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The particle number and energy fluctuations in a system of charged particles are studied in the canonical
ensemble for nonzero net values of the conserved charge. In the thermodynamic limit, the fluctuations in the
canonical ensemble differ from those in the grand canonical ensemble. A system with several species of particles
is considered. We calculate the quantum statistical effects that can be taken into account for the canonical
ensemble fluctuations in the infinite-volume limit. The fluctuations of the particle numbers in the pion-nucleon
gas are considered in the canonical ensemble as an example of the system with two conserved charges—baryonic
number and electric charge.
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I. INTRODUCTION AND OUTLINE

The statistical model approach turns out to be rather suc-
cessful in describing data on particle production in relativistic
nuclear collisions (see, e.g., Ref. [1] and the recent review
[2]). This stimulates further investigation of the properties
of statistical models. In particular, the applicability of various
statistical ensembles is an interesting issue. In nucleus-nucleus
(A + A) collisions one prefers to use the grand canonical
ensemble (GCE) because it is the most convenient one from
a technical point of view. The canonical ensemble (CE) [3–8]
or even the microcanonical ensemble (MCE) [9] have been
used to describe the pp, pp̄, and e+e− collisions when a small
number of secondary particles are produced. In all these cases,
the statistical systems are far away from the thermodynamic
limit, so the statistical ensembles are not equivalent and exact
charge conservation or both energy and charge conservation
laws have to be taken into account. The CE is relevant for
systems with a large number of produced particles (e.g., a large
number of resultant pions or large nucleon number in p + A

collisions) but a small (less than or equal to one) number of
carriers of conserved charges, such as strange hadrons [6],
antibaryons [7], or charmed hadrons [8]. This may happen
not only in elementary pp, pp̄ and e+e−, but also in p + A

or even A + A collisions. The statistical mechanics of quarks
and gluons were investigated in the CE in Ref. [10]. The exact
conservation of baryon number, electric charge, strangeness
as well as non-Abelian charges such as total isospin and
color leads to significant reduction of the energy, entropy, and
particle number densities for systems with a volume smaller
than 5 fm3. The CE and MCE effects for thermodynamical
observables are irrelevant and the GCE formulation becomes
valid in the thermodynamical limit when the system volume
V tends to infinity. All statistical ensembles then become
thermodynamically equivalent.1

1Possible thermodynamic nonequivalence between the CE and
MCE for infinite systems in the vicinity of first-order phase transitions
are discussed in Ref. [11].

The analysis of the fluctuations is a useful tool to study
the properties of the system created during high-energy
particle and nuclear collisions (see the review papers [12]
and references therein). A method to subtract the “trivial”
geometrical fluctuations and check the thermal equilibra-
tion in A + A collisions was suggested in Ref. [13]. It
was pointed out that, for the hadronic system produced in
thermodynamic equilibrium, the temperature and multiplicity
fluctuations are related, respectively, to the heat capacity
[14,15] and compressibility [16]. An extensive discussion of
the equilibrium fluctuations can be found in Ref. [17]. It was
suggested [18] that studying the event-by-event fluctuations
in A + A collisions may help to discover the QCD critical
point, namely, the point at which a line of the first-order
phase transition separating hadronic matter from quark-gluon
plasma comes to an end. The resulting signature of the
fluctuations in the vicinity of the QCD critical point should
be their nonmonotonic dependence on the collision energy.
A nonmonotonic dependence of the fluctuations on the
collision energy could also appear as the result of dynamical
fluctuations in thermodynamical parameters of the initial
state [19].

In textbooks on statistical mechanics, the discussion is
usually limited to the nonrelativistic cases so that, in the CE,
the particle number is just fixed and does not fluctuate. The CE
and MCE formalisms were used to calculate the level density of
atomic nuclei in Ref. [20]. Interesting applications of statistical
models within CE were developed in intermediate-energy
A + A collisions to describe multifragmentation phenomena
(see, e.g., Ref. [21] and references therein). Fluctuations in
the size of nuclear fragments were discussed in both GCE and
CE. Sometimes, the results obtained in the CE and GCE were
different. However, the total number of nucleons is still fixed
in the CE, and fluctuations of this number in the CE are absent
by definition.

By contrast, in the relativistic case, relevant for the
statistical description of hadron production in high-energy
collisions, the situation is completely different. Only the net
conserved charges are fixed (the average values of net charges
in the GCE, or exact ones in the CE), but the numbers of
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negatively and positively charged particles fluctuate in both
GCE and CE. These fluctuations, which are different in GCE
and CE, are the subject of our investigation here.

Multiplicity distribution and isospin fluctuations were
calculated in Ref. [22] for the CE in which additive quantum
numbers as well as total isospin are strictly conserved. The
system of fixed number of pions N was transformed into
different charge states π+, π−, π0 with n+ + n− + n0 = N .
Under these conditions the role of exact conservation of total
isospin and its projection was studied as well as its dependence
on the total number of pions N.

The question of the applicability of different statistical
ensembles for particle number fluctuations has been addressed
in our recent papers [23,24]. Fluctuations in the particle
number have been calculated in the CE [23] and MCE [24] and
compared to those in the GCE. It has been shown that these
fluctuations are different for various statistical ensembles in
the particular case of a relativistic ideal gas with a vanishing
net charge. The particle number fluctuations have been found
to be suppressed in the CE and MCE in comparison to the
GCE. This suppression remains valid in the thermodynamic
limit as well, so the well-known equivalence of all statistical
ensembles applies to averaged quantities, but it does not apply
to the fluctuations. In particular, the fluctuations of negatively
and positively charged particles are suppressed in the CE [23]
vis à vis the fluctuations in the GCE.

In Ref. [23] we studied the CE for one-particle species and
a zero net value of the conserved charge, neglecting the effects
of quantum statistics. In the present paper we extend our study;
in high-energy p + p and A + A collisions the resultant sys-
tem has some positive values for the baryon number and elec-
tric charge. Moreover, many different species of hadrons are
created. We study the CE average particle numbers (Sec. II),
their fluctuations (Sec. III), and energy fluctuations (Sec. IV)
in systems with nonzero net charge and various particle
species. As the electric charge of hadrons can be both ±1
and ±2, we consider the CE system of singly and doubly
charged particles in Sec. V. The effects of Bose and Fermi
statistics are studied in the thermodynamic limit in Sec. VI.
We also calculate in Sec. VII the CE particle number
fluctuations for an ideal pion-nucleon gas, which is an example
of a system with two conserved charges—baryonic number
and electric charge. We summarize our consideration and
formulate conclusions in Sec. VIII.

II. THE GCE AND CE PARTITION FUNCTIONS AND
MEAN PARTICLE MULTIPLICITIES

Let us start with the multispecies system of +1 and −1
charged particles. In applications of the statistical approach to
hadron production in high-energy collisions, the conserved
charge under consideration can be the electric charge and
baryonic number, or strangeness and charm, which are also
conserved in the strong interactions. In this section we
calculate the average numbers of positively and negatively
charged particles in the CE. These results are not new (see
Refs. [4,6–8]) and are presented in our paper for completeness.
In the case of a Boltzmann ideal gas (i.e., one in which the

interactions and quantum statistics effects are neglected) the
partition function in the GCE reads

Zg.c.e.(V, T , µ) =
∞∑

N1+,N1−=0

. . .

∞∑
Nj+,Nj−=0

. . .
(λ1+z1)N1+

N1+!

× (λ1−z1)N1−

N1−!
. . .

(λj+zj )Nj+

Nj+!

(λj−zj )Nj−

Nj−!
. . .

=
∏
j

∞∑
Nj+,Nj−=0

(λj+zj )Nj+

Nj+!

(λj−zj )Nj−

Nj−!

=
∏
j

exp(λj+zj + λj−zj )

= exp
[
2z cosh

(µ

T

)]
, (1)

where j numerates the species, λj± = exp(±µ/T ), zj is a
single-particle partition function given by

zj = gjV

2π2

∫ ∞

0
k2dk exp

[
−

(
k2 + m2

j

)1/2

T

]

= gjV

2π2
T m2

j K2

(mj

T

)
, (2)

and z ≡ ∑
j zj . The V, T , and, µ are, respectively, the system

volume, temperature, and chemical potential connected with
the conserved charge Q. The gj and mj are, respectively, the
degeneracy factors and masses for the jth particle species, and
K2 is the modified Hankel function. The CE partition function
is obtained by an explicit introduction of the charge conser-
vation constraint,

∑
j (Nj+ − Nj−) = Q for each microscopic

state of the system:

Zc.e.(V, T ,Q) =
∞∑

N1+,N1−=0

. . .

∞∑
Nj+,Nj−=0

. . .
(λ1+z1)N1+

N1+!

× (λ1−z1)N1−

N1−!
. . .

(λj+zj )Nj+

Nj+!

(λj−zj )Nj−

Nj−!
. . .

× δ[(N1+ + · · · + Nj+ + . . . − N1− − . . .

−Nj− − . . .) − Q]

=
∫ 2π

0

dφ

2π

∏
j

∞∑
Nj+,Nj−=0

(λj+zj )Nj+

Nj+!

× (λj−zj )Nj−

Nj−!
exp[i(Nj+ − Nj− − Q)φ]

=
∫ 2π

0

dφ

2π
exp

[
− i Qφ +

∑
j

zj (λj+eiφ

+ λj−e−iφ)

]
= IQ(2z). (3)

Parameters λj+ and λj− in the CE (3) are auxiliary parameters
only introduced to calculate the mean number and the
fluctuations of positively and negatively charged particles.
They are set to one in the final formulas. In Eq. (3) the integral
representations of the δ-Kronecker symbol and the modified
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FIG. 1. The ratios of the mean particle numbers in the CE to those in the GCE as functions of z for Q = 0 and Q = 2.

Bessel function were used [25]:

δ(n) =
∫ 2π

0

dφ

2π
exp(inφ),

(4)

IQ(2z) =
∫ 2π

0

dφ

2π
exp[−i Q φ + 2z cos φ].

The averages of Nj+ and Nj− in both the GCE and CE can
be presented as follows:

〈Nj±〉 =
(

λj±
∂ ln Z

∂λj±

)
= a±zj , (5)

where a± in Eq. (5) is

a
g.c.e.
± = exp

(
±µ

T

)
, ac.e.

± = IQ∓1(2z)

IQ(2z)
, (6)

for the GCE and CE, respectively. In the final expressions one
should put λj± = exp(±µ/T ) and λj± = 1 for the GCE and
CE.

The average numbers of N+ and N− are equal to

〈N±〉 =
〈∑

j

Nj±

〉
= a±

∑
j

zj = a±z. (7)

The mean net charge in the GCE is equal to

Q = 〈N+〉g.c.e. − 〈N−〉g.c.e. = 2 sinh
(µ

T

)
z, (8)

which leads to a simple relation that connects the values of Q
and µ:

exp
(µ

T

)
= Q

2z
+

√
1 +

(
Q

2z

)2

≡ y +
√

1 + y2; (9)

thus

〈N±〉g.c.e. = z(y +
√

1 + y2)±1, (10)

where y ≡ Q/2z = sinh(µ/T ).
In the CE an exact charge conservation is imposed on each

microscopic state; thus it is evidently fulfilled also for the
average values:

〈N+〉c.e. − 〈N−〉c.e. = z
IQ−1(2z)

IQ(2z)
− z

IQ+1(2z)

IQ(2z)
= Q, (11)

as in fact can be easily seen from the identity In−1(x) −
In+1(x) = 2nIn(x)/x [25].

The ratios of 〈N±〉 calculated in the CE and in the GCE,

〈N±〉c.e.

〈N±〉g.c.e.
= IQ∓1(2z)

IQ(2z)
· (y +

√
1 + y2)∓1, (12)

are shown in Fig. 1 for Q = 0 and Q = 2. There is a strong
canonical suppression effect, 〈N±〉c.e. � 〈N±〉g.c.e., for small
systems (z � 1), and the canonical and grand canonical
ensembles become equivalent, 〈N±〉c.e. = 〈N±〉g.c.e., in the
thermodynamic limit z → ∞. One can see that the CE
suppression effect is reduced for a nonzero net charge of the
system as compared to a system with a zero net charge. In Fig. 2
the ratios (12) as functions of Q = 1, 2, . . . are shown at fixed
positive values of y = Q/2z, which correspond to the fixed
positive net charge number densities (Q = 0 corresponds to
y = 0 and is presented in Fig. 1). Small values of y mean large
z (e.g., for y = 0.1 shown in Fig. 2 one finds “large” z = 5 at
Q = 1); thus the system is already close to the thermodynamic
limit. Because of this the canonical suppression is small and
it is the same for positive and negative particles. The case of
large y differs (e.g., for y = 2 shown in Fig. 2 the values of
z are “small” at small Q: z = 0.25 at Q = 1). The canonical
suppression effect becomes strong for negative particles at
small Q. However, the canonical suppression at large y is
negligible for the average value of positive particle number
as it should be approximately equal to Q.

For small systems (z � 1) using the series expansion [25]

In(2z) = zn

n!
+ zn+2

(n + 1)!
+ O(zn+4), (13)

one finds for Q = 0

〈N±〉c.e. � z2 � 〈N±〉g.c.e. = z, (14)

and for Q � 1

〈N+〉c.e. � Q, 〈N+〉c.e. � 〈N+〉g.c.e.; (15)

〈N−〉c.e. � z2

Q + 1
, 〈N−〉c.e. � Q

Q + 1
〈N−〉g.c.e.. (16)

In the large-volume limit (V → ∞ corresponds also to
z → ∞) the mean quantities in the CE and GCE are equal.
This result is referred to as an equivalence of the canonical

014902-3



V. V. BEGUN, M. I. GORENSTEIN, AND O. S. ZOZULYA PHYSICAL REVIEW C 72, 014902 (2005)

FIG. 2. The ratios of the mean particle numbers in the CE to those in the GCE as functions of Q = 1, 2, 3, . . . for fixed values of y = Q/2z.

and grand canonical ensembles. Using the uniform limit of the
modified Bessel function [25]

lim
n→∞ In(nx) = 1√

2πn

exp (ηn)

(1 + x2)1/4

[
1 + O

(
1

n

)]
, (17)

where

η =
√

1 + x2 + log
x

1 + √
1 + x2

, (18)

one can easily find

〈N±〉c.e. � z(y +
√

1 + y2)±1 = 〈N±〉g.c.e.. (19)

(Note that fixed Q at z → ∞ means a zero value of the net
charge density and y = 0.)

The total multiplicity of charged particles is defined as
Nch = N+ + N−. Its average in the GCE and CE reads

〈Nch〉g.c.e. ≡ 〈N+ + N−〉g.c.e. = 〈N+〉g.c.e. + 〈N−〉g.c.e.

= 2z cosh
(µ

T

)
, (20)

〈Nch〉c.e. ≡ 〈N+ + N− 〉c.e. = 〈N+〉c.e. + 〈N−〉c.e.

= z

[
IQ−1(2z)

IQ(2z)
+ IQ+1(2z)

IQ(2z)

]
. (21)

III. THE SCALED VARIANCE

A useful measure of the fluctuations of any variable X is
the ratio of its variance V (X) ≡ 〈X2〉 − 〈X〉2 to its mean value

〈X〉, referred to here as the scaled variance:

ωX ≡ 〈X2〉 − 〈X〉2

〈X〉 . (22)

Note that ωX = 1 for the Poisson distribution. To study the
fluctuations of charged particle numbers, the second moments
of the multiplicity distribution have to be calculated. One finds〈

N2
j±

〉 = 1

Z

[
λj±

∂

∂λj±

(
λj±

∂Z

∂λj±

)]
= a±zj + b±z2

j ,

(23)

〈Nj+Nj−〉 = λj+λj−
Z

∂2Z

∂λj+∂λj−
= z2

j , (24)

where a± is given by Eq. (6) and

b
g.c.e.
± = exp

(
±2µ

T

)
= (

a
g.c.e.
±

)2
, bc.e.

± = IQ∓2(2z)

IQ(2z)
,

(25)

in the GCE and CE, respectively. The scaled variances ωj ±
and ωj ch are equal to

ωj ± ≡
〈
N2

j+
〉 − 〈Nj+〉2

〈Nj+〉 = 1 − zj

(
a± − b±

a±

)
, (26)

ωj ch ≡ 〈(Nj+ + Nj−)2〉 − 〈Nj+ + Nj−〉2

〈Nj+ + Nj−〉

= 1 + zj

[
b+ + b− + 2

a+ + a−
− (a+ + a−)

]
. (27)
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FIG. 3. The scaled variances ω±
c.e. (29) and ωch

c.e. (30) as functions of z for fixed values of the conserved charge Q.

Equations (26) and (27) describe the particle number fluctua-
tions of a given species j. One can establish a general rule for
how to calculate the fluctuations of N± = ∑

j Nj± and Nch =
N+ + N−. To do this one should set λ1± = λ2± = · · · = λ±
in Eqs. (1) and (3) and differentiate with respect to λ± in
Eqs. (5) and (23) to get 〈Nn

±〉 (n = 1, 2). This eventually results
in a substitution of z instead of zj in all final formulas for the
averages and fluctuations. One obtains

ω±
g.c.e. = ωch

g.c.e. = 1. (28)

ω±
c.e. = 1 − z

[
IQ∓1(2z)

IQ(2z)
− IQ∓2(2z)

IQ∓1(2z)

]
, (29)

ωch
c.e. = 1 + z

[
IQ−2(2z) + IQ+2(2z) + 2IQ(2z)

IQ−1(2z) + IQ+1(2z)

− IQ−1(2z) + IQ+1(2z)

IQ(2z)

]
. (30)

The scaled variances ω±
c.e and ωch

c.e calculated with Eqs. (29)
and (30) are shown in Fig. 3 for Q = 0,Q = 2 and in
Fig. 4 for fixed positive values of y. Using the asymp-
totic behavior of the modified Bessel function for z → 0,
Eq. (13), and z, Q → ∞ with y = Q/2z = constant,
Eqs. (17) and (18), one can easily find the limits of the
scaled variances, for both a given particle species j and the

FIG. 4. The scaled variances ω±
c.e. (29) and ωch

c.e. (30) as functions of Q = 1, 2, 3, . . . for fixed values of y = Q/2z.
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sum over all particle species:

1. A small-system limit z → 0 gives for Q = 0

ωj +
c.e. = ω−

c.e. � 1 − zj z

2
, ω+

c.e. = ω−
c.e. � 1 − z2

2
, (31)

ωj ch
c.e. � 1 + zj

z
− zj z, ωch

c.e. � 2 − z2, (32)

and for Q � 1

ωj +
c.e.

∼= 1 − zj

z
+ zj z

Q(Q + 1)
, ω+

c.e.
∼= z2

Q(Q + 1)
, (33)

ωj−
c.e.

∼= 1− zj z

(Q + 1)(Q + 2)
, ω−

c.e.
∼= 1− z2

(Q + 1)(Q + 2)
,

(34)

ωj ch
c.e.

∼= 1 − zj

z
+ 4 zj z

Q(Q + 1)
, ωch

c.e.
∼= 4 z2

Q(Q + 1)
. (35)

2. A large-system limit z → ∞ gives for fixed Q (note
again that fixed Q in the thermodynamic limit z → ∞ means
a zero value of the net charge density and leads, therefore,
to y = 0)

ωj ±
c.e. � 1 − zj

2z
+ zj

8z2
∓ Qzj

4z2
, ω±

c.e. � 1

2
+ 1

8z
∓ Q

4z
,

(36)

ωj ch
c.e. � 1 + zj

4z2
, ωch

c.e. � 1 + 1

4z
, (37)

and for fixed Q/2z = y

ωj ±
c.e. � 1 − zj

2z
∓ zj

2z

y√
1 + y2

, ω±
c.e. � 1

2
∓ y

2
√

1 + y2
,

(38)

ωj ch
c.e. � 1 − zj

z

y2

1 + y2
, ωch

c.e. � 1

1 + y2
. (39)

As one sees from Eqs. (3) and (4) the scaled variances
reach their asymptotic values very quickly. In Fig. 3 the
scaled variances for Q = 0 and Q = 2 can be compared
(for Q = 0 see details in Ref. [23]). One notices that their
values at z → ∞ are the same, but the behavior at small
values of z is different. Namely, if Q � 1 the fluctuations
of positively charged particles are very small at small z,
whereas the fluctuations of negatively charged particles have
a Poisson width. This can be easily understood because for
small volumes the average number of positive particles is
approximately equal to Q [see Eq. (15)] and the fluctuations
of N+ are small. However, at small z and fixed Q the average
number of negatively charged particles is much smaller than
Q [see Eq. (16)] and the fluctuations of N− are not affected
by the conservation law. Similar physical reasons explain
the behavior of the fluctuations at nonzero charge density
in the thermodynamic limit. Figure 4 shows the following
features of the asymptotic values of ω+

c.e. and ω−
c.e. at Q � 1.

When the charge density becomes larger (y increases) ω+
c.e.

decreases and tends to 0 at y → ∞, whereas ω−
c.e. increases

and tends to 1 at y → ∞. The physical reasons for this are seen
from Eq. (19), which at y � 1 gives 〈N+〉c.e. � z2y = Q and
〈N−〉c.e. � z(2y)−1 = Q(4y2)−1 � Q. Therefore, at y � 1 an
exact charge conservation keeps N+ close to its average value
Q and makes the fluctuations of N+ in the CE small. Under
the same conditions, 〈N−〉c.e. is much smaller than Q; thus
the fluctuations of N− are not affected by the CE suppression
effects and have a Poisson form. These features of the CE differ
strikingly from those in the GCE. The GCE scaled variances
(28) are equal to 1 for N−, N+, and Nch, and this remains
valid for all values of the system net charge or net charge
density.

IV. ENERGY FLUCTUATIONS

The partition function in the GCE and CE is equal
to Z ≡ ∑

exp(−E/T ), where the sum over microstates
includes the summation (integration) over particle momenta
and summation over number of particles and over different
particle species. Each microscopic state has the weight factor∏

j exp[(µNj+ − µNj−)/T ] in the GCE (1) and δ[Q −∑
j (Nj+ − Nj−)] in the CE (3). To calculate the average

energy and its fluctuations it is convenient to rewrite the par-
tition function as Z = ∑

exp[
∑

j (βj+Ej+ + βj−Ej−)/T ],
where βj+ and βj− are the auxiliary parameters and
βj+ = βj− = β ≡ 1/T in the final formulas. It then follows
that

〈Ej±〉 = − 1

Z

∂Z

∂βj±
= −a±z′

j ≡ 〈εj 〉〈Nj±〉, (40)

〈Ei±Ej±〉 = 1

Z

∂2Z

∂βi±βj±
= a±z′′

j δij + b±z′
iz

′
j , (41)

〈Ei+Ej−〉 = 1

Z

∂2Z

∂βi+βj−
= z′

iz
′
j , (42)

where z′
j = ∂zj/∂β, z′′

j = ∂2zj /∂β
2, and zj , a±, and b± are

given by Eqs. (2), (6), and (25), respectively. In Eq. (40)
we have introduced the average value of one-particle energy
〈εj 〉 ≡ −z′

j /zj . By introducing also 〈ε2
j 〉 ≡ z′′

j /zj the energy
fluctuations can be then presented as follows:

Wj± ≡
〈
E2

j±
〉 − 〈Ej±〉2

〈Ej±〉 =
〈
ε2
j

〉 − 〈εj 〉2

〈εj 〉 + 〈εj 〉ωj±,

(43)
where ωj± is given by Eq. (26). Introducing the total
energies E± ≡ ∑

j Ej± and Ech ≡ ∑
j (Ej+ + Ej−), one

finds

W± ≡ 〈E2
±〉 − 〈E±〉2

〈E±〉 = 〈ε2〉 − 〈ε〉2

〈ε〉 + 〈ε〉ω±, (44)

W ch ≡
〈
E2

ch

〉 − 〈Ech〉2

〈Ech〉 = 〈ε2〉 − 〈ε〉2

〈ε〉 + 〈ε〉ωch, (45)

where 〈ε〉≡∑
j zj 〈εj 〉/z, 〈ε2〉≡∑

j 〈ε2
j 〉zj /z. Equations (44)

and (45) are valid in both GCE and CE. The energy fluctuations
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FIG. 5. The CE energy fluctuations W+,W−, and W ch in an ideal pion gas at temperature T = 120 MeV.

consist of two terms. The first term takes into account the
fluctuations of one-particle energies; the second one accounts
for the fluctuations of the number of particles. The fluctuations
of the number of particles are relatively more important than
the fluctuations of one-particle energies. Indeed, the maximal
value of the first term on the right-hand side of Eqs. (44)
and (45) is equal to 〈ε〉/3 for particles with m/T → 0, and it
decreases and goes to zero at m/T → ∞. However, the second
term on the right-hand side of Eqs. (44) and (45) is equal to
〈ε〉 for any system in the GCE. The value of (〈ε2〉 − 〈ε〉2)/〈ε〉
in Eqs. (44) and (45) is the same for “+”and “−” particles,
and in both the GCE and CE. However, the values of ω’s are
different in the GCE and CE. Moreover, ω+

c.e., ω
−
c.e., and ωch

c.e.
differ from each other for the nonzero net charge Q. Therefore,
the scaled variances of the energy fluctuations are different in
the GCE and CE, and in the CE the values of W+,W− and
W ch differ from each other and depend on the net charge of the
system. An example of the energy fluctuations W+,W−, and
W ch for an ideal pion gas with Q = 0 and Q = 2 is presented in
Fig. 5. It shows that the dependences of the energy fluctuations
W+,W−, and W ch on z in the CE resemble those for ω+

c.e., ω
−
c.e.,

and ωch
c.e. shown in Fig. 3.

The upper horizontal dotted line in Fig. 5 shows the value
of 〈ε2〉/〈ε〉 that corresponds to W+ = W− = W ch in the GCE.
The lower horizontal dotted line in Fig. 5 shows the value of
(〈ε2〉 − 〈ε〉2)/〈ε〉 that indicates the fluctuations of one-pion
energy.

V. SINGLY AND DOUBLY CHARGED PARTICLES

In the following sections we consider the extension of
the CE formalism. First, let us study the system of particles
and antiparticles with charges ±1 and ±2. The CE partition
function reads

Zc.e.(V, T ,Q) =
∞∑

N+,N−,Ñ+,Ñ−=0

(λ+z)N+

N+!

(λ−z)N−

N−!

(̃λ+̃z)Ñ+

Ñ+!

× (̃λ−̃z)Ñ−

Ñ−!
δ[(N+−N−+ 2Ñ+−2Ñ−)−Q]

=
∫ 2π

0

dφ

2π
exp[−i Qφ + z(λ+ eiφ + λ− e−iφ)

+ z̃ (̃λ+ ei2φ + λ̃− e−i2φ)]

=
∞∑

k=−∞
IQ−2k(2z)Ik(2̃z ), (46)

where we have used the relation exp[x(t + 1
t
)] =∑∞

k=−∞ t kIk(2x). The z and z̃ in Eq. (46) are the one-particle
partition functions for charges ±1 and ±2, respectively. In
terms of variables cm± (m = 1, 2, 4)

cm± =
∑∞

k=−∞ IQ∓m−2k(2z)Ik(2̃z )∑∞
k=−∞ IQ−2k(2z)Ik(2̃z )

, (47)

one finds

〈N±〉c.e. = c1±z, 〈Ñ±〉c.e. = c2±̃z, (48)

〈N2
±〉c.e. = c1±z + c2±z2, 〈Ñ2

±〉c.e. = c2±̃z + c4±̃z 2. (49)

From Eqs. (48) and (49) it follows that

ω±
1 c.e. ≡ 〈N2

±〉c.e. − 〈N±〉2
c.e.

〈N±〉c.e.
= 1 − z

(
c1± − c2±

c1±

)
, (50)

ω±
2 c.e. ≡ 〈Ñ2

±〉c.e. − 〈Ñ±〉2
c.e.

〈Ñ±〉c.e.
= 1 − z̃

(
c2± − c4±

c2±

)
, (51)

ω±
c.e. ≡ 〈(N± + Ñ±)2〉c.e. − 〈N± + Ñ±〉2

c.e.

〈N± + Ñ±〉c.e.

= 1 + z2c2± + z̃ 2c4± + 2z̃zc3±
zc1± + z̃c2±

− (zc1± + z̃c2±).

(52)

To illustrate the specific features of the considered system
we present the CE results in the case Q = 0. In the GCE
all ω’s are still equal to 1. For 〈Q〉g.c.e. = 0 one also has
〈N±〉g.c.e. = z and 〈Ñ±〉g.c.e. = z̃. To calculate Eqs. (48) and
(52) for finite values of z and z̃ one can effectively use
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Eq. (47). In the thermodynamic limit V → ∞ both z → ∞
and z̃ → ∞. In this case it is convenient to return to the integral
representation in Eq. (46) and use it also for the derivatives of
the CE partition function with respect to λ± and λ̃±. Using the
saddle point method to calculate the φ-integrals one finds then
for z, z̃ � 1,

〈N±〉c.e. � z

[
1 − 1

4(z + 4̃z)

]
, 〈Ñ±〉c.e. = z̃

(
1 − 1

z + 4̃z

)
;

(53)

ω±
1c.e. � 1 − z

2(z + 4̃z)
, ω±

2 c.e. � 1 − 2̃z

z + 4̃z
,

(54)

ω±
c.e. � 1 − (z + 2̃z)2

2(z + z̃)(z + 4̃z)
.

From these formulas one finds that ω±
c.e. � 0.5 if z̃/z is either

much smaller or much larger than 1. The scaled variance ω±
c.e.

has a maximum at z = 2̃z. At this point one finds ω±
c.e. =

5/9, ω±
1 c.e. = 5/6, and ω±

2 c.e. = 2/3.

VI. QUANTUM STATISTICS EFFECTS

It is instructive to apply a different technique [17] to
calculate the fluctuations of the thermodynamical quantities
with the exact conservation laws imposed. This method
allows one to find the values of the CE fluctuations in the
thermodynamic limit and include the effects of quantum
statistics.

The ideal quantum gas of identical Bose or Fermi par-
ticles and antiparticles can be characterized by the occu-
pation numbers n±

p of the one-particle states labeled by
momenta p. The GCE average values and fluctuations
are [26]

〈n±
p 〉g.c.e. = 1

exp[(
√

p2 + m2 ∓ µ)/T ] − γ
, (55)

〈
�n±2

p

〉
g.c.e. ≡ 〈(n±

p )2〉g.c.e. − 〈n±
p 〉2

g.c.e.

= 〈n±
p 〉g.c.e.(1 + γ 〈n±

p 〉g.c.e.) ≡ v±2
p , (56)

respectively, where γ is equal to +1 and −1 for Bose and Fermi
statistics, respectively. (γ = 0 corresponds to the Boltzmann
approximation.) These expressions are microscopic in a sense
that they describe the average values and fluctuations of
a single mode with momentum p. However, the average
values of all macroscopic quantities of the system can be
determined through the average occupation numbers of these
single modes. The fluctuations of the macroscopic obser-
vables can be written in terms of the microscopic correlator
〈�nα

p�n
β

k 〉g.c.e., where α, β are + and(or) −. This correlator
can be presented as〈

�nα
p�n

β

k

〉
g.c.e. = vα2

p δp kδαβ, (57)

owing to the statistical independence of different quantum
levels and different charge states in the GCE. The variances
of the total number of positively (negatively) charged particles

Nα = ∑
p nα

p are equal to〈
�N2

α

〉
g.c.e. ≡ 〈

N2
α

〉
g.c.e. − 〈Nα〉2

g.c.e.

=
∑
p,k

(〈
nα

pnα
k

〉
g.c.e. −

〈
nα

p

〉
g.c.e.

〈
nα

k

〉
g.c.e.

)
=

∑
p,k

〈
�nα

p�α
k

〉
g.c.e. =

∑
p

vα2
p .

We have previously assumed that the quantum p levels are
nondegenerate. In fact each level should be further specified
by the projection of a particle spin. Thus, each p level splits
into g = 2j + 1 sublevels. It will be assumed that the p
summation includes all these sublevels too. The degeneracy
factor enters explicitly when the summation over discrete
levels is substituted by the integration in the thermodynamic
limit: ∑

p

. . . = gV

2π2

∫ ∞

0
p2dp . . . .

The scaled variance ωα
g.c.e. in the thermodynamical limit V →

∞ reads

ωα
g.c.e. ≡

〈
N2

α

〉
g.c.e. − 〈Nα〉2

g.c.e.

〈Nα〉g.c.e.
=

∑
p,k

〈
�nα

p�nα
k

〉
g.c.e.∑

p

〈
nα

p

〉
g.c.e.

=
∑

p vα2
p∑

p

〈
nα

p

〉
g.c.e.

�
∫ ∞

0 p2dpvα2
p∫ ∞

0 p2dp
〈
nα

p

〉
g.c.e.

. (58)

Equation (58) corresponds to the particle number fluctuations
in the GCE. To illustrate the role of quantum statistics let
us consider the case of µ = 0 (i.e., 〈Q〉g.c.e. = 0, where Q ≡∑

p,α qαnα
p). In the formulas that follow we assume that q+ =

1 and q− = −1, however, these formulas are valid for any
values of q+ and q− = −q+. From Eqs. (56) and (58) one
finds ω±Boltz

g.c.e. = 1 in the Boltzmann limit (γ = 0), ω±Bose
g.c.e. > 1

for the Bose particles (γ = 1), and ω±Fermi
g.c.e. < 1 for the Fermi

particles (γ = −1). The strongest quantum effects correspond
to m/T → 0:

ω±Boltz
g.c.e. = 1, ω±Bose

g.c.e. = π2

6 ζ (3)
� 1.368,

(59)

ω±Fermi
g.c.e. = π2

9 ζ (3)
� 0.912.

The scaled variance ωch
g.c.e. for all charged particles can be

easily obtained from (58) by replacing
∑

p by
∑

p α , and one
finds

ωch Boltz
g.c.e. = ω±Boltz

g.c.e. , ωch Bose
g.c.e. = ω±Bose

g.c.e. , ωch Fermi
g.c.e. = ω±Fermi

g.c.e. .

(60)

The formula for the microscopic correlator is modified if we
impose the exact charge conservation in our equilibrated sys-
tem. For this purpose we introduce the equilibrium probability
distribution W (nα

p) of the occupation numbers. As a first step
we assume that each nα

p fluctuates independently according
to the Gauss distribution law with the average value 〈nα

p〉g.c.e.
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(55) and the mean square deviation vα2
p (56):

W (nα
p) ∝

∏
p,α

exp

[
−

(
�nα

p

)2

2vα2
p

]
. (61)

To justify this assumption (see Ref. [17] one can consider the
sum of nα

p in small momentum volume (�p)3 with the center at
p. At fixed (�p)3 and V → ∞ the average number of particles
inside (�p)3 becomes large. Each particle configuration inside
(�p)3 consists of (�p)3 V/(2π )3 � 1 statistically indepen-
dent terms, each with average value 〈nα

p〉g.c.e. (55) and variance
vα2

p (56). From the central limit theorem it follows that the
probability distribution for the fluctuations inside (�p)3 should
be Gaussian. In fact, we always convolve nα

p with some smooth
function of p, so instead of writing the Gaussian distribution
for the sum of nα

p in (�p)3 we can use it directly for nα
p.

The average value of the conserved charge Q = ∑
p,α qαnα

p

is regulated in the GCE by the chemical potential µ. If we
impose exact charge conservation, �Q = ∑

p,α qα�nα
p = 0,

the distribution (61) will be modified as

W (nα
p) ∝

∏
p,α

exp

[
−

(
�nα

p

)2

2vα2
p

]
δ

(∑
p,α

qα�nα
p

)

∝
∫ ∞

−∞
dλ

∏
p,α

exp

[
−

(
�nα

p

)2

2vα2
p

+ iλqα�nα
p

]
. (62)

It is convenient to generalize distribution (62) to W (nα
p, λ)

using further the integration along the imaginary axis in the λ

plane. After completing squares one gets

W
(
nα

p, λ
) ∝

∏
p,α

exp

[
−

(
�nα

p − λvα2
p qα

)2

2vα2
p

+ λ2

2
vα2

p qα2

]
,

(63)
and the average values are now calculated as

〈. . .〉 =
∫ i∞
−i∞ dλ

∫ ∞
−∞

∏
p,α dnα

p . . . W
(
nα

p, λ
)∫ i∞

−i∞ dλ
∫ ∞
−∞

∏
p,α dnα

pW
(
nα

p, λ
) . (64)

Equation (64) gives the CE averaging in the thermodynamic
limit V → ∞. One easily finds〈(

�nα
p − vα2

p λqα
)(

�n
β

k − v
β2
k λqβ

)〉 = δp kδαβvα2
p ,

〈λ2〉 = −
(∑

p,α

vα2
p qα2

)−1

,
〈(
�nα

p − vα2
p λqα

)
λ
〉 = 0,

so it follows that〈
�nα

p�n
β

k

〉 = δp kδαβvα2
p − vα2

p qαv
β2
k qβ〈λ2〉

+ 〈
�nα

pλ
〉
v

β2
k qβ + 〈

�n
β

k λ
〉
vα2

p qα

= δp kδαβvα2
p + vα2

p qαv
β2
k qβ〈λ2〉

= δp kδαβvα2
p − vα2

p qαv
β2
k qβ∑

p,α vα2
p qα2

. (65)

By means of Eq. (65) we obtain

ωα
c.e. ≡

〈
N2

α

〉 − 〈Nα〉2

〈Nα〉 =
∑

p vα2
p∑

p

〈
nα

p

〉
g.c.e.

−
( ∑

p vα2
p qα

)2∑
p

〈
nα

p

〉
g.c.e.

∑
p,α vα2

p qα2
. (66)

Equation (55) leads to vα2
p = 〈nα

p〉g.c.e. in the Boltzmann
approximation; thus from Eq. (66) one finds [y ≡ Q/2z =
sinh(µ/T )]

ωα
c.e. = 1 − exp(αµ/T )

exp(µ/T ) + exp(−µ/T )
= 1

2
− α

y

2
√

1 + y2
,

(67)

which coincides with Eq. (38). The formula for ωch
c.e. can be

obtained from (66) after replacing
∑

p by
∑

p,α , and it is the
same as Eq. (39). At µ = 0 from Eq. (66) we find the CE
scaled variances:

ω±Boltz
c.e. = 1

2
, ω±Bose

c.e. = π2

12ζ (3)
� 0.684,

(68)

ω±Fermi
c.e. = π2

18ζ (3)
� 0.456,

ωch Boltz
c.e. = 2 ω±Boltz

g.c.e. , ωch Bose
c.e. = 2 ω±Bose

c.e. ,

(69)
ωch Fermi

c.e. = 2 ω±Fermi
c.e. .

As seen from Eqs. (60) and (69) the scaled variance of
positively (negatively) charged particles with Bose or Fermi
statistics in the CE is half those of the corresponding scaled
variances in the GCE. Therefore, the CE suppression of
the particle number fluctuations in the thermodynamic limit
works at µ = 0 in quantum systems similar to that in the
Boltzmann case. This result can be rephrased in another way:
The Bose enhancement and Fermi suppression of the GCE
fluctuations remain the same in the CE for ω±

c.e. at µ = 0 in
the thermodynamic limit. Equation (70) demonstrates that the
scaled variances of all charged particles in the CE for any
statistics are a factor of 2 larger than the corresponding scaled
variances for (negative) positive particles, whereas in the GCE
these scaled variances presented by Eq. (60) are equal to each
other.

Comparing Eq. (65) and Eq. (57) one notices changes of the
microscopic correlator because of exact charge conservation.
Namely, in the CE the fluctuations of each mode are reduced)
[i.e., the 〈(�nα

p)2〉 calculated from Eq. (65) is smaller than that
in Eq. (56)] and anticorrelations between different modes p �=
k and the same charge states α = β appear. These two changes
of the microscopic correlator result in a suppression of the
CE scaled variances ωα

c.e. compared with the GCE ones ωα
g.c.e.

[compare Eq. (66)] and Eq. (58)]. Therefore, the fluctuations
of both N− and N+ are always suppressed in the CE. As we
have seen in previous sections the behavior of Nch fluctuations
in the CE can be more complicated. This occurs because of the
correlations of different modes p �= k for the different charge
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states α = −β [i.e., the second term on the right-hand side of
Eq. (65) is positive for α = −β].

Exact charge conservation should also lead to the canonical
suppression of 〈nα

p〉, and this should result in canonical
suppression effects for 〈Nα〉. They are, however, absent in the
present formulation; thus formula (65) for the microscopic
correlator is not sufficient to calculate 〈N2

α〉 and 〈Nα〉2

separately with an accuracy corresponding to the effects of
the canonical suppression. Nevertheless, it does allow us to
calculate their difference 〈(�Nα)2〉 with the effects of the
CE correctly included. This means that canonical suppression
effects in the occupation numbers 〈nα

p〉 lead to changes of the
order of 〈Nα〉 in both 〈N2

α〉 and 〈Nα〉2, but these changes are
the same and the correction terms cancel in the calculation
of 〈(�Nα)2〉. Therefore, the macroscopic fluctuations of
multiplicities are not affected by the CE corrections to the
average particle numbers. The scaled variances of the CE in the
thermodynamic limit V → ∞ feel the consequences of exact
charge conservation owing to the suppression of the single
mode fluctuations 〈(�nα

p)2〉 and owing to the (anticorrelations)
correlations between different modes p �= k with the (same)

different charge states α, β. All these effects are absent in the
GCE.

VII. A SYSTEM WITH TWO CONSERVED CHARGES

In the previous sections we have considered a system
with one conserved charge. In high-energy collisions the
measurements of fluctuations for the particle numbers and
(transverse) energies are mainly done for electrically charged
hadrons. Therefore, in applying the CE results to an analysis
of the data on fluctuations it would be reasonable to start
with the case when the charge Q is assumed to be an electric
charge. Nonetheless, other conserved charges are also present
in the system created in high-energy collisions. In this section
we consider a system with two exactly conserved charges—
electric charge Q and baryonic number B. As an example we
study an ideal pion-nucleon gas and neglect quantum statistics
effects. This is the simplest realistic case where we can study
the influence of an exact B conservation to the CE fluctuations
of electrically charged particles. The partition function of this
system in the CE is

Zc.e.(V, T ,Q,B) =
∞∑

Np,Np̄=0

∞∑
Nn,Nn̄=0

∞∑
Nπ ,Nπ̄ =0

(λpzp)Np

Np!

(λp̄zp̄)Np̄

Np̄!

(λnzn)Nn

Nn!

(λn̄zn̄)Nn̄

Nn̄!

(λπ+zπ )Nπ+

Nπ+ !

(λπ−zπ )Nπ−

Nπ− !

×δ[(Np − Np̄ + Nπ+ − Nπ− ) − Q]δ[(Np − Np̄ + Nn − Nn̄) − B]

=
∫ 2π

0

dϕ

2π

∫ 2π

0

dφ

2π
exp(−iQϕ − iBφ) × exp[zp(λpei(ϕ+φ) + λp̄e−i(ϕ+φ))]

× exp[zn(λne
iφ + λn̄e

−iφ)] × exp[zπ (λπ+eiϕ + λπ−e−iϕ)]

=
∞∑

k=−∞
Ik−Q(2zp)Ik+B−Q(2zn)Ik(2zπ ), (70)

where we have used exp[x(t + 1/t)] = ∑∞
k=0 t kIk(2x). From

Eq. (70) it follows that

〈Nj,α〉c.e. = c
j

1,αzj ,
〈
N2

j,α

〉
c.e. = c

j

1,αzj + c
j

2,αz2
j , (71)

where j numerates pion, neutron, and proton; α = 1 corre-
sponds to particles π+, n, and p and α = −1 to antiparticles
π−, n, and p; and (m = 1, 2)

cp
m,α =

∞∑
k=−∞

Ik+α·m−Q(2zp)Ik+B−Q(2zn)Ik(2zπ )

× [Zc.e.(V, T ,Q,B)]−1, (72)

cn
m,α =

∞∑
k=−∞

Ik−Q(2zp)Ik+α·m+B−Q(2zn)Ik(2zπ )

× [Zc.e.(V, T ,Q,B)]−1, (73)

cπ
m,α =

∞∑
k=−∞

Ik+α·m−Q(2zp)Ik+α·m+B−Q(2zn)Ik(2zπ )

× [Zc.e.(V, T ,Q,B)]−1. (74)

Formulas for the cross-averages 〈NiNj 〉 can be obtained in
a similar manner. The calculations with Eqs. (72)–(74) are
effective for small systems. In this case the k sums in these
equations converge rapidly and a small number of terms
leads to accurate results. In the limit of large system volume
we can use another technique, similar to that developed
in the previous section. This leads to simple analytical
results. Using this method one can obtain, for example, the
scaled variances for (negatively) positively charged particles
in the thermodynamic limit. The same pictures can be ob-
tained directly from Eqs. (72)–(74) by numerical calculations
at zp, zn, zπ � 1.

First, we consider the case when the electric charge
Q is exactly conserved and the baryonic number B
conservation is treated within the GCE. This results
in

ω±
Q = 1 − z±

p + z±
π

zpxp + zπxπ

, (75)
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where

z±
j = zj exp

(
±µj

T

)
, xj = exp

(µj

T

)
+ exp

(
−µj

T

)
,

(76)
and the chemical potentials µj are equal to µp = µQ + µB

for protons and µπ = µQ for π+mesons. When both Q and B
are exactly conserved, the CE scaled variances of (negatively)
positively charged particles are equal to

ω±
Q,B

=1 − z± 2
p (znxn + zπxπ ) + z± 2

π (zpxp + znxn) + 2z±
p z±

π znxn(
z±
p + z±

π

)
(zpxpznxn + zpxpzπxπ + znxnzπxπ )

,

(77)

where xn = exp(µB/T ) + exp(−µB/T ). Let us repeat that
both ω±

Q (75) and ω±
Q,B (77) are obtained in the thermodynamic

limit V → ∞. ω±
Q (75) corresponds to the CE for electric

charge and the GCE for baryonic number. The ω±
Q,B (77)

corresponds to the CE for both conserved charges. It is
easy to prove that ω±

Q,B, � ω±
Q; that is, an additional exact

conservation law reduces the fluctuations. However, the addi-
tional CE suppression of the scaled variances of (negatively)
positively charged particles resulting from exact baryonic
number conservation is rather small. We have plotted (75)
and (77) in Fig. 6 for µQ = 0 to study the influence of baryon
charge conservation on the fluctuations of electrically charged
particles.

As one can see from Fig. 6 the exact CE baryonic charge
conservation leads to little additional suppression and does
not change the result ω+ = ω− = 0.5 for zero values of the
baryonic and electric net charges. Moreover, one can prove
that at zero net charge any ideal Boltzmann gas with two
exactly conserved charges (i.e., for any combination of particle
charges and their masses) leads to the scaled variances equal
to ω± = 0.5 in the thermodynamic limit.

However, Fig. 6 demonstrates a strong dependence of the
ω+

Q and ω−
Q values on the net baryonic density, independent

FIG. 6. The scaled variances ω+
Q,B (dashed line) and ω−

Q,B

(dashed-dotted line) given by Eq. (77). The dotted lines show the
scaled variances ω+

Q and ω−
Q given by Eq. (75). The solid line

presents the scaled variance for all charged particles ωch
Q . The results

correspond to T = 120 MeV.

of whether the baryonic number is treated within the CE or
the GCE. What matters is that in the pion-nucleon gas the
electric charge is Q = Np − Np̄ + Nπ+ − Nπ− . At µB � 0
the electric charge of the system is close to zero. Then one
finds ω+

Q � ω−
Q � 0.5 (compare to Fig. 4 at y = 0.1). µB > 0

leads to 〈Np〉 > 〈Np̄〉, and this means a nonzero electric charge
of the system. In this case exact electric charge conservation
leads to ω−

Q > ω+
Q (see Fig. 4). At µB � T the electric charge

density becomes large because 〈Np〉/〈Np̄〉 � 1; thus ω+
Q → 0

and ω−
Q → 1 (compare to Fig. 4 at y = 2).

VIII. SUMMARY AND CONCLUSIONS

We have considered particle number and energy fluctu-
ations for different systems within the canonical ensemble
formulation. The results are compared to those in the grand
canonical ensemble. We have studied the system with an
arbitrary number of different particle species and nonzero net
charge in Secs. II and III.

Exact charge conservation reduces the values of N+ and
N− fluctuations in the thermodynamic limit. At nonzero net
charge Q the canonical ensemble predicts a difference for
the fluctuations of N+ and N−; these fluctuations also differ
from those of all charged particles Nch = N+ + N−. All these
features of the canonical ensemble are in a striking contrast to
those in the grand canonical ensemble. We have demonstrated
in Sec. IV that the energy fluctuations of the system are mainly
determined by the fluctuations of the number of particles and
have the same volume dependence. Therefore, the energy
fluctuations are rather different in the canonical and grand
canonical ensembles. We extended our canonical ensemble
results and calculated the particle number fluctuations in the
system of singly and doubly charged particles in Sec. V,
included the quantum statistics effects in Sec. VI, and studied
systems with two conserved charges in Sec. VII.

The canonical ensemble suppression effects for the charged
particle multiplicities are well known, and they are success-
fully applied to the statistical description of hadron production
in high-energy collisions [3–8]. The canonical ensemble
formulation explains, for example, the suppression in the
production of strange hadrons [6] and antibaryons [7] in small
systems (i.e., when the total numbers of strange particles
or antibaryons are small). This consideration demonstrates
a difference between the canonical and grand canonical
ensembles—the statistical ensembles are not equivalent for
small systems. When the size of the system increases and
moves to the thermodynamic limit V → ∞, all average
quantities in both ensembles become equal. This means that
in the thermodynamic limit the canonical ensemble and grand
canonical ensemble are equivalent insofar as calculating the
averaged quantities of the statistical system is concerned.

Results of Ref. [23] and considerations presented here
demonstrate that there are modifications of the fluctuations
caused by canonical ensemble effects. In contrast to the
canonical suppression of average multiplicities, the canonical
effects for the multiplicity fluctuations do survive at V → ∞
and they are even most clearly seen in the thermodynamic
limit. Changes in the scaled variances resulting from exact
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charge conservation of the canonical ensemble are not small
(on the order of 50%) and they are in general different for all
charged particles.

To observe these new canonical ensemble effects in an
analysis of the data on multiparticle production, several points
should be clarified. To use the condition of exact charge
conservation, one has to apply it to the system of all secondary
hadrons formed in high-energy collisions. This should be done
on an event-by-event basis as we are interested in the system
fluctuations. In the experimental study of A + A collisions
at high energies only a fraction of all produced particles
with conserved charges is detected. In experiments on A + A

collisions at SPS CERN’s: Super Proton Synchrotron (SPS)
and at the Relativistic Heavy Ion Collider at the (RHIC)
at Brookhaven National Laboratory (BNL) the secondary
hadrons are detected in a small rapidity interval with additional
restrictions on particle transverse energies and azimuthal
angles. By introducing a probability 0 � q � 1 that a single final
particle with the conserved charge of interest (e.g., negatively
charged hadron) is accepted in the detector, and assuming that
secondary particles are uncorrelated in momentum space, a
simple relation between the scaled variance of the accepted
particles, ω−

acc, and the genuine scaled variance of all particles
in the statistical ensemble, ω−, was obtained [23]: ω−

acc =
q · ω− + (1 − q). The limiting behavior of the scaled variance
of the accepted particles is rather evident. At q � 1 most of
the particles are registered and ω−

acc � ω−. For a very small
acceptance, q � 0, the measured particle number distribution
approaches the Poisson one, and this does not depend on the
shape of the genuine distribution in full phase space. Therefore,
to observe real event-by-event fluctuations ω− one needs
q � 1; otherwise, if q � 1, one always obtains ωacc � 1 and
draws the wrong conclusion that the fluctuations correspond to
the Poisson distribution. This fact is of a very general origin,
and because of relatively small experimental acceptance a
large part of the event-by-event fluctuations in high-energy
multiparticle production is lost. However, to observe many
interesting event-by-event fluctuations in future experimental
program at the SPS and at the RHIC, for example, to search
for the QCD critical point [18], or to extract the so-called
dynamical fluctuations [19] from the data, one should accept an
essential part of all secondary particles (i.e., q should go to 1).
In this case the role of exact charge conservation as discussed in
our paper should increase. In fact, the multiplicities measured

on an event-by-event basis vary not only as a result of
the statistical fluctuations at freeze-out but also because of
the dynamical fluctuations at an early stage. For example,
for the number of negatively charged particles the total
fluctuations ω− are equal to the sum of the dynamical (early
stage) fluctuations and the dynamically averaged statistical
fluctuations at freeze-out: ω− = ω−

dyn + ω−
stat. The simplest

behaviors assumed in Ref. [19] correspond to ω−
stat � 1 and

ω−
dyn � qα〈N−〉, where α = constant � 1 and 〈N−〉 is the

total average number of negatively charged particles. At q � 1
the fluctuations of experimentally accepted particles always
yield ω−

acc � 1, as previously discussed. Moreover, the average
of accepted negatively charged hadrons 〈N−

acc〉 = q〈N−〉 is not
large enough and consequently ω−

dyn � ω−
stat, because α � 1.

When the acceptance increases and q → 1 the experimental
average 〈N−

acc〉 also increases, so that ω−
dyn � ω−

stat or even
ω−

dyn > ω−
stat. If the statistical fluctuations do not depend on

q, so that ω−
stat = constant � 1, an increase of the dynamical

fluctuations will be clearly observed by an increase of the
total fluctuations ω− and, therefore, by an increase of the
measured fluctuations ω−

acc too. At q � 1 one finds ω−
acc � ω−,

and the dynamical fluctuations can be then easily extracted
from the data: ω−

dyn � ω−
acc − 1. However, the real picture can

be rather different. When the acceptance q increases from 0
to 1, the statistical fluctuations ω−

stat decrease from 1 to 0.5
because of CE suppression effects resulting from exact charge
conservation. As a result, the expected behavior of ω− is more
complicated and extracting the dynamical fluctuations ω−

dyn
from the data requires additional special analysis. We hope that
these questions will become the subjects of future experimental
and theoretical studies.
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