to
indicate a functional integral at a fixed time and the curly
D notation

∫
Dφ = ∫ ∏N

i=1[dφi] to indicate a functional
integral over space and time. We also implicitly absorb any
normalization constants into the definition of [dφ].

To turn Eq. (5) into a path integral, we use the fact that
transition probabilities satisfy the following:

∫
dyP [z|y]P [y|x] = P [z|x]. (6)

Dividing the time between the final time tf = tN+1 and the
initial time ti = t0 into N+1 equal intervals we obtain

P [φN+1, πN+1|φ0, π0]

=
∫ N∏

i=1

[dφi][dπi]
N∏

j=0

P [φj+1, πj+1|φj , πj ], (7)

where we have suppressed the time arguments in P.
For sufficiently small �t = (tf − ti)/(N+1), we should be

able to solve the classical equations of motion approximately.
The simplest finite difference method is the Euler method
based on the following approximation of the time derivative:

ḟ (tk) ≈ f (tk) − f (tk−1)

�t
+ O(�t) (backward Euler) (8)

or

ḟ (tk) ≈ f (tk+1) − f (tk)

�t
+ O(�t) (forward Euler). (9)

We use here the backward Euler method for ϕ

ϕk+1 = ϕk + π
ϕ

k+1 �t + O(�t2) (10)

and the forward Euler method for πϕ

π
ϕ

k+1 = π
ϕ

k + E(ϕk)�t + O(�t2) (11)

so that ϕk+1 can be expressed solely in terms of ϕk and π
ϕ

k .
This is, of course, not the only choice. Different discretization
method in general leads to different form of the discretized
path integral although they are all equivalent in the �t → 0
limit.

For small enough �t then,

P
[
ϕj+1, π

ϕ

j+1

∣∣ϕj , π
ϕ

j

] = δ
[
ϕj+1 − ϕj − π

ϕ

j+1�t
]

× δ
[
π

ϕ

j+1 − π
ϕ

j − E(ϕj )�t
]
. (12)

With this form, it is easy to check that the preservation of
probability∫

[dϕN+1]
[
dπ

ϕ

N+1

]
ρcl

[
ϕN+1, π

ϕ

N+1; tN+1
]

=
∫

[dϕ0]
[
dπ

ϕ

0

]
ρcl

[
ϕ0, π

ϕ

0 ; t0
]

(13)

is trivially satisfied. Using dummy variables χ and πχ to
express the δ functionals, we finally get the classical path
integral for the evolution of the density functional as follows:

ρcl
[
ϕN+1, π

ϕ

N+1; tN+1
]

=
∫ N∏

j=0

[dϕj ]
N+1∏
k=1

[
dπ

χ

k

]

× exp


i

N∑
j=0

π
χ

j+1

[
ϕj+1 − ϕj − π

ϕ

j+1�t)
]


×
∫ N∏

l=0

[
dπ

ϕ

l

] N∏
k=0

[dχk] exp

{
−i

N∑
k=0

χk

× [
π

ϕ

k+1 − π
ϕ

k − E(ϕk)�t
]}

ρcl
[
ϕ0, π

ϕ

0 ; t0
]
. (14)

How closely can we reproduce the classical path integral
Eq. (14) from the corresponding quantum path integral? To
answer this question, we need to go back to the basics
of deriving a quantum mechanical path integral. Given a
Hamiltonian operator Ĥ , we would like to rewrite the matrix
element of the evolution operator, 〈φf |Û (tf , ti)|φi〉, as a path
integral. Dividing the time interval into many small segments
and using the fact that Û (t, t ′)Û (t ′, t ′′) = Û (t, t ′′), we can
write

〈φN+1|Û (tN+1, t0)|φ0〉=〈φN+1|Û (tN+1, tN )

× Û (tN , tN−1) · · · Û (t1, t0)|φ0〉. (15)

There are many ways of inserting the resolutions of identity
to turn this expression into a path integral just as there are
many ways of discretizing the classical equation of motion.
The prescription that most closely resembles Eqs. (10) and
(11) turned out to be inserting

1 =
∫

[dφk][dπk]|φk〉〈φk|πk〉〈πk| (16)

between Û (tk+1, tk) and Û (tk, tk−1) for all 1 � k � N and
inserting

1 =
∫

[dπN+1]|πN+1〉〈πN+1| (17)

between 〈φN+1| and Û (tN+1, tN ). In this way, we get the
following:

〈φN+1|Û (tN+1, t0)|φ0〉

=
∫ N∏

k=1

[dφk]
∫ N+1∏

k=1

[dπk]
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× exp

{
i

N+1∑
k=1

πk(φk − φk−1) − i

N+1∑
k=1

H (πk, φk−1)�t

}
.

(18)

The time evolution of a density operator needs two such
path integrals because the matrix element

〈φf |ρ̂(tf )|φ̃f 〉 = 〈φf |Û (tf , ti)ρ̂(ti)Û (ti , tf )|φ̃f 〉
=

∫
[dφi][dφ̃i] 〈φf |Û (tf , ti)|φi〉

× 〈φi |ρ̂(ti)|φ̃i〉〈φ̃i |Û (ti , tf )|φ̃f 〉 (19)

involves two matrix elements of the evolution operator Û . To
bring out classical features more clearly, define

ϕ = (φ + φ̃)/2 (20)

χ = φ − φ̃, (21)

where φ belongs to the path integral representation of
〈φf |Û (tf , ti)|φi〉 and φ̃ belongs to the path integral represen-
tation of 〈φ̃i |Û (ti , tf )|φ̃f 〉.

Introducing the Wigner functional ρW (ϕ, πϕ) as

〈ϕ + χ/2|ρ̂|ϕ − χ/2〉 =
∫

[dπϕ]ρW [ϕ, πϕ]eiχπϕ

(22)

we get

ρW

[
ϕN+1, π

ϕ

N+1

]
=

∫
[dϕ0][dχ0] ρW

[
ϕ0, π

ϕ

0

] ∫ N∏
k=1

[dϕk]
∫ N∏

k=1

[dχk]

×
∫ N∏

k=0

[
dπ

ϕ

k

] ∫ N+1∏
k=1

[
dπ

χ

k

]

× exp

{
i

N∑
k=0

π
χ

k+1

(
ϕk+1 − ϕk − π

ϕ

k+1�t
)}

× exp

{
−i

N∑
k=0

χk[πϕ

k+1 − π
ϕ

k − E(ϕk)�t] + O(χ3)

}
.

(23)

Note that without the Wigner transformation of the initial and
the final distributions, the exponents cannot be arranged in the
above finite-difference form that includes the end points.

The difference between Eq. (23) and the classical expres-
sion Eq. (14) is the O(χ3) term inside the exponential. (There
are no terms even in χ in this expression because the exponent
must change sign under the exchange φ ↔ φ̃ or, equivalently,
χ → −χ .) If we drop the O(χ3) terms, then we have exactly
the same evolution kernel as the classical theory. However,
even in this case, this does not mean that ρW will be truly
classical. If the initial Wigner functional contains quantum
information, then ρW at any later times will still contain it.

In perturbation theory, dropping O(χ3) terms means ignor-
ing any Feynman diagrams that may contain a loop or loops
made up of the off-shell propagators. The validity of such
operation will be shortly discussed in the next section where
we discuss the Feynman rules.

To summarize this section, the omission of the terms
nonlinear in χ results in the classical evolution of the initial
distribution. The crucial difference between our analysis here
and that of Ref. [5] is the appearance of the Wigner functional
that depends both on the coordinate (ϕ) and the momentum
(πϕ). This is important in the perturbation theory because the
propagators strongly depend on the initial distribution. We
therefore discuss the propagators and the Feynman rules next.

III. PROPAGATORS AND FEYNMAN RULES

Having obtained the classical path integral from a quantum
one, we can now derive Feynman rules for the classical
perturbation theory following the same procedure as in the
quantum case. To do so, consider the generating functional
with the source terms Jϕϕ − Jχχ and the restrictions that the
source terms vanish at the end points ti and tf . Carrying out
πχ integrals and χ0 integral results in the following:

δ

[
ϕ1 − ϕ0

h
− π

ϕ

0 − E(ϕ0)�t

] N∏
k=0

δ
[
ϕk+1 − ϕk − π

ϕ

k+1�t
]
.

We can then carry out all π
ϕ

k integrals to get the following:

Z[Jϕ, Jχ ] =
∫ N+1∏

k=0

[dϕk]
∫ N∏

k=1

[dχk]

× ρW [ϕ0, (ϕ1 − ϕ0)/�t − E(ϕ0)�t]

× exp

{
−i

N∑
k=1

χk

[
ϕk+1 − 2ϕk + ϕk−1

�t

−E(ϕk)h + J
χ

k �t

]
+ i

N∑
k=1

J
ϕ

k ϕk�t

}

=
∫

Dϕ Dχ

× ρW [ϕi, ϕ̇i] exp

[
i

∫
χ

(−∂2ϕ − m2ϕ

− λ

3!
ϕ3 − Jχ

)
+ i

∫
Jϕϕ

]
, (24)

where we switched to the continuum notation for simplicity.
It is tempting now to develop a perturbation theory from

this expression. But we are not done yet. Note that the initial
distribution depends on the value of the field and its time
derivative. But the integration is over the field values only. To
treat ρW [ϕi, ϕ̇i] as a proper weight we need to transform the
measure to include integration over ϕ̇i . In classical field theory,
this can be most easily done by noting that to solve a second-
order differential equation requires specifying either the values
of the field and its first time derivative at the initial time or the
values of the field at the initial and the final time. Therefore,
barring caustic points, there is a one-to-one correspondence
between the value of ϕ at tf and the value of ϕ̇ at ti .
The Jacobian of this transformation is as follows:

J =
∣∣∣∣δϕf

δϕ̇i

∣∣∣∣ =
∣∣∣∣ δ2S

δϕiδϕf

∣∣∣∣
−1

, (25)
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where S is the action integral. This Jacobian is related to the
Van Vleck determinant as follows:

J [ϕ] = |Det(∂2 + m2 + (λ/2)ϕ2)|. (26)

Changing the variable ϕf to ϕ̇i then gives the following:

Z[Jϕ, Jχ ]

=
∫

[dπi][dϕi]ρW [ϕi, πi]
∫

ϕi ,πi

DϕDχ J [ϕ]

× exp

[
i

∫
χ

(
−∂2ϕ − m2ϕ − λ

3!
ϕ3 − Jχ

)

+ i

∫
Jϕϕ

]
, (27)

where we have renamed ϕ̇i = πi and there is no [dϕf ][dχf ] in-
tegral. One can easily check that in the limit Jϕ → 0,Z → 1.
This is as it should be because Z reduces to a trace of a density
operator in this limit.

Note that without the Jacobian J , the Jϕ → 0 limit will
not in general yield 1. This is because performing χ integral
produces δ[(∂2ϕ + m2ϕ + (λ/3!)ϕ3) + Jχ ], which is then
integrated over ϕ to yield 1/J . The exact value of the Jacobian,
however, depends on how one discretizes the equation of
motion. This may sounds peculiar, but this phenomenon is
not new. In stochastic dynamics, it is well known that this
kind of functional Jacobian depends on the discretization
prescription [10]. Furthermore, the Jacobian can be made
constant if one chooses a particular prescription. This was
also noticed in Ref. [11]. Later in this section, we comment
more on the role of the determinant. For now we simply set it
to a constant and ignore it. As shown shortly, this amounts to
the following diagrammatic rule:

(i) Omit diagrams containing tadpoles.
To get the rest of the Feynman rules, let us examine the

two main ingredients of perturbation theory: propagators and
interaction vertices. The forms of the interaction vertices
are fully determined by the interaction Lagrangian. In the
case of the classical λφ4 theory, the corresponding Feynman
rule is:

(ii) Assign −iλ to each λϕ3χ vertex.
To determine propagators, one must specify what the

unperturbed state is. In the quantum theory, this is the
perturbative vacuum that can fluctuate into particle-antiparticle
pairs. Therefore, the expectation value 〈0|φ̂(x)φ̂(y)|0〉 is
nonzero even if 〈0|φ̂(x)|0〉 = 0. conversely, in the classical
vacuum, both of these quantities are zero because the classical
vacuum cannot fluctuate. It is literally a state where nothing
exists.

Propagators are determined by the free field limit. Follow-
ing the derivation in the last section, it is easy to see that
without the self-interaction, the generating function quickly
reduces to the following:

Z[Jϕ, Jχ ] =
∫

[dπi][dϕi]ρW [ϕi, πi]
∫

ϕi ,πi

DϕJ [ϕ]

× δ[−∂2ϕ − m2ϕ + Jχ ] exp

[
i

∫
Jϕϕ

]
(28)

regardless of whether it is the quantum case or the classical
case. Yet for both cases, the combination ϕ = (φ + φ̃)/2
satisfies the classical equation of motion whose solution is
given by the following:

ϕ = ϕi cos[Ek(t − ti)] + πi

sin[Ek(t − ti)]

Ek

+
∫ t

ti

dt ′Gret(t − t ′)Jχ (t ′). (29)

The fact that ϕ satisfies the classical equation of motion even
in the fully quantum case is somewhat unexpected. However,
it shows explicitly that the form of the initial distribution
functional ρW plays an essential role in distinguishing the
quantum and the classical cases.

Let us consider the purely classical case first. In equilib-
rium, the density functional is given by the following classical
Boltzmann factor:

ρcl[ϕi, πi] = e−βHcl

Zcl

= 1

Zcl
exp

{
−β

∑
k

[
πi(k)2 + E2

kϕi(k)2
]/

2

}
,

(30)

where πi(k) and ϕi(k) are the Fourier components of πi and ϕi

respectively. Using the above classical solution and carrying
out the ϕi and πi integral then yield the following:

Zcl[Jϕ, Jχ ] = exp

{
−

∑
k

T

2E2
k

∫ tf

ti

dt

∫ tf

ti

dt ′Jϕ(t)

× cos[Ek(t − t ′)]Jϕ(t ′) + i

∫
JϕGretJχ

}
,

(31)

where we have again suppressed the momentum indices for Jϕ

and Jχ . The resulting Feynman rules are as follows:
(iii) In equilibrium, the propagators are

G
ϕϕ

cl (p) = (T/Ep)2πδ(p2 − m2) (32)

G
ϕχ

cl (p) = i

p2 − m2 + iεp0
(33)

G
χϕ

cl (p) = i

p2 − m2 − iεp0
(34)

G
χχ

cl (p) = 0 (35)

The same set of rules were also used in Refs. [12–15] as the
classical limit of the quantum rules.

The ϕχ propagator is the response function that controls
generation of classical field by a source. Hence it must be
there be it classical or quantum [cf. Eq. (29)]. However, in
the T → 0 limit, ϕϕ propagator vanishes because of the fact
that classical vacuum does not fluctuate. Note also that the
classical equilibrium density function is T/Ek just as in the
case of electromagnetic waves in a cavity. Therefore, if one
is to extend this formalism to an out-of-equilibrium situation,
one should use the following:
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(iii′) In nonequilibrium,

G
ϕϕ

cl (p,X) = fcl(p,X)2π δ(p2 − m2), (36)

where fcl(p,X) is the density function to be determined and
G

ϕϕ

cl (p,X) is the Wigner transformed two-point function

GW (p,X) =
∫

d4reirµpµG(x, y), (37)

with r = x − y and X = (x + y)/2.
The appearance of the on-shell δ function in G

ϕϕ

cl propa-
gator deserves deeper consideration. Suppose that the initial
ρ[ϕi, χi] is actually independent of χi . That is, ρ̂ is diagonal in
φ. In that case, the Wigner functional contains a δ functional
δ[πi]. For an illustration, suppose

ρ ′
W [ϕi, πi] = 1

Z′ exp

[
−β

∑
k

E2
kϕi(k)2

/
2

]
δ[πi]. (38)

In that case, carrying out ϕi and π
ϕ

i integrals results in the
following:

Z ′[Jϕ, Jχ ]

= exp

[
−

∑
k

T

2E2
k

{∫ tf

ti

dtJϕ(t) cos[Ek(t − ti)]

}2

+ i

∫
JϕGretJχ

]
. (39)

Because there is no compensating sine term, the ϕϕ Green
function no longer exhibits time-translation invariance. The
ϕϕ correlator is given by the following:

Gϕϕ(t, t ′) = T

E2
k

cos[Ek(t − ti)] cos[Ek(t ′ − ti)]. (40)

Because this is not a function of t − t ′, this form of the
propagator does not conserve energy at each vertex. The usual
momentum space Feynman diagram techniques will not work.

Our ability to use Feynman rules with the usual conser-
vation four-momentum at each vertex depends on whether
we get a function only of t − t ′ for the ϕϕ correlator. In
equilibrium, the propagators depend only on the difference
of the two coordinates. Hence, the total four-momentum
is conserved at each vertex. In nonequilibrium situations,
the propagators depend both on the difference r = x − y

and the sum X = (x + y)/2. Wigner transformation assigns
‘momentum’ to the difference as done in Eq. (37). However,
unless the X dependence of GW (p,X) is slow, the momenta
that enter each vertex are not conserved. For the derivation
of the Boltzmann equation, this slow dependence is therefore
essential.

The above Feynman rules are used to calculate the pertur-
bative corrections in the classical field theory. Just as loops
appear in the quantum Feynman diagrams, loops appear in
the classical Feynman diagrams as well [5]. This looks like a
violation of the theorem that states the classical field theory
corresponds to the sum of all tree diagrams. However, this
theorem is derived in the context of the vacuum theory. It does
not necessarily apply to the in-medium case. Furthermore, the
theorem is derived considering only the uncut diagrams where

φ χ
φ φ

FIG. 1. Tadpole diagram in the classical perturbation theory.

as the in-medium theory necessarily involves cut diagrams
(that include ϕϕ propagators). Nevertheless, if this theorem is
not to be violated, we must at least show that the vacuum loops
do not appear in our classical theory.

That this is indeed the case can be shown as follows. A
vacuum loop in a given diagram must not contain the density
function fcl. Because fcl appears only in the ϕϕ propagator,
any potential vacuum loop diagram must consist entirely of
χϕ and ϕχ propagators. Now with only the λχϕ3 vertex, χ

is conserved in the sense that it cannot split into multiple χ ’s.
Hence one can follow χ as if it is a fermion. What flows along
this line is the time since the ϕχ propagator is a retarded one
and the χϕ propagator is an advanced one. Therefore, a loop
made of ϕχ and/or χϕ propagators implies existence of a time
loop which is impossible. It follows that there is no vacuum
loop contribution in the classical theory if the loop involves
more than a single propagator.

The only remaining possibility is a single loop formed by
a ϕχ propagator as shown in Fig. 1 that corresponds to the
following:

�1−loop = λ

2
Gret(t = 0). (41)

The value of this expression is actually ambiguous as it in-
volves θ (0). This is where the Van Vleck determinant Eq. (26)
plays its role. To determine the role ofJ in perturbation theory,
we may exponentiate the determinant using Fadeev-Popov
type of ghost fields c and c̄

Det(∂2 + m2 + (λ/2)ϕ2)

→
∫

DcDc̄ exp

[
i

∫
c̄(∂2 + m2 + (λ/2)ϕ2)c

]
. (42)

Because there is no in-medium part for the ghost field, the
corresponding propagators should be as follows:

Gcc̄
Q = i

p2 − m2 + iεp0
(43)

Gc̄c
Q = i

p2 − m2 − iεp0
, (44)

with the rule that a ghost loop gets an additional factor of (−1).
First of all, ghost propagators must form a loop because

no external line can be a ghost and there can be no ghost
excitations in the medium. However, because the ghost
propagator is a retarded one, a ghost loop made of two or
more ghost lines must vanish. A loop made up of a single
ghost line is then the only possible nonzero diagram

�
ghost
1−loop = −λ

2
Gret(t = 0). (45)
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This exactly cancels the tadpole contribution in Eq. (41). Thus
the ghost saves the classicality of the perturbation theory
by removing the ambiguity of defining θ (0). If we define
θ (0) = 0, then the ghost field contribution disappears and the
Van Vleck determinant can be set to a constant. Again, as
mentioned earlier, this is a known phenomenon. In the study of
stochastic dynamics, it is well known that how one discretizes
can change the form of Van Vleck determinant even making it
a constant [10]. In Ref. [5], because all loops that are formed
with ϕχ propagators and/or χϕ propagators are set to zero, one
might say that θ (0) was implicitly defined to be zero in that
article.

To determine the validity of the above classical perturbation
theory as a approximation of the underlying quantum theory,
let us now consider the quantum case. The form of the free
field Wigner function can be easily obtained from the ground-
state wave function of the simple harmonic oscillator in the
Euclidean space (for instance, see Ref. [16])

ρQ[ϕi, πi]

= 1

ZQ

exp

{
−

∑
k

tanh(Ekβ/2)

Ek

[
πi(k)2 + E2

kϕi(k)2
]}

.

(46)

In the small β or large T = 1/β limit, this goes over to the
classical case. Again using the classical solution and carrying
out the ϕi and πi integral yield, we obtain the following:

ZQ[Jϕ, Jχ ]

= exp

{
−

∑
k

coth(Ekβ/2)

4Ek

×
∫ tf

ti

dt

∫ tf

ti

dt ′Jϕ(t) cos[Ek(t − t ′)]

× Jϕ(t ′) + i

∫
JϕGretJχ

}
. (47)

The propagators are then given by

G
ϕϕ

Q = [1/2 + nBE(Ep)]2πδ(p2 − m2) (48)

G
ϕχ

Q = i

p2 − m2 + iεp0
(49)

G
χϕ

Q = i

p2 − m2 − iεp0
(50)

G
χχ

Q = 0, (51)

where nBE(Ep) = 1/(eEp/T − 1) is the Bose-Einstein distribu-
tion. The corresponding nonequilibrium propagator is

G
ϕϕ

Q = (1/2 + fQ)2πδ(p2 − m2), (52)

where fQ is now the density function to be determined. In
Ref. [5], these quantum form of propagators are used with
the classical field Feynman rules (i) and (ii) above. If fQ �
1/2, there is very little difference between this set of quantum
propagators and the set of classical propagators. However, one
of the points made in Ref. [5] was that keeping the 1/2 term in
Eq. (52) makes the classical kinetic equation to match up with
the quantum one up to the next-to-leading order in f. In view

φ

φ χ

φ

φ

φ φ

χχ φ

φ φ

FIG. 2. The first order vertex correction for the classical field.

of the fact that this is actually mixing quantum and classical
descriptions, it deserves a more in-depth study. We do so in
the next section.

Because we have explicit forms of the quantum and the
classical propagators now, we can discuss the validity of
the classical perturbation expansion. The differences between
the classical and the quantum Feynman rules are as follows
(excluding the tadpole diagrams):

(i) The quantum ϕϕ propagator has 1/2 + f , whereas the
classical one has just f.

(ii) The quantum interaction includes λχ3ϕ/24 term, whereas
this is missing in the classical case.

The first of these items indicates that the classical approxi-
mation is valid in the large f limit so that the appearance of 1/2
does not make a difference. But if f is too big, then potentially
perturbative corrections can be as large or larger than the
leading-order contribution. To be concrete, consider the vertex
correction depicted in Fig. 2. Compared to the bare vertex, the
correction term is smaller by a factor of O(λfcl). Therefore,
the classical perturbation theory is valid when fcl � 1 but also
λfcl 
 1. This is the same conclusion reached in Ref. [5] but
in a heuristic way.

The next question we should ask is how big the size of
the quantum correction is. To have an estimate, consider
substituting a λϕ3χ vertex with a λχ3ϕ vertex in a classical
perturbation theory diagram. Because there is no χχ propa-
gator, the only way this substitution is possible is when the
inserted vertices are connected with three ϕ field and one
χ field as depicted in Fig. 3. In the large f limit, the quantum
contribution is O(1/f 2) smaller than the purely classical
contribution. Therefore at a given order in λ, the quantum
correction is always O(1/f 2) smaller than the classical one.
Again, this is the same conclusion as in Ref. [5].

These estimates also indicate that there is a limit that we can
trust the classical perturbation theory depending on the relative
size of 1/f and λ. Suppose that f = O(1/

√
λ). In the small λ

limit, this fulfills f � 1 as well as λf 
 1. However, because
1/f 2 = O(λ), only the leading order classical perturbative
correction is reliable. The leading order (in λ) quantum

φ

φ

φ

χ

χφ

φφ

φ

φ

φ

χ

χχ

χφ
λ λ

φ χ φ χ3λ insertion insertion3λ

FIG. 3. Substituting λϕ3χ with λχ 3ϕ.
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correction in this case is as big as the second-order classical
correction.

IV. COMPARISON OF QUANTUM AND CLASSICAL
BOLTZMANN EQUATIONS

Having derived the Feynman rules, the derivation of
Boltzmann equation can now proceed as in Ref. [5] for the
λφ4 theory. For convenience, here we show the results from
Ref. [5]. The collision term of the Boltzmann equation is given
by the following:

C = λ2

2

∫
d3k1d

3k2d
3k3

(2π )524ω(k1)ω(k2)ω(k3)ω(p)

× δ[ω(p) + ω(k1) − ω(k2) − ω(k3)]

× δ(p + k1 − k2 − k3)

×
{

F (k1)F (k2)F (k3) + F (p)F (k2)F (k3)

− F (p)F (k1)F (k2) − F (p)F (k1)F (k3)

}
, (53)

where we used F (p) = f (p) + 1/2 to simplify and combine
the terms in Ref. [5].

As shown in Sec. III, quantum and classical propagators
have different forms. The above expression [Eq. (53)] uses the
quantum form of propagators but otherwise ignores quantum
corrections. If we are in a purely classical regime, F in
the above expression must be changed to f. The resulting
Boltzmann equation then contains only the terms cubic in f.
This is appropriate because it is easy to verify that the
equilibrium distribution resulting from having only the cubic
terms is f (E) = T/E. This form leads to the Rayleigh-
Jeans catastrophe, which Planck cured by inventing quantum
mechanics.

Conversely, if we keep the above form, the steady-state
solution is

f (E) = T

E
− 1

2
, (54)

which may be recognized as the first two terms of the expansion
of the Bose-Einstein distribution in the large T limit. Therefore
in the T � E limit, this form is a better approximation
of the true quantum distribution than the Rayleigh-Jeans
form. However, unlike the Rayleigh-Jeans form, this form
of the distribution function becomes negative when T < 2E,
which is clearly unphysical. Therefore mixing the quantum
propagators and the classical vertices does not necessarily
improve the purely classical result.

Let us now consider why keeping the 1/2 term in the
propagator somewhat mysteriously reproduce the quantum
statistical result up to the next-to-leading order terms in f.
Suppose we have a scattering process that involves m ini-
tial particles (ki) and n final particles (pj ). The quantum
Boltzmann equation must contain the following combination

of the density functions:

CQ =
m∏

i=1

fQ(ki)
n∏

j=1

[1 + fQ(pj )]

−
n∏

j=1

fQ(pj )
m∏

i=1

[1 + fQ(ki)] (55)

to be consistent with the equilibrium Bose-Einstein density.
Expanding in terms of fQ’s (we are in the large fQ limit), we
have the following:

CQ =
n∑

s=1

m∏
i=1

fQ(ki)
n∏

j=1,j �=s

fQ(pj )

+
n∑

s=1

n∑
t=1

θ (s > t)
m∏

i=1

fQ(ki)
n∏

j=1,j �=s,j �=t

fQ(pj )

−
m∑

s=1

m∏
i=1,i �=s

fQ(ki)
n∏

j=1

fQ(pj )

−
m∑

s=1

m∑
t=1

θ (s > t)
m∏

i=1,i �=s,i �=t

fQ(ki)

×
n∏

j=1

fQ(pj )

+ o(f m+n−3), (56)

where we defined θ (condition) = 1 if the condition is met
and θ (condition) = 0 otherwise. Conversely the classical
counterpart must contain the following:

Ccl =
n∑

s=1

m∏
i=1

fcl(ki)
n∏

j=1,j �=s

fcl(pj )

−
m∑

s=1

m∏
i=1,i �=s

fcl(ki)
n∏

j=1

fcl(pj ) (57)

to be consistent with the Rayleigh-Jeans form of the equi-
librium distribution. It is clear that the leading order terms
match between the quantum and the classical cases. Now let
fcl → fcl + 1/2 to get the following:

C ′
cl =

n∑
s=1

m∏
i=1

[fcl(ki) + 1/2]
n∏

j=1,j �=s

[fcl(pj ) + 1/2]

−
m∑

s=1

m∏
i=1,i �=s

[fcl(ki) + 1/2]
n∏

j=1

[fcl(pj ) + 1/2]. (58)

Expanding up to the next order in fcl yields the following:

C ′
cl =

n∑
s=1

m∏
i=1

fcl(ki)
n∏

j=1,j �=s

fcl(pj )

−
m∑

s=1

m∏
i=1,i �=s

fcl(ki)
n∏

j=1

fcl(pj )

+ 1

2

n∑
s=1

n∑
t=1

θ (s �= t)
m∏

i=1

fcl(ki)
n∏

j=1,j �=s,j �=t

fcl(pj )
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− 1

2

m∑
s=1

m∑
t=1

θ (s �= t)
m∏

i=1,i �=s,i �=t

fcl(ki)
n∏

j=1

fcl(pj )

+ o(f m+n−3), (59)

which can be recognized to be the same as Eq. (56) once
we use the fact that θ (s > t) is equivalent to θ (s �= t)/2
under the sums. Thus the prescription, fcl → fcl + 1/2 does
produce the first two terms in the quantum Boltzmann equation
for any general scattering process. This also explains why
the same kind of consideration also seems to work for hot
quantum chromodynamics [17]. Although it is curious that
this prescription can indeed get the next-to-leading order term
in f right, this is irrelevant in getting the right equilibrium
limit because that requires retaining all the terms in f.

V. SEPARATION OF HARD AND SOFT MODES

In view of the discussion in the last section, the better
application of the statistical mechanics of the classical field is
not to get the final equilibrium distribution1 but to use it as
an intermediate stage where the field degrees of freedom and
the particle degrees of freedom intermix. In this section, we
illustrate how this may be achieved. A more detailed analysis
of this important problem, however, is out of the scope of the
present article and will be reported in later publications [18].

As shown in the last section, the quantum perturbative
correction becomes the same size as the classical perturbative
correction when f ∼ 1. As indicated by the equilibrium form
of f, f (k) becomes small as k becomes larger. Therefore, the
classical field description is usually appropriate only for the
soft modes.

With the price of introducing a cutoff � (where f becomes
∼1), the quantum field should then be split into the soft and
hard modes:

ϕ = ϕs + ϕh and χ = χs + χh, (60)

where the soft modes (with the subscript s) have |k| < � and
the hard modes (with the subscript h) have |k| � �. The soft
modes should then be treated as a classical field and the hard
modes should be kept as a quantum field.

To be concrete, consider the λφ4 theory with the following
Hamiltonian

H =
∫

d3x

(
π2

2
+ (∇φ)2

2
+ m2

2
φ2 + λ

4!
φ4

)
. (61)

The continuum version of Eq. (23) is

ρW

[
ϕN+1, π

ϕ

N+1

]
=

∫
[dϕ0][dχ0] ρW

[
ϕ0, π

ϕ

0

] ∫
Dϕ

∫
Dχ

∫
Dπϕ

×
∫

Dπχ exp

{
i

∫
πχ (ϕ̇ − πϕ)

1This was also recognized in Ref. [5], where it was implied that
their formalism is for the system evolving toward equilibrium but not
applicable near the kinetic equilibrium.

− i

∫ [
χ

(
π̇ϕ − ∇2ϕ + m2ϕ + λ

3!
ϕ3

)
+ λ

4!
χ3ϕ

]}
.

(62)

Separating the hard and the soft modes, the interaction term
becomes the following:

V = λ

3!
(χh + χs)(ϕh + ϕs)

3 + λ

4!
(ϕh + ϕs)(χh + χs)

3. (63)

Keeping only the terms that contain the most number of ϕs

yields

V = λ

4!

(
4χsϕ

3
s + 4χhϕ

3
s

)
. (64)

These terms are linear in χs and χh. Hence, the equations of
motion are

−∂2ϕs − m2ϕs − λ

3!
ϕ3

s = 0 (65)

and

−∂2ϕh − m2ϕh = λ

3!
ϕ3

s . (66)

These equations describe a system where the classical field
evolves independent of the particles but the quantum mechan-
ical free particles are produces by a classical source. From
the analogous problem in QED (generation of photons from a
classical source), it is an easy matter to show that the spectrum
of hard modes at the end of evolution is

fh(Ek, kh) = λ2

36
|J (Ek, kh)|2 , (67)

where

J (Ek, kh) =
∫

d3x

∫ ∞

t0

dte−ikh·x+iEkt [ϕs(t, x)]3. (68)

This is, of course, in addition to the hard modes that already
existed in the initial state.

If the cutoff � remains constant at all times, this is the
complete solution for the hard spectrum provided that we
can solve the soft mode classical equation of motion either
perturbatively or nonperturbatively. In reality, it is not as simple
because of the fact that the cutoff � should be a functional
of ϕs , too. In the color glass condensate approach to the
heavy-ion collisions [19], a similar conversion of field degrees
of freedom to particle degrees of freedom was performed to
get partons out of classical non-Abelian gauge field. The line
of argument given here may provide a firmer ground for such
a treatment. One can conceive that a kind of “renormalization
group” equation in the manner of Ref. [20] should exist for the
cutoff. This will then enable us to describe the whole system in
a consistent fashion. This topic is currently under investigation.

VI. SUMMARY AND DISCUSSION

In this article, we showed that one can indeed go from the
statistical mechanics of quantum field theory to the statistical
mechanics of particles via classical field theory. Along the
way, we encountered several subtleties that had to be carefully
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dealt with. In this regard, we improve upon the treatment given
in Ref. [5].

Going from quantum field theory to the classical field theory
involves the Wigner functional, which plays the role of initial
density function. In other words, the probability of an initial
state depends on both the value of the field and the value
of the first time derivative. The form of the initial Wigner
functional in turn determines the propagators. In addition, our
ability to use the Feynman diagrams with energy-momentum
conservation at each vertex depends very much on the fact
that time translation invariance is maintained. For this to work
at least approximately, the Wigner transformed propagators
GW (p,X) [cf., Eq. (37)] cannot depend strongly on X = (x +
y)/2. This in turn implies that the density matrix at time t must
also be approximately of the form

ln ρ ∼ E2
kϕ

2
k + π2

k ∼ Hk, (69)

where ϕk and πk are Fourier components of the corresponding
fields at t and Hk is the corresponding free field Hamiltonian.
This is a rather strong condition that is in general valid
only near equilibrium. Whether this can be reconciled with
the classical field limit is not yet clear and requires further
study.

Going from the quantum field theory to the classical field
theory also involves a Jacobian in the form of the Van Vleck
determinant. The role of this Jacobian turned out to be to cancel
the single remaining quantum effect still left in the classical
perturbation theory in the form of the tadpole self-energy.

It must be also emphasized that to define propagators,
one must define what is meant by the unperturbed vacuum.
Pure classical vacuum cannot fluctuate as it is literally a
state where nothing exists. Conversely, the quantum vacuum
fluctuates all the time. The importance of this distinction is
particularly apparent when one considers the free field theory.
The form of the path integral for the classical and the quantum
theory in this case is exactly the same except for the form
of the initial density functional. To be consistent, the classical
initial density functional must conform to the classical vacuum
property and the quantum density functional must conform to
the quantum vacuum property. Mixing of the two formalisms
leads to an interesting conclusion that the classical field theory
can reproduce the results of quantum statistical Boltzmann
equation up to the next leading order in the density (Ref. [5]).
The correct Boltzmann equation obtained from classical
perturbation theory yields the Rayleigh-Jeans form of the
equilibrium distribution function as it must.

As for the validity of the classical perturbation theory, in
addition to the two conditions already mentioned we also

argued that there is a limit that a purely classical perturbation
theory makes sense. For instance, we have shown that if
f ∼ 1/

√
λ, the leading-order quantum correction is as big

as the second-order classical correction. And hence, going
beyond the first-order classical perturbation theory does not
make much sense. Quantum effect must be considered after
the leading order.

We would also like comment on the meaning of thermaliza-
tion here. It is well known that an isolated system as a whole
cannot thermalize. A simple example is an eigenstate of the
total Hamiltonian, which, by definition, is stationary. This is
in contrast to the Boltzmann equation, where the stationary
solution is guaranteed to be the equilibrium distribution. The
crucial difference of course is whether one is interested in
the system as a whole, or just a part of the system be it in
the momentum space or the coordinate space. It is therefore
perhaps more natural to apply the current formalism to a
particular sector of the system, say the soft modes, and regard
the hard spectrum as particle degrees of freedom.2

In summary, in this article, we reexamined the derivation
of the Boltzmann equation from the classical field theory
as advocated by Mueller and Son [5]. We pointed out a
few subtle points in manipulating functional integrals and
developing the perturbation theory and showed how to deal
with them. With our improvement, the framework advocated
by Mueller and Son has a potential to be a very useful tool
in investigating dense many-body systems, for instance, the
problem of converting field degrees of freedom to particle
degrees of freedom. Further study in this line is continuing
and will be reported in later publications.
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2This is different from similar separation of hard and soft modes
previously considered in the equilibrium setting. For instance, see
Ref. [21].
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