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Energy loss of charm quarks in the quark-gluon plasma: Collisional vs radiative losses

Munshi G. Mustafa
Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700 064, India

(Received 3 January 2005; published 18 July 2005)

In considering the collisional energy loss rates of heavy quarks from hard light parton interactions, we computed
the total energy loss of a charm quark for a static medium. For the energy range E ∼ 5–10 GeV of charm quark,
it proved to be almost the same order as that of radiative ones estimated to a first-order opacity expansion. The
collisional energy loss becomes much more important for lower energy charm quarks, and this feature could be
very interesting for the phenomenology of hadrons spectra. Using such collisional energy loss rates, we estimate
the momentum loss distribution employing a Fokker-Planck equation and the total energy loss of a charm quark
for an expanding quark-gluon plasma under conditions resembling the energies presently available at the BNL
Relativistic Heavy Ion Collider. The fractional collisional energy loss is found to be suppressed by a factor of 5 as
compared to the static case and does not depend linearly on the system size. We also investigate the heavy to light
hadrons D/π ratio at moderately large (5–10 GeV/c) transverse momenta and comment on its enhancement.
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I. INTRODUCTION

In the initial stage of ultra-relativistic heavy-ion collisions,
energetic partons are produced from hard collisions between
the partons of the nuclei. Receiving a large transverse
momentum, these partons will propagate through the fireball,
which might consist of a quark-gluon phase for a transitional
period of a few fm/c. These high-energy partons will manifest
themselves as jets leaving the fireball. Owing to the interaction
of the hard partons with the fireball, these partons will lose
energy. Hence jet quenching will result. The amount of
quenching might depend on the state of matter of the fireball,
i.e., quark-gluon plasma (QGP) or a hot hadron gas. Therefore,
jet quenching has been proposed as a possible signature for
the QGP formation [1]. Indeed, first results from Au+Au at
the BNL Relativistic Heavy Ion Collider (RHIC) have shown
a suppression of high-p⊥ hadron spectra [2], which could
possibly indicate the quenching of light quark and gluon jets
[3–8]. On the other hand, the data [9] from light ion interactions
d+Au at RHIC indicate no evidence of suppression in high-p⊥
hadron spectra, implying the absence of jet quenching as there
is no formation of an extended dense medium in the final state
in such light ion interactions. However, this information from
the light ion interactions in turn gives strong circumstantial
support to the idea that the observed suppression in Au+Au
is due to the final state energy loss of jets in the dense QGP
matter.

Hadrons containing heavy quarks are important probes of
strongly interacting matter produced in heavy ion collisions
and have also excited considerable interest. Heavy quark pairs
are usually produced early on at a time scale of 1/2MC ≈
0.07 fm/c from the initial fusion of partons (mostly from
gg → cc̄, but also from qq̄ → cc̄) and also from QGP, if the
initial temperature is high enough. There is no production at
later times in the QGP and none in the hadronic matter. Thus,
the total number of charm quarks gets frozen very early in the
history of collision, which makes them a good candidate for a
probe of QGP, as one is then left with the task of determining
the p⊥ distribution, whose details may reflect developments

in the plasma. The momenta distribution of c quarks are likely
to be reflected in the corresponding quantities in D mesons as
the c quarks should pick up a light quark, which are in great
abundance and hadronize. The first PHENIX data [10] from
RHIC in Au+Au collisions at

√
s = 130A GeV on prompt

single electron production are now available, which gives
us an opportunity to have an experimental estimate of the
p⊥ distribution of heavy quarks. Within the admittedly large
experimental error, the data indicate the absence of a QCD
medium effect. We hope that the future experimental study
will provide data with improved statistics and wider p⊥ range,
which could then help us understand the effect of medium
modifications on the heavy quark spectra.

To see the effect of medium modifications on the final
states, the energy loss of hard partons in the QGP has to be
determined. There are two contributions to the energy loss
of a parton in the QGP: one is caused by elastic collisions
among the partons in the QGP and the other by radiation of the
decelerated color charge, i.e., bremsstrahlung of gluons. The
energy loss rates due to collisional scatterings among partons
were estimated extensively [11–18] in the literature. Using
the hard-thermal-loop (HTL) resummed perturbative QCD at
finite temperature [19], the collisional energy loss of a heavy
quark could be derived in a systematic way [20–24]. It was also
shown [12,17,18,24] that the drag force can be related to the
elastic scatterings among partons in a formulation based on the
Fokker-Planck equation, which is equivalent to the treatment
of HTL approximations [21]. From these results, an estimate
for the collisional energy loss of energetic gluons and light
quarks also could be derived [25], which was rederived later
using the Leontovich relation [26,27].

Estimates of energy loss due to multiple gluon radiation
(bremsstrahlung) showed it to be the dominant process. For a
review on the radiative energy loss, see Ref. [28]. Recently,
it has also been shown [29] that for a moderate value of the
parton energy there is a net reduction in the parton energy
loss induced by multiple scattering due to the partial cancel-
lation between stimulated emission and thermal absorption.
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This reduction can cause a reduction of the light hadrons
quenching factor as was first anticipated in Ref. [8], though
most of the earlier studies insisted that the collisional energy
loss is insufficient to describe the medium modification of
hadronic spectra. These studies, however, were limited to the
case of massless energetic quarks and gluons.

The first estimate of heavy quark radiative energy loss
found that it dominates [30] the average energy loss rate, and
subsequently it was found that the charmed hadron [31] and
dilepton [32] spectra have a strong dependence on the heavy
quark radiative energy loss. Most recent studies of the medium
modifications of the charm quark spectrum have computed
energy loss by emphasizing only the energy loss of heavy
quarks by gluon bremsstrahlung [33–36]. In Ref. [33], it was
shown that the appearance of the kinematic dead cone effect
due to the finite mass of the heavy quarks leads to a large
reduction in radiative energy loss and affects significantly the
estimation of the quenching of charm quarks and the D/π

ratio. Also, in Refs. [34–36], a surprising degree of reduction
in radiative energy loss for heavy quarks was obtained by
taking into account the opacity expansion with and without
the Ter-Mikayelian (TM) effect. In the framework in which
all these calculations have been performed, the heavy quarks
are possibly not ultra-relativistic (γ v ∼ 1) [12,17,18,24] for
much of the measured momentum range, and in this case it
is far from clear that radiative energy loss dominates over
collisional energy loss.

This paper is organized as follows. In Sec. II, the collisional
energy loss for charm quarks is compared with the radiative
loss computed in Refs. [34,35]. The quenching of hadron
spectra in a medium is briefly reviewed in Sec. III. The charm
quark in a thermally evolving plasma is modeled in Sec. IV
as an expanding fireball created in relativistic heavy ion
collisions. We first obtain the Fokker-Planck equation for a
Brownian particle from a generic kinetic equation (Sec. IV A);
we next compute analytically the momentum loss distribution
for charm quarks using the collisional energy loss rates through
the transport coefficients based on the elastic perturbative
cross section implemented into a Fokker-Planck equation
(Sec. IV B); the total energy loss for the charm quark is
obtained for an expanding plasma (Sec. IV C); and then the
quenching of hadron spectra and D/π are estimated for RHIC
energies (Sec. IV D). We conclude in Sec. V with a brief
discussion.

II. HEAVY QUARKS IN A STATIC
QUARK-GLUON PLASMA

At leading order in strong coupling constant αs , the energy
loss of a heavy quark comes from elastic scattering from
thermal light quarks and gluons. The energy loss rate of heavy
quarks in the QGP due to elastic collisions was estimated in
Ref. [21]. In the domain E � M2/T , it reads

− dE

dL
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where nf is the number of quark flavors, αs is the strong
coupling constant, mg = √

(1 + nf /6)gT /3 is the thermal
gluon mass, E is the energy, and M is the mass of the heavy
quarks. B(v) is a smooth velocity function, which can be taken
approximately as 0.7. Following (1) and (2), one can now
estimate the static energy loss for heavy quarks at the energies
(temperatures) of interest.

On the other hand, heavy quark medium-induced radiative
energy loss [34,35] to all orders in opacity expansion, L/λg

(L is the length of the plasma, λg is the mean free path of
the gluon), has been derived by generalizing the massless
case [37] to heavy quarks with mass in a QCD plasma with
a gluon dispersion characterized by an asymptotic plasmon
mass. This also provides the estimate of the influence of a
plasma frequency cutoff on a gluon radiation (Ter-Mikayelian
effect) and thus shields the collinear singularities (k⊥ → 0)
that arise due to massless quarks.

The medium-induced radiative energy loss [35] for charm
quark in first-order opacity expansion has been computed
with a fixed Debye screening mass, µ = 0.5 GeV with αs =
0.3, and a static plasma length, L = 4 fm with λg = 1 fm.
The scaled energy loss was found to obey a linear Bethe-
Heitler-like form, �E

E
|rad ∝ L ∼ CL, where C is constant of

proportionality per unit length. The differential energy loss
follows as d(�E)

dL
|rad ∼ CE. Now, C can be estimated from

the right panel of Fig. 1 (also from Fig. 2 of Ref. [35]), as
C ∼ �E/E

L
∼ 0.15

4 fm−1 at a plasma length L = 4 fm, µ =
0.5 GeV, and αs = 0.3. For a charm quark with energy E =
10 GeV, the differential radiative energy loss is estimated
as d(�E)

dL
|rad ∼ 0.375 GeV/fm. The Debye screening mass

is given as µ = T

√
4παs(1 + nf

6 ) = 2.2415T , for two light
flavors, nf = 2 and αs = 0.3. The Debye screening mass µ =
0.5 GeV corresponds to a temperature T = 0.225 GeV. With
the plasma parameters corresponding to µ = 0.5 GeV, the
differential collisional energy loss for a 10 GeV charm quark
in a static medium can also be estimated from (1) and (2) as
d(�E)

dL
|coll ∼ 0.36 GeV/fm, and it is found to be of the same

order as that of radiative ones in Ref. [35].
Now the total collisional energy loss can simply be

evaluated from (1) and (2). The scaled collisional (solid line)
and the radiative ones with (dotted) and without (dashed line)
TM effect of a charm quark as a function energy E are displayed
in the left panel of Fig. 1 for a static plasma of length L = 4 fm,
with parameters T = 0.225 GeV (µ = 0.5 GeV) and αs = 0.3.
As discussed earlier, the radiative energy loss is proportional to
E, resulting in the scaled energy loss being almost constant in
E. In the energy range E ∼ (5–10) GeV, the scaled collisional
energy loss is found to be similar to that of radiative loss [35],
but it decreases with E because the differential rates in (1)
and (2) depend on a log factor involving E. Therefore, the
collisional energy loss will become much more important
in the lower energy range; this feature itself will be quite
interesting in the phenomenology of particle spectra.
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FIG. 1. Left panel: Scaled static energy loss of a charm quark �E/E as a function of energy E for a given length of the plasma L = 4 fm.
Collisional loss is represented by the solid line with plasma parameters for RHIC energy. Radiative energy losses according to Ref. [35] are
also plotted in first-order opacity expansion with (dotted) and without (dashed) the Ter-Mikayelian (TM) effect at a plasma length L = 4 fm
and a fixed Debye screening mass µ = 0.5 GeV (see text for details). Right panel: The effective shift of the scaled collisional (solid curve) and
radiative (dashed) energy loss �E/E as a function of distance L for a charm quark of energy E = 10 GeV.

In the right panel of Fig. 1, we display the scaled effective
energy loss of a charm quark due to collisional (solid curve)
and radiative [35] (dashed curve) losses in a static medium as a
function of its thickness L for a given charm quark energy E =
10 GeV. The thickness dependence of the scaled collisional
energy loss for a given E is linear as in the radiative case [7,35],
whereas earlier calculations [28,37,38] show a quadratic form.
This scaling clearly reflects a random walk in E and L as a fast
parton moves in the medium [7,35] with some interactions
resulting in an energy gain and others in a loss of energy.

In the energy range 5–10 GeV, which is much of the
experimentally measured range (γ v � 4), the charm quark is
not very ultra-relativistic, and the collisions are found to be
one of the most dominant energy loss mechanisms. In the
weak coupling limit, bremsstrahlung [24] is the dominant
energy loss mechanism if the charm quark is ultra-relativistic
(γ v � 4). Though the collisions have a different spectrum
than radiation, the collisional rather than radiative energy loss
should in principle determine the medium modifications of the
final state hadron spectra. In the following, we will study the
suppression of heavy quark spectra.

III. QUENCHING OF HADRON SPECTRA

We will follow the investigations by Baier et al. [6] and
Müller [7], using the collisional instead of the radiative parton
energy loss. Following Ref. [6], the p⊥ distribution is given
by the convolution of the transverse momentum distribution
in elementary hadron-hadron collisions, evaluated at a shifted
value p⊥ + ε, with the probability distribution D(ε), in the
energy ε, lost by the partons to the medium by collisions, as

dσ med

d2p⊥
=

∫
dεD(ε)

dσ vac(p⊥ + ε)

d2p⊥

=
∫

dεD(ε)
dσ vac

d2p⊥
+

∫
dεD(ε)ε

d

dp⊥

dσ vac

d2p⊥
+ · · ·

= dσ vac

d2p⊥
+ �E · d

dp⊥

dσ vac

d2p⊥

= dσ vac(p⊥ + �E)

d2p⊥
= Q(p⊥)

dσ vac(p⊥)

d2p⊥
. (3)

Here Q(p⊥) is the suppression factor due to the medium, and
the total energy loss by partons in the medium is

�E =
∫

εD(ε)dε. (4)

We need to calculate the probability distribution D(ε) that a
parton loses the energy ε due to the elastic collisions in the
medium. This requires the evolution of the energy distribution
of a particle undergoing Brownian motion, which will be
obtained in Sec. IV.

IV. CHARM QUARK IN AN EXPANDING PLASMA

A. Generic kinetic equation, Fokker-Planck equation,
drag and diffusion coefficients

The operative equation for the Brownian motion of a test
particle can be obtained from the Boltzmann equation, whose
covariant form can be written as

pµ∂µD(x, p,t) = C{D}, (5)

where pµ(Ep, p) is the four-momentum of the test particle,
C{D} is the collision term, and D(x, p,t) is the distribution
due to the motion of the particle. If we assume a uniform
plasma, the Boltzmann equation becomes

∂D

∂t
= C{D}

E
=

(
∂D

∂t

)
coll

. (6)
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We intend to consider only the elastic collisions of the test
parton with other partons in the background. The rate of
collisions w(p, k) is given by

w(p, k) =
∑

j=q,q̄,g

wj (p, k), (7)

where wj represents the collision rate of a test parton i with
other partons j in the plasma. The expression for wj can be
written as

wj (p, k) = γj

∫
d3q

(2π )3
Dj (q)vrelσ

j , (8)

where γj is the degeneracy factor, vrel is the relative velocity
between the test particle and other participating partons j from
the background, Dj is the phase space density for the species
j, and σ j is the associated cross section. Due to this scattering,
the momentum of the test particle changes from p to p − k.
Then the collision term on the right-hand side of (6) can be
written as(

∂D

∂t

)
coll

=
∫

d3k[w(p + k, k)D(p + k) − w(p, k)D(p)],

(9)

where the collision term has two contributions. The first one is
the gain term where the transition rate w(p + k, k) represents
the rate that a particle with momentum p + k loses momentum
k due to the reaction with the medium. The second term
represents the loss due to the scattering of a particle with
momentum p.

Now under the Landau approximation, in which most of
the quark and gluon scattering is soft which implies that the
function w(p, k) is sharply peaked at p ≈ k, one can expand
the first term on the right-hand side of (9) by a Taylor series as

w(p + k, k)D(p + k) ≈ w(p, k)D(p) + k · ∂

∂p
(wD)

+ 1

2
kikj

∂2

∂pi∂pj

(wD) + · · ·. (10)

Combining (6), (9), and (10), one obtains a generic kinetic
equation of the form

∂D

∂t
= ∂

∂pi

[T1i(p)D] + ∂2

∂pi∂pj

[Bij (p)D], (11)

where the transport coefficients for momentum dispersion are
given as

T1i(p) =
∫

d3kw(p, k)ki =
∫

d3kw(p, k)(p − p′)i , (12)

Bij (p) = 1

2

∫
d3kw(p, k)kikj

= 1

2

∫
d3kw(p, k)(p − p′)i(p − p′)j . (13)

These transport coefficients in (12) and (13) depend on the
distribution function D through the transition probability
w(p, k) in (8), and they can have different values depending

upon the problem. The kinetic equation in (11) is the well-
known Landau equation [39], a nonlinear integrodifferential
equation, which describes, in general, collision processes
between two particles. It should therefore depend, in a generic
sense, on the states of two participating particles in the collision
process and hence on the product of two distribution functions,
making it nonlinear in D. Therefore, it requires to be solved in
a self-consistent way, which is indeed a nontrivial task.

However, the problem can be simplified [39] if one
considers a large amount of weakly coupled particles in
thermal equilibrium at a temperature T constituting the heat
bath in the background, and because of the fluctuation there can
be some nonthermal but homogeneously distributed particles
constituting the foreground. It is assumed that the overall
equilibrium of the bath will not be disturbed by the presence
of such a few nonthermal particles. Because of their scarcity,
one can also assume that these nonthermal particles will
not interact among themselves but only with particles of the
thermal bath in the background. This requires one to replace
the phase space distribution functions of the collision partners
from the heat bath appearing in (8) by time-independent or
thermal distribution fj (q). This will reduce the generic Landau
kinetic equation (11), a nonlinear integrodifferential equation,
to the Fokker-Planck (FP) equation, a linear differential
equation for the Brownian motion of the nonthermal particles
in the foreground.

Now, one can write the transport coefficients in (12) and
(13) for such a FP equation in terms of the two body matrix
elements M between a foreground and a background particle
[12,17]:

T FP
1i (p) = 1

2Ep

∫
d3q

(2π )32Eq

∫
d3q′

(2π )32Eq′

∫
d3p′

(2π )32Ep′

1

γc

×
∑

|M|2(2π )4δ4(p + q − p′ − q ′)

× [pi − p′
i]f (q)f̃ (q) ≡ 〈〈(p − p′)i〉〉, (14)

BFP
ij (p) = 1

2 〈〈(p − p′)i(p − p′)j 〉〉. (15)

In our case, the incoming particle is a heavy quark which is
different from the background. So, p(p′) and q(q′) represent the
momenta of the incoming (outgoing) charm and background
light-quark/gluon, respectively. For each background species,
there is a similar additive contribution to the collisional integral
in (14). γc is the spin and color degeneracy factor of the
foreground particle arising due to the initial reaction channels.
f (q) is the particle distribution of the thermal background, and
f̃ (q) = [1 ± f (q)] corresponds to a Bose enhancement/Pauli
suppression factor for scattered background particles, as
appropriate. Because of this thermal f (q) the contents of (14)
and (15) are different from (12) and (13), and the charm quark
in the foreground of a weakly coupled system is driven by a
Brownian motion mechanism [12,17,18,24,40–42].

We are now set to study the momentum distribution of a
charm quark undergoing Brownian motion and its relation with
the transport coefficients. In absence of vectors other than p,
the values of T FP

1i and BFP
ij , which depend functionally on p,

and the background temperature T, must be of the form in
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Langevin theory [12,17,39]

T FP
1i (p, T ) = piA(p2, T ), (16)

BFP
ij (p, T ) =

(
δij − pipj

p2

)
B0(p2, T ) + pipj

p2
B1(p2, T ),

(17)

where p2 = p2
i , summation convention is always implied.

A is the drag, B0 is the transverse diffusion, and B1 is the
longitudinal diffusion coefficients. In terms of microscopic
reaction amplitudes, these functions are obtained [12,17] as

A(p2, T ) = 〈〈1〉〉 − 〈〈p · p′〉〉
p2

, (18)

B0(p2, T ) = 1

4

[
〈〈p′2〉〉 − 〈〈(p · p′)2〉〉

p2

]
, (19)

B1(p2, T ) = 1

2

[ 〈〈(p · p′)2〉〉
p2

− 2〈〈p · p′〉〉 + p2〈〈1〉〉
]

. (20)

The averaging, 〈〈· · ·〉〉, defined in (14) can further be simplified
[17] by solving the kinematics in the center-of-mass frame of
the colliding particles, as

〈〈F (p′)〉〉 = 1

512π4γc

1

Ep

∫ ∞

0

q2

Eq
dq

∫ 1

−1
d (cos χ )

×
√(

s + M2
C − m2

g(q)

)2 − 4sM2
C

s
f (Eq)

×
∫ 1

−1
d cos θc.m.

∑
|M|2

∫ 2π

0
dφc.m.e

βEq′

× f (Eq′)F (p′), (21)

where MC is the mass of a charm quark, s = (Ep + Eq)2 −
(p + q)2, Eq′ = Ep + Eq − Ep′ , and p′ is a function of p, q
and θc.m.. M2 is the matrix elements [12] for scattering
processes Qg,Qq, andQq̄, where Q is a heavy quark and
g(q) is gluon (light quarks with 2-flavors). The expression in
(21) is larger by a factor of 2 than the ones originally derived
in (3.6) of Ref. [12]. Apart from this, we have also introduced
the thermal masses of quarks (mq), and gluons (mg) and the
quantum statistics, as appropriate.

The momentum and temperature dependence of the A,B0,
and B1 are summarized in Figs. 1–3 in Ref. [17]; we do not
repeat them here and refer the reader to this work for details.
The main finding is that these coefficients are momentum
independent up to p = 5 GeV/c, and beyond this there is a
weak momentum dependence. Note that the detailed studies
of the dynamics of charm quark, as discussed in Refs. [12],
may only depend on A and B0, but perhaps not on B1 in the
phenomenological relevant momentum range. In the present
calculation, we are interested in the kinematic domain of
p = (5 − 10) GeV/c, for which one needs to solve the FP
equation considering the momentum dependence of drag and
diffusion coefficients. This will require us to solve the FP
equation numerically.

Instead, we assume the momentum independence of these
coefficients in (18)–(20), which will correspond to a scenario
where a particle travels through an ideal heat bath and

undergoes linear damping (Rayleigh’s particle). So, these
transport coefficients are expected to be largely determined
by the properties of the heat bath and not so much by the
nature of the test particle [39]. This is also a fairly good
approximation, which we will justify in the next section. Under
this approximation, the transport coefficients in (16) and (17)
become

T FP
1i = piA, (22)

BFP
ij = δijB0 ≡ δijT FP

2 , (23)

where B0(p → 0, T ) = B1(p → 0, T ) ≡ T FP
2 . This could be

viewed as a course-grained picture in which the finer details of
the collisions have been averaged out over a large number
of macroscopic situations (or over an ensemble). Then,
combining (11), (22), and (23), one can write the FP equation
as

∂D

∂t
= ∂

∂pi

[
T FP

1i D
] + T FP

2

(
∂

∂p

)2

D. (24)

In Sec. IV B, we obtain the time evolution of the FP equation
in a thermally evolving QGP.

B. Time evolution of Fokker-Planck equation, drag and
diffusion coefficients in an expanding plasma

We assume that the background partonic system has
achieved thermal equilibrium when the momenta of the
background partons become locally isotropic. At the collider
energies, it has been estimated that t0 = 0.2–0.3 fm/c. Beyond
this point, further expansion is assumed to be described by the
Bjorken scaling law [43]

T (t) = t
1/3
0 T0/t1/3, (25)

where T0 is the initial temperature at which the background
has attained local thermal equilibrium.

We consider, for simplicity, the one-dimensional problem,
for which the FP equation in (24) reduces to

∂D

∂t
= ∂

∂p

[
T FP

1 D
] + T FP

2
∂2

∂p2
D, (26)

and as discussed in Sec. IV A, the coupling between the
Brownian particle and the bath is weak; the quantities T FP

1 and
T FP

2 can also be written using the Langevin formalism [39] as

T FP
1 (p) =

∫
dkw(p, k)k = 〈δp〉

δt
= 〈F 〉 = pA, (27)

T FP
2 = 1

2

〈(δp)2〉
δt

≈ T T FP
1 . (28)

Now the work done by the drag force T FP
1 acting on a test

particle is

−dE = 〈F 〉 · dL = T FP
1 · dL, (29)

which can be related to the energy loss [21,25] of a particle as

− dE

dL
= T FP

1 = pA. (30)
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FIG. 2. Momentum averaged 〈A(t)〉 in (31) and momentum
dependence A(p, t) in (30) of the drag coefficient of a charm quark
in an expanding QGP with plasma parameters (see text) suitable for
RHIC energy.

The drag coefficient is a very important quantity containing
the dynamics of elastic collisions, and it has a weak mo-
mentum dependence. Then one can average out the drag
coefficient as

〈A[p, T (t)]〉 ≡ A[T (t)] =
〈
− 1

p

dE

dL

〉
, (31)

implying that the dynamics is solely determined by the
collisions in the heat bath and independent of the initial
momentum of the Brownian particle.

For averaging over the momentum, the Boltzmann distri-
bution and the differential energy loss rates (1) and (2) were
used. The time dependence of the drag coefficient comes
from assuming a temperature, T (t) decreasing with time as
the system expands, according to the Bjorken scaling law
[43] given in (25). We consider the initial temperature T0 =
0.5 GeV, initial time t0 = 0.3 fm/c and αs = 0.3 of the plasma
for RHIC energy. In Fig. 2, the momentum averaged as
well the momentum dependence of the drag coefficient of
a charm quark in the QGP phase of the expanding fireball is
shown as a function of time. As can be seen, the behavior
of the momentum averaged drag coefficient (solid curve) is
dominated by T 2/p ∼ t−1/3 according to the scaling law. It
can also be seen that up to p = 10 GeV/c, there is no signif-
icant difference between momentum averaged 〈A[T (t)]〉 and
momentum dependenceA[p, T (t)] of the drag coefficient, and
it has only a weak p dependence beyond p = 10 GeV/c. Since
it decreases with moderately high values of p � (15 GeV/c),
the momentum averaged approximation of drag coefficient
〈A[T (t)]〉 would overestimate the actual A[p, T (t)] in this
high momentum range. In our phenomenological approach,

the momentum independence of the drag coefficient in (31) is
a good approximation up to a moderate value of momentum
p � 15 GeV/c.

Now, combining (27) and (28), we can write the diffusion
coefficient as

T FP
2 = T T FP

1 = TAp. (32)

Once the drag coefficient is averaged out using the properties
of heat bath, one can approximate p by the temperature T of
the bath (as discussed earlier, it is independent of the initial
momentum of the Brownian particle) and A by its average
value given in (31). This leads to

T FP
2 = A[T (t)]T 2(t), (33)

which is also known as the Einstein relation [39] between
drag and diffusion coefficients. In the left panel of Fig. 3,
the diffusion coefficient obtained in (33) is represented
by the solid line. It is found to have agreed quite well with
the momentum-independent diffusion coefficient B0(p → 0)
(dashed line) in (19) with a factor of 1/3 multiplied with it,
because we consider the one-dimensional scenario. As evident,
the momentum independence of the diffusion coefficient is also
a fairly good approximation.

Alternatively, one can also calculate the T FP
2 in (32) by

substituting A from (30) and averaging out the momentum
dependence as

〈
T FP

2

〉 = T

〈
−dE

dL

〉
. (34)

In the right panel of Fig. 3, the average diffusion coefficient
computed in (34) (filled triangle) is displayed. The momentum-
dependent transverse diffusion coefficient B0[p2, T (t)] in (19)
is also plotted for different momenta. It can be seen that
there is weak momentum dependence in B0 in the momentum
range p = 5–20 GeV/c. The momentum averaged values are
in agreement with B0 for higher momenta p � 10 GeV/c,
whereas it overestimates lower momenta p < 10 GeV/c.
We will use both the approximations for diffusion coeffi-
cient in (33) and (34) to obtain the momentum distribution
below.

Combining (26) and (30), we find

∂D

∂t
= A ∂

∂p
(pD) + DF

∂2D

∂p2
, (35)

whereDF , in general, has been used as the diffusion coefficient
corresponding to (33) and (34), and A is the averaged drag
coefficient in (31).

Next we solve the above equation with the boundary
condition

D(p, t)
t→t0−→ δ(p − p0). (36)

The solution of (35) can be found by making a Fourier
transform of D(p, t),

D(p, t) = 1

2π

∫ +∞

−∞
D̃(x, t)eipxdx, (37)
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FIG. 3. Left panel: Comparison of diffusion coefficients given in (33) (solid line) and zero momentum limit of B0 (dashed line) given in
(19). Right panel: Comparison of momentum averaged 〈T FP

2 〉 in (34) and momentum dependence of B0 in (19).

where the inverse transform is

D̃(x, t) =
∫ +∞

−∞
D(p, t)e−ipxdp. (38)

Under the Fourier transform, the corresponding initial condi-
tion follows from (36) and (38) as

D̃(x0, t = t0) = e−ip0x0 , (39)

where x = x0 at t = t0 is assumed. Replacing p → i ∂
∂x

and
∂
∂p

→ ix, the Fourier transform of (35) becomes

∂D̃

∂t
+ Ax

∂D̃

∂x
= −DF x2D̃. (40)

This is a first-order partial differential equation which may be
solved by the method of characteristics [44]. The characteristic
equation corresponding to (40) reads

∂t

1
= ∂x

Ax
= − ∂D̃

DF x2D̃
. (41)

Using the boundary condition in (39), the solution of (40)
can be obtained as

D(p,L) = 1√
πW(L)

exp

[
−

(
p − p0e

− ∫ L

0 A(t ′)dt ′
)2

W(L)

]
, (42)

where

W(L) =
(

4
∫ L

0
DF (t ′) exp

[
2
∫ t ′

A(t ′′)dt ′′
]

dt ′
)

×
[

exp

(
−2

∫ L

0
A(t ′)dt ′

)]
, (43)

which is the probability distribution in momentum space. Since
the plasma expands with the passage of time, we used the
length of the plasma L as the maximum time limit for the
relativistic case (γ v ∼ 1).

In Fig. 4, we show the momentum loss probability distri-
bution D(p,L) given in (42) of a charm quark with initial

momentum p0 = 5 GeV/c as a function of momentum p.
The solid lines represent the distribution with the diffusion
coefficient DF = AT 2 in (33), whereas the dashed lines
with 〈DF 〉 in (34). Both sets of curves are for two different
expanded plasma lengths, L = 1 and 5 fm as indicated in
Fig. 4. In general, the physical mechanism reflected in Fig. 4
can be understood at initial time t0 or length of the plasma,
where a momentum distribution is sharply peaked at p = p0,
according to (36). With passage of time (or distance traveled)
the peak of the probability distribution is shifted toward smaller
momentum, as a result of drag force acting on the momentum

0

0.5

1

1.5

2

2.5

654321 7

c

c

c

FIG. 4. Momentum loss probability distribution D(p,L) of a
charm quark as a function of momentum p after plasma has expanded
a distance L.
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FIG. 5. Left panel: Fractional collisional energy loss of a charm quark �E/E as a function of energy E when plasma has expanded to
L = 4 fm (solid line) and for static plasma of length L = 4 fm (dashed line). Right panel: Collisional �E/E as a function of length L for a
charm quark of E = 10 GeV for expanding (solid line) and static (dashed line) plasma.

of the charm quark, indicating its most probable momentum
loss due to elastic collisions in the medium. Moreover, the peak
broadens slowly as a result of diffusion in momentum space,
implying that a finite momentum dispersion sets in. As evident,
with both the approximations in diffusion coefficient, only the
momentum dispersion is affected while the peak positions
remain unaltered, indicating that a drag force acting on the
mean momentum of a charm quark is the same. After plasma
has expanded to a length of L = 1 fm, the charm quark loses
10% of its momentum, whereas momentum loss is 25% at an
expanded length of L = 5 fm. In Sec. IV C, we will use this
distribution to compute the total energy loss of a charm quark
for an expanding plasma.

C. Energy loss of a charm quark in an expanding plasma

In Sec. IV B, we obtained a momentum loss distribution
by solving the time evolution of the FP equation in a
thermally evolving plasma, which is modeled by an expanding
fireball under conditions resembling central Au-Au collisions
at RHIC. The mean energy of a charm quark due to the elastic
collisions in a expanding medium can be estimated as

〈E〉 =
∫ ∞

0
ED(p,L)dp. (44)

The average energy loss due to elastic collisions in the medium
is given by

�E = 〈ε〉 = E0 − 〈E〉, (45)

where E = m⊥ =
√

p2
⊥ + m2 at the central rapidity region

y = 0.
The total energy loss of a charm quark has been computed

in (45) by using the momentum loss distribution in (42). The
numerical results for scaled collisional energy loss of a charm
quark as a function of energy E in an expanding plasma (solid

line) is shown in the left panel of Fig. 5 for the plasma
parameters T0 = 0.5 GeV, t0 = 0.3 fm/c, and αs = 0.3 and
expanded plasma length to L = 4 fm. In the energy range
E ∼ 5–10 GeV, the fractional collisional energy loss remains
almost constant around a value 0.15, the reason for which can
be traced back to the momentum independence of the drag
coefficient [12,17] as discussed earlier. The corresponding
scaled energy loss for a static plasma is shown by the dashed
line. Taking into account the expansion, the scaled energy loss
is suppressed by a factor of 5 as compared to the static case.
In the right panel of Fig. 5, the scaled energy loss is plotted
as a function of L for E = 10 GeV and found that it does
not depend linearly on the system size for the expanding case
(solid line) as compared to the static case (dashed line). Similar
suppression should also occur in the radiative case as result of
expansion [45].

D. Quenching of hadron spectra in an expanding plasma

We assume that the geometry is described by a cylinder
of radius R, as in the boost invariant Bjorken model [43] of
nuclear collisions, and the parton moves in the transverse plane
in the local rest frame. Then a parton created at point �r with
angle φ in the transverse direction will travel a distance [7]

L(φ) = (R2 − r2 sin2 φ )1/2 − r cos φ, (46)

where cos φ = �̂v · �̂r; �v is the velocity of the parton, and r = |�r|.
The value of the transverse dimension is taken as R ∼ 7 fm.

The quenched spectrum convoluted with the transverse
geometry of the partonic system can be written from (3) as

dNmed

d2p⊥
= Q(p⊥)

dNvac

d2p⊥

= 1

2π2R2

∫ 2π

0
dφ

∫ R

0
d2r

dN(p⊥ + �E)

d2p⊥
. (47)
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FIG. 6. Left panel: Ratio of charm to light quark quenching factors QH (p⊥)/QL(p⊥) as a function of transverse momentum p⊥ with
collisional energy loss. Right panel: Ratio of charm to light quark quenching factors QH (p⊥)/QL(p⊥) as a function of transverse momentum
p⊥ using both collisional and radiative energy losses.

The p⊥ distribution of charmed hadrons, D mesons,
produced in hadron collisions were experimentally found [46]
to be well described by the following simple parametrization
as

dNvac
H

d2p⊥
= C

(
1

bM2
C + p2

⊥

)n/2

, (48)

where b = 1.4 ± 0.3, n = 10.0 ± 1.2, and MC = 1.5 GeV.
The parametrization of the p⊥ distribution exists in the

literature [7,33,47], which describes the first RHIC light
hadroproduction data for moderately large values of p⊥. In
this case, we consider the form given in Ref. [33], which reads
as

dNvac
L

d2p⊥
= A

(
1

p0 + p⊥

)m

, (49)

where m = 12.42 and p0 = 1.71 GeV/c.
The light hadron quenching obtained by using the colli-

sional energy loss rate [25] was first anticipated [8] to be of
the same order as that reached of with the radiative energy loss
rate [7], though most of the previous studies insisted that the
collisional energy loss is insufficient to describe the medium
modifications of hadron spectra. We here estimate light hadron
quenching (for details see Ref. [8]) with the energy loss due to
elastic collisions [25], and the energy loss rate averaged over
parton species reads

− dE

dL
= 4

3

(
1 + 9

4

)
πα2

s T
2
(

1 + nf

6

)

× log

[
2nf /2(6+nf )0.92

√
ET

mg

]
. (50)

We now illustrate in the left panel of Fig. 6 the ratio of
heavy to light quark quenching factors QH (p⊥)/QL(p⊥) as a
function of transverse momentum p⊥, using the collisional en-
ergy loss for plasma parameters T0 = 0.5 GeV, t0 = 0.3 fm/c,

and αs = 0.3 and the charm quark mass MC = 1.5 GeV. As
discussed earlier, this ratio may reflect the heavy to light
hadrons D/π ratio originating from the fragmentation of heavy
and light quarks in heavy ion collisions. As shown, the D/π

ratio is enhanced significantly as compared to p-p collisions.
The enhancement factor varies from 2.5 to 4 in the p⊥ range
(5–10) GeV/c because of the uncertainties of different choices
of parameter set to parametrize the heavy hadron spectra as
depicted in (48). However, the ratio also strongly depends
on the quenching of light quark jets. The numerical estimate
shows that the quenching of charm quarks is about half that
of light quarks. The light quarks, for a given p⊥, lose 10% of
their energy after traversing a distance 1 fm and around 40%
after 5 fm [8], whereas the charm quark loses 5% at 1 fm and
around 20% at 5 fm (Fig. 5). Because of the large mass of the
charm quark, the D meson will be formed in a shorter distance
and hence the charm quark will have less time to propagate
in the medium before transforming into the D meson. On
the other hand, the light quarks will travel in the medium over
a longer period and suffer more loss in energy than heavy
quarks. The ratio is also found to be little more than that
obtained earlier [33] by considering only the radiative energy
loss with the appearance of the kinematic dead cone effect due
to the finite heavy quark mass. This implies that the collision
is one of the most dominant mechanisms of energy loss in the
medium.

Having shown that collisional and radiative energy losses
are of the same the order in magnitude, it would now
be interesting to predict the D/π ratio within our model
considering radiative energy loss in addition to collisional
one. Since neither the drag nor diffusion coefficients have
been calculated for other than collisional processes, it is not
possible to infer the impact of radiative processes directly
within our model. To circumvent our lack of knowledge of
radiative processes in terms of the transport coefficients, we
consider an alternative set [48] within our model, obtained by
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multiplying the transport coefficients by a factor K = 2. It is
our hope that the experimental data will allow us to fix an
approximate value of K, if at all required. In the right panel of
Fig. 6, we plot the D/π ratio for such a case with the same
parameter set as before. As shown, the ratio is little reduced
compared to the collisional case and it varies from 2 to 3 within
the p⊥ range of 5–10 GeV/c. There is no striking change in
the ratio mostly because of the cancellation of the introduced
K factor with reference to the collisional one for respective
species. However, the small change can be attributed to the
charm quark which with the inclusion of radiative energy loss
is relatively more quenched than that of the light quarks.

One may also add the interesting scenario that after the
quark jet has hadronized to leading particles, they would
scatter with hadronic matter before decoupling. Considering
for example, σDπ � σππ , it is most likely that the heavy
mesons would decouple quickly from the hadronic phase.
Pions would interact with each other via resonance formation
and with other light hadrons. This might lead to further
enhancement of the D/π ratio.

V. CONCLUSION

Apart from uncertainties in the various parameters describ-
ing the plasma and hadron spectra, let us look at some of the
assumptions made in this work which may affect our findings.
First, as discussed above, the momentum dependence of the
drag and diffusion coefficients, containing the dynamics of the
elastic collisions, has been averaged out. A major advantage
of this is the simplicity of the resulting differential equation.
Of course, this simplification can lead to some uncertainty in
the quenching factor. Second, the entire discussion is based on
the one-dimensional Fokker-Planck equation and the Bjorken
model of the nuclear collision, which may not be a very
realistic description here but can provide useful information
on the problem. However, extension to three dimensions is
indeed an ambitious goal, which may cause many of the
considerations of the present work to be revised.

In the present calculation, the hadron spectra for both light
and heavy quarks have directly been used to calculate the

quenching factor Q(p⊥). This is equivalent to assuming that
a quark forms a hadron without much change in its energy.
To calculate the effects of the parton energy loss on the
quenching pattern of high-p⊥ partons in nuclear collisions, one
should take into account the modification of the fragmentation
function [4,5] of a leading quark resulting from many soft
interactions of the hard partons in the medium. This also
causes a significant energy loss of parton prior to hadronization
and changes the kinematic variables of the fragmentation
function [5]. This can also modify the quenching factor and
thus D/π ratio.

We show that the total collisional energy loss is almost the
same order as that of radiative energy loss for a static plasma.
Considering the collisional energy loss rates, we obtain a
momentum loss distribution for charm quarks by solving the
time evolution of the Fokker-Plank equation for a thermally
evolving plasma. The total energy loss for an expanding plasma
is found to be reduced by a factor of 5 as compared to the static
case and does not depend linearly on the system size. The ratio
of heavy to light hadrons D/π is also estimated. However,
the collisions have a different spectrum than radiation and
therefore contribute in a similar way to the suppression factor
than anticipated in earlier works.

We now eagerly wait for the experimental data, and a
detailed calculation has to be carried out before a realistic
value of the D/π ratio can be presented. Nevertheless, the
total collisional energy loss of a charm quark computed
within our simplified model may imply that collision is one
of the important energy loss mechanisms in the medium
for the energy range 5–10 GeV, and this feature may be
phenomenologically important. Also, the results for D/π

presented within this model are not definitive but can provide
a very intuitive picture of the medium energy loss for partons
in moderately large p⊥.
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