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Energy loss of leading hadrons and direct photon production in evolving quark-gluon plasma
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We calculate the nuclear modification factor of neutral pions and the photon yield at high pT in central Au-Au
collisions at the Relativistic Heavy-Ion Collider (RHIC) (

√
s = 200 GeV) and Pb-Pb collisions at the Large

Hadron Collider (LHC) (
√

s = 5500 GeV). A leading-order accurate treatment of jet energy loss in the medium
has been convolved with a physical description of the initial spatial distribution of jets and a one dimensional
hydrodynamic expansion. We reproduce the nuclear modification factor for pions RAA at RHIC, assuming an
initial temperature Ti = 370 MeV and a formation time τi = 0.26 fm/c, corresponding to dN/dy = 1260. The
resulting suppression depends on the particle rapidity density dN/dy but weakly on the initial temperature. The
jet energy loss treatment is also included in the calculation of high pT photons. Photons coming from primordial
hard N-N scattering are the dominant contribution at RHIC for pT > 5 GeV, whereas at the LHC, the range
8 < pT < 14 GeV is dominated by jet-photon conversion in the plasma.
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I. INTRODUCTION

One of the most important issues that arises in the study
of relativistic heavy-ion collisions is that of the creation
of a quark-gluon plasma (QGP). From lattice quantum
chromodynamics (QCD) calculations, there is strong evidence
that at around a temperature of 170 MeV, or equivalently
an energy density of about 1 GeV/fm3 [1], there should be
a phase transition between an ordinary confined hadronic
matter phase and a QGP phase, with an associated change
in the relevant degrees of freedom. At the Relativistic Heavy
Ion Collider (RHIC), measurements support the assertion that
the initial energy density of the created system reaches up
to 5 GeV/fm3. However, this does not necessarily imply the
creation of a QGP. To make sure that a new state of matter has
been formed, independent evidence is needed. One of the most
striking measurements in support of the creation of hot and
dense matter at RHIC is the discovery of high pT suppression
in central Au-Au collisions. This phenomenon is observed
in single hadron spectra [2,3] and in the disappearance of
back-to-back correlations of high pT hadrons [4].

There are a number of factors that can potentially influence
the spectrum of high pT partons in heavy-ion collisions
compared to that in hadron-hadron collisions:

(i) A difference between the parton distribution functions of
a proton and a heavy nucleus. This can be both depletion
(shadowing) or excess (antishadowing) depending on the
value of momentum fraction x. This also includes the
effect of gluon saturation.

(ii) The initial state multiple scattering effect. This is the well-
known Cronin effect caused by multiple soft scatterings
a parton may suffer before it makes a hard collision.
This can be significant only in interactions involving
nuclei.

(iii) Final state energy loss. This is because of the interaction
between the produced hard parton and the hot and dense
environment.

Our kinematical range of application in this work is mainly
midrapidity. There, initial state effects cannot explain high
pT suppression, as otherwise such suppression should also
be observed in d-Au collisions, which is not the case. High
pT suppression has to arise from a final state effect: jet
energy loss [5]. On top of experimental evidence for the
suppression cited above, it has been proposed [6,7] that
azimuthal anisotropy at high pT could also be explained
by jet energy loss. Induced gluon bremsstrahlung, rather
than elastic parton scattering, has been identified to be the
dominant mechanism for jet energy loss [8,9]. In the ther-
mal medium, a coherence effect, the Landau-Pomeranchuk-
Migdal (LPM) [10] effect, controls the strength of the
bremsstrahlung emission. Several models of jet quench-
ing through gluon bremsstrahlung have been elaborated:
Baier-Dokshitzer-Mueller-Peigné-Schiff (BDMPS) [11,12],
Gyulassy-Levai-Vitev (GLV) [13], Kovner-Wiedemann (KW)
[14], and Zakharov [15]. There have also been phenomenologi-
cal studies where different energy loss mechanisms were added
onto Monte Carlo jet models [16–18] (see also Ref. [19] for a
recent review). In this article, we use the formalism developed
by Arnold, Moore, and Yaffe (AMY) [20], which correctly
treats the LPM effect [up to O(gs) corrections], to get the
parton energy loss. That model will be convolved with a 1-D
expanding QGP to obtain quantitative results on jet quenching.
Then, the electromagnetic signature of jet-plasma interactions
will be investigated.

This article is organized as follows. In Sec. II we give a
qualitative description of gluon radiation and briefly review
the LPM effect and the conditions for the LPM regime.
In Sec. III, the AMY formalism is presented and the main
distinctions between the different treatments are highlighted.
In the following sections, the complete space-time evolution of
the jet is calculated within a hydrodynamical model, and high
pT spectra are obtained for pions (Sec. IV) and real photons
(Sec. V), for both RHIC and Large Hadron Collider (LHC)
energies. Finally, Sec. VI contains a summary and conclusions.
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FIG. 1. (Color online) The ratio of the final over initial parton
spectrum, from [23], for a representative thickness of plasma of
1.3 fermi at temperature T = 330 MeV, evaluated using the AMY
formalism used in the current paper.

II. QUALITATIVE ARGUMENTS

The high pT data from various RHIC experiments (see
Ref. [21] for a recent review) can be characterized by the
following quantity:

RAA ≡ (dNAA/dyd2pT )

〈Ncoll〉(dNpp/dyd2pT )
≈ C for pT >∼ 2 GeV,

(1)
which represents the ratio of the number of events per unit
rapidity and transverse momentum, scaled to the number ex-
pected based on proton-proton rates and the number of nuclear
collisions occurring in the heavy-ion collision. As indicated,
this ratio is found experimentally to be approximately constant,
with the constant C ranging from about 0.2 to 0.6 depending
on the centrality class and the rapidity y. The pp spectrum
at midrapidity can be conveniently parametrized by [22] the
following:

dNpp

dyd2pT

= A

(
p0

p0 + pT

)n

, (2)

where A is a normalization constant, p0 = 1.2 GeV and n =
10. In a previous article [23] two of us showed that the leading
order thermal QCD result for energy loss, shown in Fig. 1, can
qualitatively explain the fact that C is roughly constant over a
finite kinematical window. In this section, we use the simple
gluon radiation spectrum used by Baier et al. [11] to illustrate
the main physical features of this calculation.

As previously stated, the dominant energy loss mechanism
in medium is the radiation of gluons. We express the rate of
radiation of gluons of energy ω, per unit time and ω interval,
as � ≡ dI/dωdt . To understand the relationship between the
behavior of RAA and �, we note that, given �, the parton
distribution function P (p, t) (which gives the probability that
there will be a parton of energy p at time t) should satisfy a
rate equation,

dP (p, t)

dt
=

∫ ∞

−∞
dωP (p + ω, t)�(p + ω,ω, t)

−P (p, t)
∫ ∞

−∞
dω�(p,ω, t), (3)

provided that conversion between different species of partons
is unimportant. If the rate �(p,ω, t) has a weak dependence
on p (an assumption we make here for illustration but will not
use in our work in subsequent sections), then an approximate
solution can be written as follows:

P (p, t) ≈
∫

dεD(ε, p, t)P0(p + ε), (4)

where

D(ε, p, t) = exp

[
−

∫ ∞

−∞
dωJ (p,ω, t)

] ∞∑
n=0

1

n!

×
[

n∏
i=1

∫ ∞

−∞
dωiJ (p + ωi, ωi, t)δ

(
ε −

n∑
i=1

ωi

)]
(5)

with

J (p,ω, t) ≡
∫ t

0
dt ′�(p,ω, t ′). (6)

A similar expression is written down in Ref. [12]. The main dif-
ference between the current expression and the one in Ref. [12]
is that the range of integration in the above equations is from
−∞ to ∞: The negative ω corresponds to the absorption
of thermal partons and the range ω > p corresponds to
annihilation of a parton with a thermal antiparton.

Following [12], we let

P0(p + ε)

P0(p)
≈ exp(−nε/p), (7)

which allows us to write the nuclear modification factor as
follows:

RAA(p) =
∫

dεD(p, ε, t)
P0(p + ε)

P0(p)

≈
∫

dεD(p, ε, t) exp(−nε/p)

= exp

[
−

∫ ∞

−∞
dωJ (p,ω, t)

+
∫ ∞

−∞
dωJ (p + ω,ω, t)e−ω/(p/n)

]
. (8)

For this to be approximately constant, or at least have a weak
dependence on p, the exponent

A(p, t, n) = −
∫ ∞

−∞
dωJ (p,ω, t)

+
∫ ∞

−∞
dωJ (p + ω,ω, t)e−ω/(p/n) (9)

must have weak dependence on p, at most equaling β ln p with
β < 1.

Even without knowing the explicit form of the J function,
some insight can be gained from this expression. First, for
the second integral to be well defined in the ω < 0 range,
the Boltzmann factor corresponding to the thermal partons
must compensate the e−ω/(p/n) factor. Second, because of the
e−ω/(p/n) factor, in general the loss term dominates and hence
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RAA(p) < 1. Third, as p → ∞, the compensation between the
two terms in A becomes complete and RAA → 1.

To be more specific, the precise form of the J function needs
to be known. The energy loss of an energetic parton in a dense
medium mainly proceeds via bremsstrahlung of soft gluons.
The form of the energy loss (the J function above) depends
crucially on whether bremsstrahlung off many scatterers are
coherent or incoherent. This is determined by the relative size
of the mean free path λ = 1/nσ and the coherence length [24],

lcoh =
√

λω

µ2
(10)

where µ is the typical size of the soft momentum exchange
and ω is the energy of the emitted gluon. When lcoh 
 λ, then
one is in the extreme Bethe-Heitler regime where the energy
loss per unit length is proportional to the incoming energy.
Conversely, when lcoh � λ, then one is in the extreme Landau-
Pomeranchuk-Migdal (LPM) regime where the energy loss per
unit length is proportional to the square-root of the incoming
energy.

The typical mean free path for soft scattering in a hot
medium can be estimated as follows. The density of scatterers
according to the thermal distribution is n ∼ T 3. The typical
soft (pexch ∼ gT ) scattering cross-section is given by σ ∼
g2/T 2. Hence

λ ∼ 1/g2T . (11)

According to the above estimate of the coherence length, the
LPM effect becomes relevant when lcoh >∼ λ or

ω

µ2
>∼ λ, (12)

with µ ∼ gT and λ ∼ 1/g2T . This yields the following
condition:

ω >∼ T . (13)

Defining ELPM = λµ2, one can then conclude that for the
emitted gluon energy in the range of 0 < ω < ELPM, energy
loss is governed by the Bethe-Heitler limit as follows:

ω
dI

dωdz
� αs

π
Nc

1

λ
, (14)

and for ω > ELPM, the energy loss is governed by the LPM
limit [24] as follows:

ω
dI

dωdz
� αs

π
Nc

√
µ2

λω
. (15)

For ω > ELPM(L/λ)2, the coherence length exceeds the
length of the medium. In this case, effectively only a single
scattering can occur and the radiation spectrum goes back to

ω
dI

dωdz
� αs

π
Nc

1

L
. (16)

In this article, we will consider only following the case:

0 < ELPM � E0 < Efact (17)

assuming that L/λ � 1. Here E0 denotes the original energy
of the parton and we defined Efact = ELPM(L/λ)2.
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FIG. 2. Approximate RAA(p) calculated with Eq. (9) following
the approach of BDMPS up to the maximum momentum of Efact =
16 GeV. The solid line includes the contribution from absorption of
thermal gluons whereas the broken line only includes the emission.
The dashed-dotted line is calculated with only the LPM part of the
gluon spectrum. The divergence at p = 10T is an artifact of the
approximation.

To use Eq. (9), in addition to the above forms of gluon
spectrum for ω > 0, we also need to know the form of
J (p,ω, t) for ω < 0. For simplicity, we take the spectrum
for ω < 0 to be the same as the Bethe-Heitler spectrum and
multiply it by the Boltzmann factor to take into account that
absorption of high energy gluons from the thermal medium is
Boltzmann suppressed:

dI

dωdz
= αsNc

πλ

1

|ω|e
−|ω|/T . (18)

For illustration, we set ELPM = 1 GeV, λ = 1 fm and
T = 400 MeV and evolve the system until L = ct = 4 fm.
We have also set the upper limit of the momentum integral to
p. The above simple gluon spectrum then yields the RAA(p)
curves shown in Figs. 2 and 3. The solid curves in the figures
are calculated including the absorption contribution, and the
broken curves are calculated without the absorption part. Also
shown are the dot-dashed curves, which are calculated with
only the ω > ELPM part of the gluon spectrum, omitting the
Bethe-Heitler part. In Fig. 3, we show a momentum range
far exceeding the factorization energy to compare with the
calculation in Ref. [23].

In Ref. [23], two of us have calculated the same ratio of the
final and the initial spectrum using the resummation method
developed by AMY. The shape and the trend of the curve
calculated with the thermal absorption in Figs. 2 and 3 closely
match up with what we have previously calculated in Ref. [23].
The experimentally obtained RAA from STAR and PHENIX
from RHIC experiments also roughly has the same shape and
trend [2,25].

There are two major points we would like to make with this
simple calculation. One is the importance of the absorption
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FIG. 3. The same as Fig. 2 but showing a larger energy range.

of the thermal gluons. This is also closely related to the
appearance of a momentum scale p = nT . Near this scale,
absorption of thermal gluons is very efficient in changing
the shape of the final spectrum. Comparing the two curves
in Fig. 2 and also in Fig. 3, it is clear that the roughly flat
shape within the limited momentum range shown in Fig. 2
is because of the absorption of thermal gluons. Furthermore,
the efficient absorption near p = nT causes RAA to have a
larger value near this point. Without the absorption, RAA is a
monotonically increasing function of p. In the experimentally
measured RAA, one does observe such a change in slope near
pT = 3 GeV. This is usually attributed to the Cronin effect.
However, it could very well be because of the absorption of
thermal gluons.

The importance of gluon absorption will arise whenever
the slope of the spectrum, d ln P/dp, is comparable with the
thermal value 1/T . When these are equal, detailed balance
ensures that the more numerous lower energy particles keep
repopulating the higher energy ones. The reason the spectrum
in Fig. 2 rises to 1 at 10T is because we took the initial
particle distribution to be a strict power law, ∼p−n, which
becomes steeper than the thermal spectrum below p = nT .
More realistic initial distributions, as in Eq. (2), will not display
this behavior; nevertheless, absorption is important in the lower
energy region.

Another point to make is the importance of the Bethe-
Heitler part of the radiation spectrum. The effect of neglecting
the Bethe-Heitler part of the spectrum becomes justifiable only
around p ∼ 100T . Therefore, calculations with only the LPM
part of the spectrum appear unrealistic for RHIC energies.

III. THE FORMALISM

In a seminal series of articles, Baier, Dokshitzer, Mueller,
Peigné, and Schiff identified the diagrams that contribute to
the leading order energy loss in a hot QGP medium. A typical
diagram is shown in Fig. 4. To compute the energy loss rate,
one must deal with the following issues:

. . .

t1 t2 t3 tN

s1
s2

sM

p

k

p k

. . . .

FIG. 4. A typical bremsstrahlung diagram that needs to be
resummed.

1. How are these diagrams to be resummed?
2. How is the resulting equation to be solved?
3. How does one describe the time evolution of the energy

loss?

We now summarize the approach taken by AMY. The
ingredients discussed in this section can be found in Ref. [23].
We also briefly compare it with other approaches.

In the diagram shown in Fig. 4, a single wiggly line con-
nected to a single ⊗ is not a gluon propagator. Rather, it just de-
notes that a quark has interacted with the soft background field
at a certain time ti or si . To get the gluon energy spectrum at the
final time, we need to sum all the diagrams of the type shown
in Fig. 4, then square and average over the soft field configura-
tions. This procedure leads to the conclusion that the scattering
rate can be obtained by calculating the imaginary part of the
gluon self-energy in the soft thermal background. A typical
gluon self-energy in such a situation is shown in Fig. 5.

The result of resummation is summarized in the following
formulas. The transition rates for various emission processes
are given by the following:

d�(p, k)

dkdt
= Csg

2
s

16πp7

1

1 ± e−k/T

1

1 ± e−(p−k)/T

×




1+(1−x)2

x3(1−x)2 q → qg

Nf
x2+(1−x)2

x2(1−x)2 g → qq

1+x4+(1−x)4

x3(1−x)3 g → gg




×
∫

d2h
(2π )2

2h · Re F(h, p, k). (19)

FIG. 5. A typical gluon self-energy diagram that needs to be
resummed.
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Here Cs is the quadratic Casimir relevant for the process (in
QCD, 4/3 for processes involving a quark and 3 for the pure
glue process) and x ≡ k/p is the momentum fraction in the
gluon (or the quark, for the case g → qq̄). The factors 1/(1 ±
e−k/T ) are Bose stimulation or Pauli blocking factors for the
final states, with − for bosons and + for fermions. h ≡ p × k
determines how noncollinear the final state is; we treat it as
parametrically O(gT 2) and therefore small compared to p · k.
Therefore it can be taken as a two-dimensional vector in the
transverse space. F(h, p, k) is the solution of the following
integral equation:

2h = iδE(h, p, k)F(h) + g2
s

∫
d2q⊥
(2π )2

C(q⊥)

× {
(Cs − CA/2)[F(h) − F(h − k q⊥)]

+ (CA/2)[F(h) − F(h + p q⊥)]

+ (CA/2)[F(h) − F(h − (p − k) q⊥)]
}
. (20)

Here C(q⊥) is the differential rate to exchange transverse (to
the parton) momentum q⊥. In a hot thermal medium, its value

at leading order in αs is [26] as follows:

C(q⊥) = m2
D

q2
⊥
(
q2

⊥ + m2
D

) , m2
D = g2

s T
2

6
(2Nc + Nf ).

(21)

The energy difference between the final and the initial states
is given by the following:

δE(h, p, k) = h2

2pk(p − k)
+ m2

k

2k
+ m2

p−k

2(p − k)
− m2

p

2p
,

(22)

where m2 are the medium induced thermal masses, equal
to m2

D/2 for a gluon and Cf g2
s T

2/4 = g2
s T

2/3 for a quark.
For the case of g → qq, (Cs − CA/2) should appear as the
prefactor on the term containing F(h − p q⊥) rather than
F(h − k q⊥).

Next, we use these expressions to evolve the hard gluon
distribution Pg(p, t = 0) and the hard quark plus antiquark
distribution Pqq̄ (p, t = 0) with time, as they traverse the
medium. The joint equations for Pqq̄ and Pg are

dPqq̄ (p)

dt
=

∫
k

Pqq̄ (p + k)
d�

q
qg(p + k, k)

dkdt
− Pqq̄ (p)

d�
q
qg(p, k)

dkdt
+ 2Pg(p + k)

d�
g
qq̄(p + k, k)

dkdt
,

dPg(p)

dt
=

∫
k

Pqq̄ (p + k)
d�

q
qg(p + k, p)

dkdt
+ Pg(p + k)

d�
g
gg(p + k, k)

dkdt
− Pg(p)

(
d�

g
qq̄ (p, k)

dkdt
+ d�

g
gg(p, k)

dkdt
�(2k − p)

)
,

(23)

where the k integrals run from −∞ to ∞. The integration range
with k < 0 represents absorption of thermal gluons from the
QGP; the range with k > p represents annihilation against an
antiquark from the QGP, of energy (k − p). In writing Eq. (23),
we used d�

g
gg(p, k) = d�

g
gg(p, p − k) and similarly for g →

qq̄; the � function in the loss term for g → gg prevents
double counting of final states. Because bremsstrahlung energy
loss involves only small O(gsT /p) changes to the directions
of particles, these equations can be used for the momentum
distributions in any particular direction. For a single initial hard
particle, they can be viewed as Fokker-Planck equations for the
evolution of the probability distribution of the particle energy
and of accompanying gluons. These expressions depend at
several points on g2

s or αs . When evaluating them numerically,
we have used αs = 0.3.

We now briefly compare our approach with others used in
the literature. As this article is not intended to be a review, this
cannot and will not be a complete comparison with all other
jet-energy loss calculations.

As was mentioned at the beginning of this section, most jet-
quenching calculations start with the problem of resumming
all diagrams of the form shown in Fig. 4. In a series of
articles, U. Wiedemann et al. have shown that BDMPS,
Zakharov, GLV, and also the eikonal approach taken by
Wiedemann and Kovner are all related to each other. In

these approaches, the problem of resumming the diagrams is
solved in position space assuming static scatterers, although
the methods of solving the problem differ. Because a thermal
medium consists of dynamic, moving scatterers, temperature
was introduced only as the controlling variable for the mean
free path in these approaches. The evolution of the initial parton
distribution is then achieved through Eq. (4) with the important
restrictions that only the emission of gluons was considered
with (Wiedemann) or without (BDMPS) restriction on the
kinematic upper limit of the emitted energy. There is also an
approximation that ignores the emitted energy in the gain rate
[�(p + ω,ω, t) → �(p,ω, t) in Eq. (4)].

Our approach differs with the above ones in three major
ways. The biggest difference is that our calculation is com-
pletely thermal and hence the scatterers are all dynamic. In
our calculation, temperature enters through the thermal phase
space of the initial and the final particles and there is no
assumption of the form of the elementary cross section. All are
calculated completely within the framework of hard thermal
loop resummed leading order thermal QCD. Hence, gain or
loss because of the absorption of thermal partons (ω < 0) as
well as the loss process of pair annihilations with the thermal
partons (ω > p) are fully included in our calculation. These
are missing in the approaches mentioned above. In Ref. [27],
thermal absorption and stimulated emission were introduced
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in the framework of GLV. This was done only up to the
first order in the opacity expansion without including the
annihilation process with thermal partons. Second, instead of
approximately solving for the transition rates and then using
Eq. (4), we explicitly solve for both the transition rates and
the coupled rate equations of hard quarks and gluons. There
are also no approximations about whether the Bethe-Heitler or
LPM regime is relevant; the transition between these extremes
is handled correctly.

One limitation of the current approach as compared to
the previous ones is that the transition rates are calculated in
momentum space assuming the thermodynamic limit. That is,
our approach assumes that the high-energy parton experiences
a uniform medium on the time scale of the formation time
of the emitted radiation. Hence, our approach is limited to
momenta less than the factorization energy. With µ ≈ 0.5 GeV,
L ≈ 5 fm, and λ ≈ 1 GeV, this limits the momenta to the region
p < 30 GeV. This is not a big problem at RHIC energies, where√

s is only 200 GeV, and it also covers the pT acceptance of
the ALICE detector at the LHC.

IV. PION PRODUCTION

The goal of this section is to use the formalism explained
in the previous section to calculate the neutral pion spectrum
in heavy-ion collisions. Our approach to this problem relies on
the fact that for hard spectra, the AA collision can be regarded
as a collection of binary collisions. In this way of formulating
the problem, the AA spectrum is given by the convolution of
the elementary pp spectrum with geometrical and in-medium
factors.

Up to suppressed corrections, the π0 cross section in an
N-N collision factorizes and is given by [28] the following:

Eπ

dσNN

d3pπ

=
∑

a,b,c,d

∫
dxadxbg(xa,Q)g(xb,Q)Kjet

× dσa+b→c+d

dt

1

πz
Dπ0/c(z,Q′), (24)

where g(x,Q) is the parton distribution function (PDF) in
a nucleon, Dπ0/c(z,Q′) is the pion fragmentation function,
dσa+b→c+d/dt is the parton-parton cross-section at leading
order, and the factor Kjet accounts for higher order effects
(where jet here means a fast parton having p

jet
T � 1 GeV).

According to [29], Kjet is almost independent of p
jet
T at RHIC

energies. We use Kjet ∼ 1.7 for RHIC and 1.6 for the LHC,
based on their results.

For all our calculations, we set the factorization scale
(Q) and the fragmentation scale (Q′) equal to pT . We take
the CTEQ5 parton distribution function [30] and the π

fragmentation function extracted from e+e− collisions [31].
Figure 6 shows our calculation for the spectrum of high

pT neutral pions in pp collisions at RHIC, compared to the
PHENIX result [32]. One can readily see that our calculation
reproduces the data in the region where jet fragmentation is
expected to be the dominant mechanism of particle production
(pT > 5 GeV/c) [33].
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FIG. 6. (Color online) Neutral pion spectra in pp collisions at
RHIC. The data points are from PHENIX and the solid line is the
calculated result from jet fragmentation.

To obtain the high pT π0 cross-section in AA collisions, we
must modify the pp calculation in two ways. First, the PDF of
a nucleus differs from that of a proton as follows:

gA(xa,Q) = g(xa,Q)RA(xa,Q), (25)

where the nuclear modification of the structure function RA

takes into account shadowing and antishadowing. In this
article, we use RA(xa,Q) as parametrized by Eskola et al. [34].

Second, we must account for the energy loss of the parton
between its production in the hard initial scattering event and
its hadronization. We assume that a jet fragments only outside
the medium, as may be justified by estimating the formation
time of a pion with the typical observed energy. In Ref. [35],
the formation time of an emitted pion with energy Eπ is
estimated to be ∼RπEπ/mπ , where Rπ ∼ 1 fm is the size
of the pion. For a 10-GeV pion, this gives τf ∼ 35–70 fm/c.
This is much longer than the path of a jet in the hot matter
created by two colliding nuclei. Therefore, one should consider
production, energy loss in medium, and fragmentation to occur
sequentially.

We assume that the fragmentation at the edge of the
QGP involves the usual vacuum fragmentation function. The
medium effect is then to reduce the parton energy by an
amount determined by the Fokker-Planck equation previously
presented, Eq. (23). This is most conveniently written by
defining a new medium-inclusive effective fragmentation
function,

D̃π0,c(z,Q; r, n) =
∫

dpf

z′

z
[Pqq̄/c(pf ; pi)Dπ0/q(z′,Q)

+Pg/c(pf ; pi)Dπ0/g(z′,Q)], (26)

where z = pT /pi and z′ = pT /pf . Pqq̄/c(pf ; pi) and
Pg/c(pf ; pi) represent the solution to Eq. (23), which is the
probability to get a given parton with final momentum pf

when the initial condition is a particle of type c and momentum
pi .

The quantities Pqq̄/c and Pg/c in Eq. (26) depend implicitly
on the path length the initial parton must travel and the
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temperature profile along that path. This is not the same for
all jets, because it depends on the location where the jet is
produced and on the direction the jet propagates. Therefore,
one must convolve this expression over all transverse positions
r⊥ and directions n. Because the number of jets at r⊥ is
proportional to number of binary collisions, the probability
is proportional to the product of the thickness functions of the
colliding nuclei at r⊥. For central collisions where the impact
parameter b ≈ 0, we get the following:

P(r⊥) ∝ TA(r⊥)TB(r⊥). (27)

For a hard sphere that we use for simplicity, this probability is
as follows:

P(r⊥) = 2

πR2
⊥

(
1 − r2

⊥
R2

⊥

)
θ (R⊥ − r⊥), (28)

which is normalized to yield
∫

d2r⊥P(r⊥) = 1. Because the
direction of the jet is fixed by the pion direction (n = pπ/|pπ |),
the final in-medium modified fragmentation function is as
follows:

D̃π0/c(z,Q) =
∫

d2r⊥ P(r⊥)D̃π0/c(z,Q, r⊥, n). (29)

The AA spectrum is now given by the following:

dNAA

dyd2pT

= 〈Ncoll〉
σin

∑
a,b,c,d

∫
dxadxbgA(xa,Q)gA(xb,Q)Kjet

× dσa+b→c+d

dt

D̃π0/c(z,Q)

πz
, (30)

where 〈Ncoll〉 is the average number of binary collisions and
σin is the inelastic nucleon-nucleon cross section.

Because Eq. (30) is expressed in terms of probability
distributions, it is straightforward to evaluate it using the Monte
Carlo method. One complication in doing so is that, although
the parton traverses the medium, the medium also evolves.
Therefore at each time step of solving Eq. (23), the temperature
must be adjusted to the local environment. We assume that the
medium expands only in the longitudinal direction, based on
the following reasoning. The low pT neutral pion spectrum
at RHIC is well reproduced by a hydrodynamical model
incorporating transverse expansion, whereas the model fails
for pT > 3 GeV, suggesting that high-pT pions mainly come
from jet fragmentation [36]. The transverse expansion will
have two effects on jet energy loss. First, the expanding
geometry will increase the duration of parton propagation.
However, the same expansion will cause the parton density
to fall along the path. Those two effects partially compensate
each other and the energy loss is just about the same as in
the case without transverse expansion [37]. In 1D Bjorken
expansion [38], the temperature evolves as follows:

T = Ti

(τi

τ

)1/3
. (31)

In the original Bjorken model, the transverse density is
assumed to be constant. Because a nucleus does have a
transverse density profile, it is more realistic to assign the
initial temperatures in the transverse direction according to

the local density so that [39,40]

T (r, τi) = Ti

[
2

(
1 − r2

R2
⊥

)]1/4

. (32)

Putting Eqs. (31) and (32) together, we get the temperature
evolution of a QGP expanding in 1D as follows:

T (r, τ ) = Ti

(τi

τ

)1/3
[

2

(
1 − r2

R2
⊥

)]1/4

. (33)

The jet evolves in the QGP medium until it reaches
the surface or until the temperature reaches the transition
temperature Tc. In our calculation, we assume a first-order
phase transition and use the following:

fQGP = 1

rd − 1

( rdτf

τ
− 1

)
(34)

as the fraction of the QGP phase in the mixed phase [38]. Here
rd = gQ/gH is the ratio of the degrees of freedom in the two
phases and τf is the time when the temperature reaches Tc.
The evolution equation is then scaled accordingly for τ > τf .
We take the critical temperature Tc to be 160 MeV.

The result of our calculation for RHIC energy is sum-
marized in Fig. 7 together with the PHENIX data [2]. To
cover the uncertainties in the initial conditions, we consider
two different sets, one at a relatively high temperature of
Ti = 447 MeV and a relatively short initial time of τi =
0.147 fm/c taken from Refs. [39,40], and one at a lower
temperature Ti = 370 MeV and somewhat later time for
the hydrodynamic evolution of τi = 0.26 fm/c taken from
Ref. [41]. Those two sets correspond to dN/dy|y=0 ∼ 1260,
estimated for central collisions in Ref. [40]. In deriving these
results, we have used αs = 0.3. If the value is larger then
energy loss will be greater, so RAA will be smaller; if it is
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FIG. 7. (Color online) Nuclear modification factor for pions at
RHIC. Data points are from PHENIX [2]. The solid lines show the
full calculation of the spatial distribution of jets in the transverse
plane for two initial temperatures. The dotted lines assume that all
jets are created at the center and the dashed lines assume the same
approximation but with a reduced energy loss.
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smaller, then RAA increases. Besides this dependence on αs ,
our results rely on no free parameters.

The solid lines in the figure are full calculations with
the initial spatial distribution P(r⊥) given in Eq. (28). For
comparison, we also display two more sets of calculations. The
dotted line is calculated with the jets originating only from
the center of the disk (r⊥ = 0). Comparing the dotted line
with the solid line, it is apparent that the absolute magnitude
of the RAA depends very much on the density profile of the
nucleus. The dashed line is calculated again with the jets from
the center but with the energy loss rates reduced by a factor of
0.64. One may say that the average path of a jet has the length
of about 0.64 × RA.

In Fig. 7, one can see that both Ti = 447 MeV and
Ti = 370 MeV describe the real data reasonably well. This is
somewhat surprising. Because the density of thermal particle
is proportional to T 3, the density at 447 MeV is about 1.8
times the density at 370 MeV. Yet the energy loss does not
reflect such a big difference. The reason is because the energy
loss depends mostly on the duration of evolution. In a Bjorken
expansion, the initial time τi and the temperature are related
by the following:

T 3
i τi = π2

ζ (3)gQ

1

πR2
⊥

dN

dy
. (35)

Hence once dN/dy is fixed, the time evolution of the
temperature follows a common curve regardless of the initial
temperature [cf., Eq. (33)]. The only difference between
the higher and the lower temperature cases is that the time
evolution starts earlier for the higher temperature case. From
the moment τ passes τi for the lower temperature, the evolution
of the two systems is identical. Therefore, if energy loss at
the beginning of the evolution is small compared to the later
time energy loss, the amount of energy loss depends mostly
on the duration of the QGP phase �τ = τf − τi . Because
τf � τi , the duration of the QGP phase is approximately the
same for high temperatures. We have verified that the energy
loss between the times corresponding to Ti = 1000 MeV,
Ti = 447 MeV, and Ti = 370 MeV are at most about 10%.

Because the suppression is mainly controlled by the
duration of the evolution, the suppression should be sensitive to
the particle rapidity density dN/dy, which fixes the lifetime
of the QGP. We can see in Fig. 8 that it is indeed the case. For
simplicity, we assume here that the jets are all created at the
center of the system. We see that there is very little change
in the suppression as the initial temperature varies from Ti =
370 MeV to Ti = 1000 MeV. However, the suppression shows
a strong dependence on dN/dy; going from dN/dy = 680 to
dN/dy = 1260 increases the suppression by a factor of ∼1.5.

For the LHC, we use the initial temperature from Ref. [41],
Ti = 845 MeV, giving τi = 0.088 fm/c for dN/dy ∼ 5625
[40,42]. At this energy, jets could in principle be produced with
energies as high as

√
s/2 = 2750 GeV. However, according to

our discussion in Sec. II, the contribution from a jet having
more that twice the observed pion energy should be sharply
cut off by the steeply falling initial function. Because our
approach is limited to the observed pT >∼ 30 GeV, considering
original energy of only up to about 100 GeV should be enough
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FIG. 8. (Color online) Nuclear modification factor for pions at
RHIC, taking all jets to originate at the center of the nucleus. Data
points are from PHENIX [2]. The solid lines are for initial conditions
which lead to a particle multiplicity of dN/dy = 1260, whereas the
dotted lines are for initial conditions leading to dN/dy = 680. For
each set of lines, the initial temperature is, from bottom to top, 1000,
447, and 370 MeV.

for our purposes. To be on the conservative side, we cut off the
maximum jet energy at 400 GeV.

The calculated LHC nuclear modification factor is shown
in Fig. 9 with the full fragmentation function from Eq. (29).
We also show in the same figure the effect of not tracking
the secondary partons (gluons emitted by quarks and quarks
emitted by gluons). Comparison between the solid line and
the dashed line shows that ignoring the secondaries can make
an overall difference of 30%. This arises almost entirely from
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FIG. 9. (Color online) Nuclear modification factor of pions at
the LHC. The solid line includes pions coming from bremsstrahlung
secondaries emitted in the thermal medium; the dashed line does not.
For both lines, the full spatial distribution from Eq. (28) has been
used.
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quark secondaries from gluon jets—that is, from hard gluons
that split, due to plasma interactions, into qq̄ pairs, which
subsequently fragment. This is important at the LHC, but much
less so at RHIC, because most hard jets at the LHC arise from
gluons, whereas a larger fraction at RHIC are from quarks.
The gluons emitted by quarks are mostly soft; they also lose
energy quickly and fragment inefficiently. At RHIC energies
the error from dropping secondaries is only 5%.

Comparing the RHIC and LHC results, we see that the
suppression because of jet energy loss at RHIC is about a factor
of 3 for a 10 GeV pion, whereas the suppression at the LHC for
a pion at the same energy is about a factor of 6. This difference
arises because the medium at the LHC remains hot for much
longer than at RHIC. The cooling is governed by the product
T 3τ ∝ dN/dy. Hence, smaller dN/dy implies faster cooling.
We have also calculated the impact of assuming a first-order
phase transition. At RHIC, at the end of the QGP phase, many
jets have already left the medium, but those still inside will
suffer additional suppression during the mixed phase, such
that assuming a crossover between the QGP and the hadron gas
phase will increase RAA by ∼20%. At the LHC, at the critical
point, a much larger fraction of jets are out of the medium,
such that RAA is quite insensitive to assumptions related to the
transition. Our initial conditions correspond to an initial time
smaller than the common value of τi = 0.6 fm/c used in hydro-
dynamic calculations [43]. We have verified that going from
τi = 0.26 fm/c (Ti = 370 MeV) to 0.6 fm/c (Ti = 280 MeV)
increases RAA by less than 20%. In this section, the AMY
formalism has been applied to successfully reproduce the π0

spectra at RHIC. We will see in the following section how the
same formalism can be applied to determine the production of
real photons.

V. PHOTON PRODUCTION

The hard photons produced in nucleon-nucleon collisions
can be divided into three categories: direct photons, frag-
mentation photons, and background photons. Direct photons
are those produced by Compton scattering and annihilation
of two incoming partons. Fragmentation photons are those
produced by bremsstrahlung emitted from final state partons.
Background photons are those produced by the decay of
hadrons subsequent to the collision, primarily from π0 → γ γ

decay. The “prompt photons” are those coming from direct
production and the fragmentation process. The expression for
prompt photon production is

Eγ

dσ

d3pγ

=
∑
a,b

∫
dxadxbg(xa,Q)g(xb,Q)

×

Kγ (pT )

dσa+b→γ+d

dt

2xaxb

π
(

2xa − 2 pT√
s
ey

)
× δ

(
xb − xapT e−y

xa

√
s − pT ey

)

+ Kbrem(pT )
dσa+b→c+d

dt

1

πz
Dγ/c(z,Q)


 . (36)
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FIG. 10. (Color online) Prompt photons produced in pp collision
at RHIC. Data points are from PHENIX. The solid line is calculated
with Eq. (36).

Kγ and Kbrem are correction factors to take into account NLO
effects; we evaluate them using the numerical program from
Aurenche et al. [44], obtaining Kγ (10 GeV) ∼ 1.5 for RHIC
and LHC and Kbrem(10 GeV) ∼ 1.8 at RHIC and 1.4 at LHC.
All scales (renormalization, factorization, and fragmentation)
have been set equal to the photon transverse momentum pT .
The photon fragmentation function Dγ/c is extracted without
medium effects in e− + e+ collisions [45]. The validity of this
expression for pp collisions at

√
s = 200 GeV is shown in

Fig. 10 with data from PHENIX [46]. It appears clear that the
baseline mechanism of high pT photon production in nucleon-
nucleon collisions is under quantitative control.

In AA collisions, there is an additional source of high pT

photons: the medium contribution. This contribution includes
the direct conversion of a high-energy parton to a high-energy
photon by annihilation with a thermal parton, in-medium
bremsstrahlung from a jet, and thermal production of photons.

A. Jet-photon conversion

In Ref. [39], the conversion of a leading parton to a photon
in the plasma was found to be an important process. This
happens when a jet crossing the hot medium undergoes an
annihilation (q + q̄ → g + γ ) or a Compton (g + q → q + γ )
process with a thermal parton. The related production rate of
photons is given by [39,47] the following:

dR

dyd2pT

=
∑
f

(ef

e

)2 T 2ααs

8π2
[fq(−→pγ ) + fq̄(−→pγ )]

×
[

2 ln

(
4Eγ T

m2

)
− Cann − CCom

]
, (37)

where T is the temperature, Cann = 1.916, and CCom = 0.416.
It has been shown in Refs. [48,49], that the infrared dependence
on the quark mass should be replaced by a dependence on the
in-medium thermal quark mass, m2 = 2m2

th = 4παsT
2/3. The

phase-space distribution function of the incoming particles is
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defined as follows:

gi

∫
d3xd3p

(2π )3
f (x, p) = Ni, (38)

where Ni is the number of particles i and gi is the spin-color
degeneracy. The phase-space distribution function for an
incoming jet, assuming a Bjorken η − y correlation [50], is
as follows

fjet(−→x ,−→p , t0) = (2π )3P(r⊥)

gqτpT

dN jet

dyd2pT

δ(η − y)

= (2π )3P(r⊥)t0

gq

√
t2
0 − z2

0

pT

E2

dN jet

dyd2pT

δ(z0 − vzt0),

(39)

where η is the space-time rapidity, t0 is the formation time of
the jet, and z0 is its position in the QGP expansion direction.
As before, the jets are taken to be massless and we suppose
that energy loss of jets in the plasma does not change their
direction. With this latter approximation, fjet can be factorized
into a position space and a momentum space part:

fjet(−→x ,−→p , t) = χ (−→x , t)
1

E2

dN jet(E, t)

dE

= χ

(
−→x − t̂

−→p∣∣−→p ∣∣ , t0
)

1

E2

dN jet(E, t)

dE
, (40)

where t̂ = t − t0 is the propagation time of the jet. In the
high energy limit, the cross sections σqq̄→gγ and σqg→qγ

are dominated by direct exchange between the quark and
the photons. Because we are interested in photons produced
at midrapidity (y = 0), we only need to consider quark
and antiquark jets produced at midrapidity. This gives the
following:

fjet(−→x ,−→p, t)
∣∣
y=0 = (2π )3P(

∣∣−→wr

∣∣)t0
gq

√
t2
0 − z2

0

1

pT

dNqq̄

dyd2pT

(pT , t)δ(z0),

(41)

where −→wr is, in the plane z0 = 0, the initial radial position of
the jet,

|−→wr | =
(

−→x − t̂
−→p
|−→p |

)
· r̂

=
√

(r cos φ − t)2 + r2 sin2 φ for t0 ∼ 0, (42)

and φ is the angle in the plane z0 = 0 between the direction
of the photon and the position where this photon has been
produced. The AMY formalism is introduced here to calculate
the evolution of dNqq̄/dyd2pT (pT , t). The output of Eq. (23)
is Pqq̄ (E, t), where

Pqq̄ (E, t) = dNqq̄

dE
(E, t) ∝ pT

dNqq̄

dyd2pT

(pT , t). (43)

The initial distributions Pqq̄ (E, t0) and Pg(E, t0) are fixed by
the initial jet distribution at midrapidity as parametrized in
Ref. [39,40]. The total photon spectrum is given by a full

space-time integration as follows:

dNγ

dyd2pT

=
∫

dττ

∫
rdr

∫
dφ

×
∫

dη
dR

dyd2pT

[Eγ = pT cosh(y − η)]

=
∫

dt

∫
rdr

∫
dφ

∫
dz0

dR

dyd2pT

× [Eγ = pT cosh(y0)]. (44)

The production rate is calculated in the local frame where
the temperature is defined where the photon rapidity becomes
y0 = y − η.

High-pT photons are emitted preferentially early during
the QGP phase, when the temperature is at its highest point.
Indeed, explicit hydrodynamic calculations show that the
nuclear space-time geometry smoothly evolves from 1D to
3D [51]. By the time the system reaches the temperature
corresponding to the mixed phase in a first-order phase
transition, the system is still very much 1D [51]. For such
a geometry, specific calculations [52] suggest that the flow
effect on photons and dileptons from the QGP is not large
at RHIC and LHC for pT > 2 GeV. Assuming again a 1D
expansion, we get the production of photons from jet-medium
interactions from Eqs. (37), (41), and (44),

dN
γ

jet−th

dyd2pT

∣∣∣
y=0

= 2
∫

dt

∫ R⊥

0
rdr

∫ π

0
dφ

(2π )3P(|−→wr |)
gq

× 1

pT

dNqq̄

dyd2pT

(pT , t)
∑
f

(ef

e

)2 T 2ααs

8π2

×
[

2 ln

(
3pt

παsT

)
− Cann − CCom

]
, (45)

where the temperature T evolves according to Eq. (33). The φ

integration can be done as follows:∫ π

0
dφP(|−→wr |) = γ (r, t)

=




0 r2 + t2 − 2tr > R2
⊥

2
R2

⊥

(
1 − r2+t2

R2
⊥

)
r2 + t2 + 2tr < R2

⊥

2u0

πR2
⊥

(
1 − r2+t2

R2
⊥

)
+ 4tr

πR4
⊥

sin(u0) otherwise,

(46)

where

u0 = arccos

(
r2 + t2 − R2

⊥
2tr

)
. (47)

Then, the final expression for the jet-photon production
becomes the following:

dN
γ

jet−th

dyd2pT

∣∣∣
y=0

= 2
∫

dt

∫ R⊥

0
rdr

(2π )3

gq

1

pT

dNqq̄

dyd2pT

× (pT , t)γ (r, t)
∑
f

(ef

e

)2 T 2ααs

8π2
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FIG. 11. (Color online) Direct production of photons by jets in
the plasma for Au-Au at RHIC and Pb-Pb at the LHC. For the solid
lines, jet energy loss is included; for the dashed lines it is neglected.
The initial temperature is Ti = 370 MeV at RHIC and Ti = 845 MeV
at the LHC.

×
[

2 ln

(
3pt

παsT

)
− Cann − CCom

]

=
∫

dt
dN

γ

jet−th

dtdyd2pT

∣∣∣
y=0

. (48)

As before, we assume a first-order phase transition beginning
at the time τf and ending at τH = rdτf [38]. After τf we scale
the production rate by fQGP [Eq. (34)] such that

dN
γ

jet−th

dyd2pT

∣∣∣
y=0

=
∫ τf

τi

dt
dN

γ

jet−th

dtdyd2pT

∣∣∣
y=0

+
∫ τH

τf

dtfQGP(t)
dN

γ

jet−th

dtdyd2pT

∣∣∣
y=0

. (49)

The first term and second term correspond respectively to
photons produced during the pure QGP and the mixed phase.
Our results for RHIC and LHC, with and without energy loss
are shown in Fig. 11. Here also, αs = 0.3. We see that higher
energy photons are more sensitive to jet energy loss: photons
at 4 GeV are suppressed by a factor 1.3 at RHIC, whereas
15 GeV photons are suppressed by a factor 1.6 because of
jet energy loss. We find approximately the same suppression
for the LHC. This suppression is much smaller that the one
observed from RAA in the previous section. This is because
the photons can be produced at any point in the hard parton’s
propagation through the medium, whereas the jet energy loss
depends on the final parton energy. Hence, some of the photon
rate arises from before, rather than after, the jet has lost much
energy.

B. Bremsstrahlung Photons

Hard partons in the medium can also produce photons
by bremsstrahlung when they scatter in the medium. The
photon bremsstrahlung rate d�q→qγ (p, k)/dkdt follows the

same expression as d�q→qg(p, k)/dkdt in Eq. (19), but with
Cs → e2

f /e2, CA → 0,mγ = 0, and g2
s → e2. The photon

bremsstrahlung distribution is given by the following:

dPγ (p, t)

dt
=

∫
dk Pqq̄ (p + k)

d�q→qγ (p + k, p)

dkdt
. (50)

It is assumed here that the photon production rate is so low that
the quark plus antiquark distribution Pqq̄ will be unchanged
by the photon emission. The photon distribution is finally
convolved with the initial spatial distribution of jets to get
the final spectrum of bremsstrahlung photons,

dNjet−br

dyd2pT

∣∣∣
y=0

= 1

pT �(y = 0)

dNjet−br

dpT

= 1

pT

∫
d2r⊥ P(r⊥)Pγ (pT , d), (51)

where r⊥ is the position where the jet has been created and
d = d(r⊥) is the distance crossed by the jet in the plasma.
The factor �(y = 0) corresponds to a dφ and a dy integration
around the plane y = 0. This factor can be absorbed in the
definition of the initial distribution Pqq̄ (pT , t = 0).

Numerically, bremsstrahlung photons turn out to be sub-
dominant to jet-photon conversion. This is because, whereas
the rate at which such photons are produced is larger, they
typically carry only a fraction of the jet’s energy, whereas
jet-photon conversion predominantly produces photons with
the complete energy of the jet (hard parton). When folded
against a steeply falling spectrum of jets, the process that
produces the highest energy photons will dominate the final
spectrum.

Recently, Zakharov has also considered bremsstrahlung
emission of photons from jets [53]. His work accounts for
finite-size effects in the high-energy limit; in this respect it
is more complete than our work here. However, our energy
range of interest for this study, as discussed at the end of
Sec. III, is below the factorization scale, so finite size effects
are small for the energies we consider.

C. Thermal photons

The thermal-thermal contribution comes from the photons
produced by two scattering thermal particles. The Compton
and annihilation rate has been calculated in the previous
literature [48,49], and we use those results here. There are also
leading order bremsstrahlung and inelastic pair annihilation
contributions [54]; we use the parametrization for those rates
presented there.

D. Nonthermal contributions

The expression for prompt photons produced in AA colli-
sions is as follows:

dNγ−prompt

dyd2pT

= Eγ

dσ

d3pγ

〈Ncoll〉
σin

, (52)

where we take the values 〈Ncoll〉 = 975, σin = 40 mb for
RHIC [18] and 〈Ncoll〉 = 1670, σin = 72 mb for the LHC [55].
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FIG. 12. (Color online) Contributing sources of high-pT photons at midrapidity in central Au-Au collisions at RHIC (left panel) and Pb-Pb
collisions at the LHC (right panel). (Solid line) Jet-photon conversion in the plasma; (dotted line) bremsstrahlung from jets in the plasma; (short
dashed line) thermal induced production of photons; (long dashed line) fragmentation of jets outside the plasma; and (dot-dashed line) direct
contribution from the primordial hard scattering.

Eγ dσ/d3pγ is taken from Eq. (36) but with the photon
fragmentation function accounting for the jet energy loss.

We assume, as we did for pion production, that photon
production via fragmentation of a jet occurs after the jet parton
leaves the QGP. Therefore, the photon fragmentation function,
including the full spatial distribution and the secondary jets, is
given by Eq. (29), with the substitution π0 → γ .

The preequilibrium contribution of photons, corresponding
to photons emitted after the transit time of the two nuclei but
before thermalization time, is not explicitly included in this
work. However, a rough estimate might be had by choosing
a smaller formation time, as we do. The modeling of those
contributions is accessible by the parton cascade model [56].
Finally, to have a complete photon description, we have also
calculated the background production, which mainly comes
from the decay π0 → γ γ . This is given by [57] the following:

dNγ−BG

dyd2pT

=
∫

dyπ0
d2pπ0

T

dNπ0

dyπ0
d2pπ0

T

dP (pπ0 → pγ )

dyd2pT

. (53)

All the previous procedures for jet energy loss, initial spatial
distribution and the effect of secondary jets are included in
the calculation of the pion spectrum dNπ0

/dyπ0
d2pπ0

T . In the
pion center-of-mass frame, the photon distribution is given by
the following:

dP (pπ0 → pγ )

dyd2pT

=
δ
(
E

γ
cm − mπ0

2

)
2πE

γ
cm

, (54)

where

Eγ
cm = pT cosh y

√
sin2 θ + (Eπ0 cos θ − |pπ0 |)2

m2
π0

(55)

and θ is the angle between pπ0 and pγ . With the η branching
ratio �η→γ γ /�η ∼ 40% [58] and its relative yield Nη/Nπ0 ∼
0.5 [59], we simply multiply Eq. (54) by a factor of 1.2 to
include the η contribution.

E. Results

Each contribution of high pT photons, except the back-
ground, are shown in Fig. 12 for central collisions at RHIC and
the LHC. The energy loss is included in all processes involving
jets. Prompt photons have been split into the direct component
(N-N) and the fragmentation component. All those processes,
except the contribution from jet-medium bremsstrahlung, have
been presented in Ref. [39] for the case of no energy loss. For
RHIC, as in Ref. [39], the high pT region is dominated by direct
photons. However, in Ref. [39], the jet-photon conversion was
dominant below 6 GeV, whereas in our study, direct photons
dominate all the high pT spectrum. A few factors explain
this difference. The jet energy loss is included here; the
constants Cann and CCom appearing in Eq. (37) have been set
equal to 1.916 in Ref. [39]; the Kjet factor in the original
publication is larger than ours: Kjet = 2.5 is used for both
RHIC and the LHC, whereas we use Kjet = 1.7 for RHIC
and 1.6 for LHC. Finally, no Kγ factor has been used for the
direct contribution in Ref. [39]. It is, however, satisfying that
the inclusion of jet energy loss does not spoil the original
premise: jet-photon conversion is an important source of
electromagnetic radiation.

At the LHC, our result is dominated by direct photons for
pT above 20 GeV, but there is a window, below 14 GeV,
where the jet-photon conversion in the plasma is the dominant
mechanism of photon production. In Ref. [39], however, the
jet fragmentation (called bremsstrahlung in their study) was
the most important process at the LHC, but jet suppression was
not included. Photon production via jet bremsstrahlung in the
plasma (dotted lines) turns out to be weak, but nonnegligible. It
is approximately a factor of 3 below the jet-photon conversion
contribution. Finally, the thermal induced photons (short
dashed lines) are far below all other contributions in intensity.

New results for total photon production, after back-
ground subtraction, are now available [60]. Our calculations
are compared to experimental data on the left-hand side of
Fig. 13. The solid line includes the prompt photon contri-
bution (pQCD), the QGP (jet-th, th-th, and jet-bremss.) and
hadron gas contribution, extracted from Ref. [41]. This latter
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FIG. 13. (Color online) Total production of photons in central Au-Au collisions at RHIC and Pb-Pb at the LHC. The solid lines include
all process from Fig. 12 and the hadron gas contribution [41], whereas the dot-dashed lines do not include the jet-thermal contribution.
p-p collisions scaled to A-A are shown by the dashed lines. Data at RHIC are from PHENIX [60].

contribution becomes important only for pT < 1.5 GeV.
The initial condition for the thermal phase corresponds to
Ti = 370 MeV and τi = 0.26 fm/c. For a better comparison
with data, we have extended our calculation down to pT = 1
GeV. No cutoff has been applied on either jet-th or pQCD
process. NLO calculations are not very reliable is this region,
but thermal induced reactions and hadron gas contributions
turn out to dominate here and NLO results play a minor role.
When the jet-photon conversion is not included (dot-dashed
line), the total photon production is reduced by up to 45%,
around pT = 3 GeV, showing the importance of that process.
The result expected from N-N collisions scaled to Au-Au is
also shown (dashed line). The plasma contribution, especially
the jet-thermal process, is very important for pT < 6 GeV.
However, large error bars prevent a strong claim about the
presence of a QGP.

Figure 14 shows the QGP photons for three different
initial conditions: (Ti = 447 MeV, τi = 0.147 fm/c), (Ti =
370 MeV, τi = 0.26 fm/c), and (Ti = 280 MeV, τi = 0.6 fm/c).
As the high-pT photons are produced early in the collision,
they may be affected by the initial conditions. However, the
high-pT region is dominated by jet-therm processes, which
are weakly sensitive to (Ti, τi), because the jet distribution
function fjet has a weak temperature dependence. We see
that going from τi = 0.6 fm/c to τi = 0.26 fm/c increases the
photon production in the QGP phase by less that a factor of 2;
this additional contribution could be interpreted in some sense
as a preequilibrium contribution.

Our prediction for the LHC is shown in the right-hand side
of Fig. 13. The signature of the QGP phase is much stronger
than at RHIC, increasing the photon yield, relatively to N-N
scaled to A-A collision, by one order of magnitude around
pT = 3 GeV, where the hadron gas contribution turns out to
be negligible.

Finally, we have calculated the ratio of the total number of
photons and the background photons

γTotal/γBG =
dNγ−BG

d2pT dy
+ ∑

all other sources
dNγ−BG

d2pT dy

(56)

and compared in Fig. 15, with the result from PHENIX
[61], with and without the QGP contribution. The calculation,
including the QGP contribution is in agreement with the data
from RHIC, except for a few data points in the range 7 <

pT < 9 GeV. Without the thermal contributions, the resulting
line (dot-dashed) does not overlap at all with the experimental
data. That could constitute a signature of the importance of
the jet-photon conversion inside the QGP, because this is the
most important thermal process as we have seen in Fig. 12.
We also show the weak effect of the initial temperature. The
ratio γTotal/γBG at Ti = 447 MeV is only enhanced by ∼ 5%
relatively to the result at Ti = 370 MeV. Finally at the LHC
(right panel), the thermal contribution is also visible; including
the photons from the thermal phase enhances the calculation
by ∼15%.
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FIG. 14. (Color online) Production of photons during the
QGP phase for three QGP initial conditions: (solid line) Ti =
447 MeV, τi = 0.147 fm/c; (dashed line), Ti = 370 MeV, τi =
0.26 fm/c; and (dot-dashed line) Ti = 280 MeV, τi = 0.6 fm/c.
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VI. SUMMARY AND CONCLUSIONS

We have used a complete leading order treatment of jet
energy loss in the QCD plasma to calculate the pion and photon
spectra for both RHIC and the LHC. The calculations have
been confronted with available data from RHIC and turn out
to be in good agreement. These results reinforce the idea that
high pT suppression is a final state effect caused by jet energy
loss through bremsstrahlung in the hot medium.

The neutral pion nuclear modification factor at RHIC has
been reproduced with an initial temperature Ti = 370 MeV and
a formation time τi = 0.26 fm/c, corresponding to dN/dy =
1260. Those parameters are consistent with the analysis in
Ref. [41]. RAA has shown a large dN/dy dependence, but
a weak dependence on the initial temperature Ti (provided
the starting time τi is changed to keep dN/dy constant). The
calculation included the nuclear geometry; assuming that all
jets are produced at the center overestimates the suppression
by ∼50%.

We have also computed the production of high pT pho-
tons from the initial collision, from the medium, and from

jet-medium interactions. The jet-medium photons improve
the agreement between experiment and theory at RHIC,
and they are expected to dominate the signal at the LHC
below about 14 GeV. Thermal photons from the medium
are not very important to either experiment, in the kine-
matical range on which we have concentrated. In light of
these results, the in-medium production of dileptons should
also be reconsidered. Work on this topic, and others, is
in progress.
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