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We present a new procedure that enables us to extract a scattering matrix S (l) as a complex function of angular
momentum directly from the scattering data without any a priori model assumptions implied. The key ingredient
of the procedure is the evolutionary algorithm with diffused mutation that evolves the population of the scattering
matrices by means of their smooth deformations from the primary arbitrary analytical S (l) shapes to the final
ones, giving high-quality fits to the data. Because of the automatic monitoring of the scattering-matrix derivatives,
the final S (l) shapes are monotonic and do not have any distortions. For the 16O-16O elastic-scattering data at
350 MeV, we show the independence of the final results of the primary S (l) shapes. Contrary to other approaches,
our procedure provides an excellent fit by the S (l) shapes that support the “rainbow” interpretation of the data
under analysis.
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I. INTRODUCTION

The S operator is a fundamental quantity of the scattering
theory, which incorporates, by a general assumption, all
possible information on any possible scattering process (in-
cluding particle creation or destruction). In the case of elastic
scattering, the diagonal matrix elements of the S operator in
the angular momentum representation can be given in general
form as

S (l) = η (l) e2iϕ(l), (1)

where the S-matrix modulus η (l) and the scattering phase ϕ (l)
are real, smooth functions of l. The unitarity of the S matrix
for the composite particle–nucleus scattering in the presence
of nuclear absorption requires that η (l) �1, so we put

η (l) = e−2δa (l), (2)

where the nuclear absorption phase δa (l) must be a real,
smooth, positive function of l.

Because the colliding nuclei have electric charges, then the
scattering phase ϕ (l) can be divided into two parts,

ϕ (l) = δr (l) + σC (l) , (3)

where the nuclear refraction phase δr (l) and the Coulomb
scattering phase σC (l) must be real, smooth functions of l.

From a general physics viewpoint, the only restrictions we
may impose on the nuclear phases δa,r (l) to be determined are
their finite values at small l, total vanishing at sufficiently
large l, and smooth behavior in the intermediate region.
The most natural and simple approximation for δa (l) [or
η (l)] and δr (l) is a monotonically descending [for η (l),
ascending to unity] function that can be easily modeled with
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the help of, say, Fermi-step or Gauss functions. For the
case of elastic heavy-ion scattering at intermediate energies
(>∼20 MeV/nucleon), the S matrix approaches of such a kind
(see, e.g., Refs. [1–4]) and the optical potential models that
yield S (l) with such a behavior (see, e.g., Refs. [5,6]) have
appeared to be quite successful and argued for the so-called
“rainbow” interpretation of the data. However, these models
have not allowed an adequate description of all the features of
the data measured.

At the same time, in many cases the quality of fit can be
improved when the phases δr (l) are modified by additional
surface terms of different forms (see, e.g., Refs. [7,8]). Such
modifications, in general, make the S (l) dependence non-
monotonic. Note also the S-matrix model with the additional
derivativelike interior term in the absorption phase δa (l) [9].
The nonmonotonic behavior of the described type is also
inherent in the scattering matrices found with the help of
optical potentials that have both the standard Saxon-Woods
forms and the ones with the additional surface terms (see, e.g.,
Refs. [6,10,11]). In spite of the nonmonotonicity of S (l) in
these approaches, the rainbow interpretation of the data is,
nevertheless, preserved.

Further substantial improvement in the quality of fit is
achieved with the help of more flexible S (l) forms that allow
the phases to behave nonmonotonically for all relevant l.
Such a nonmonotonic behavior is provided by extension of
the standard (monotonic) S matrices with a series of the
polelike terms (see, e.g., Ref. [12]) or the proper (say, spline)
basis functions (see, e.g., Refs. [13–15]). Similar behavior
is inherent in the S matrices calculated from the optical
potentials that have the additional derivativelike interior terms
or have the more complicated forms obtained by use of
the spline functions or the Fourier-Bessel series (see, e.g.,
Refs. [5,16–18]). In spite of the excellence of the quality of
fit provided in such approaches, the rainbow interpretation
of the data appears to be no longer valid, which raises the
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FIG. 1. Five scattering matrices for 16O-16O elastic scattering at
350 MeV, calculated by our procedure with the primary model a for
S (l) [Eq. (4)]: (a) Scattering-matrix moduli η (l). The inset shows the
region of small momenta in the logarithmic scale. (b) Nuclear phases
δr (l). The inset shows the region of small momenta in the enlarged
scale. (c) The same as (b) but in logarithmic scale. (d) Deflection
functions � (l). The inset shows the vicinity of � (l) minima in the
enlarged scale. Solid curves correspond to the best quality of fit to
the data χ 2 = 2.4.

problem of finding the physical meaning of the results obtained
this way.

Clearly all the approaches just mentioned are more or less
model dependent because the functions used to model the
phases δa,r (l) and the real and imaginary parts of optical
potential V (r) and W (r) are more or less the properly
parametrized analytical ones. Thus the search spaces of all
possible shapes for the S matrix and the optical potential are
strongly reduced, and consequently data analyses performed
on such spaces can lead to an incorrect physical interpretation
of the data.

That is why it would be highly desirable to have a procedure
that could extract the scattering matrix and/or the optical
potential directly from the experimental data without the
introduction of any bias toward some a priori “physically
reasonable” model assumptions. The very first question this
procedure must answer is whether the nonmonotonic (or
polelike) structures and any other distortions that appear in the
S-matrix shapes obtained in the most successful approaches are
really necessary for reproducing the experimental data studied.
This will help us to shed more light on the applicability of the
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FIG. 2. The same as Fig. 1 but with primary model b for S (l)
[Eq. (5)].

rainbow interpretation to the heavy-ion collisions in the wide
range of energies and mass numbers.

II. MODEL-FREE DETERMINATION OF THE
SCATTERING MATRIX

To develope the desired procedure that determines S (l)
directly from the data, data −→ S (l), we need to solve the
problem in its most explicit form, in which each value of
δa,r (l) is treated generally as an independent fitting parameter.
This makes the problem parameter space highly dimensional
and the choice of an appropriate search method crucial.
Evolutionary (or genetic) algorithms (EAs) have many times
proved very efficient in dealing with very difficult physical
problems (see, e.g., Refs. [19–22]), so we have chosen an EA
as a key element of our procedure. Note that our algorithm
resembles the so-called smooth genetic algorithm proposed in
Ref. [23].

According to the general ideology of the EA imple-
mentation, we deal with the population of N individuals.
Each individual is the S matrix presented as a pair of real-
valued lmax-dimensional vectors [δa (l) , δr (l)] , l = 0, 1, . . . ,

lmax − 1. The fitness of each individual reflects the quality of
data fitting provided by the individual’s S matrix. By using the
mutation operation the algorithm evolves the initial population
of the badly fitted individuals to the final population of the
highly fitted ones.

Every iteration of our procedure contains the following
steps.
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FIG. 3. The same as Fig. 1 but with primary model c for S (l)
[Eq. (6)].

(1) Generating the initial population of N individuals. For each
individual, the vectors δa,r (l) are filled with the help of any
monotonically descending function of l, the first derivative
of which has only one minimum. To be definite and to
test the robustness of the procedure against various starting
conditions, we choose the following five primary models
for S (l).
a. The six-parameter model composed of two Fermi

functions:

2δi (l) = gi f (l, li , di) ,

f (l, li , di) =
[

1 + exp

(
l − li

di

)]−1

,

i = a, r. (4)

b. The four-parameter model composed of two Gaussian
functions:

2δi (l) = gi exp

(
− l2

d2
i

)
. (5)

c. The five-parameter McIntyre model [1]:

η(l) = f (−l,−la, da),

2δr (l) = gr f (l, lr , dr ). (6)

d. The six-parameter phenomenological model [4]:

2δi (l) = gi

[
(2l + 1) diF (l, li , di)

+ d2
i F 2 (l, li , di)

]1/2
f pi (l, li , di) ,
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FIG. 4. The same as Fig. 1 but with primary model d for S (l)
[Eqs. (7)].

F (l, li , di) = −f −1 (l, li , di) ln [1 − f (l, li , di)] ,

pa = 1, pr = 2. (7)

e. The six-parameter model composed of two power-type
functions:

2δi (l) = gi

lαi + βi

, αi > 2. (8)

The parameters gi, li , di, αi , and βi are positive. They are
chosen for each individual and each model function at
random within some intervals that are wide enough to
produce substantially different shapes of the phases. Nor-
mally, all the individuals in a given population are initial-
ized with one and the same function from the set a–e.

All the mentioned primary models for S (l) are “phys-
ically justified,” except for case e, which has no physical
background. Nevertheless, we have included this purely
mathematical case to see whether the procedure is able to
find “physically meaningful” results under such a tough
conditions.

(2) Evaluating the fitness of each individual in the population.
The fitness function in our approach consists of two parts.
The first one is associated with the quality of the shapes of
δa,r (l), and the second one accounts for the quality of the
fitting of the experimental data.

The requirements that the shapes of δa,r (l) must meet in
our approach are as follows:
i. The functions δa,r (l) must be descending.

ii. The first derivatives of δa,r (l) must have only one
minimum and no maxima.
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FIG. 5. The same as Fig. 1 but with primary model e for
S (l) [Eq. (8)].

iii. The second derivatives of δa,r (l) must not have more
than one minimum and one maximum.

iv. The third derivative of δr (l) must not have more than
one minimum and one maximum.

v. The logarithmic derivative of δr (l) must be descending.
Requirements i–iii ensure the absence of any distortions

of the phase shapes, at least up to the second-order deriva-
tives. Condition iv is added because we want the deflection
function � (l) ≡ 2dϕ(l)/dl to have no shape distortions up
to the same order of its derivatives. Condition v provides
for the permanent decrease of δr (l) with the increase of l.
Requirements i–iv are crucial for the shapes of δa,r (l).
Thus the penalties imposed on the individual in the case of
violation of these requirements are fatal. Condition v is not
so strong and introduces only the ultimate bias toward the
desired tail of δr (l).

The quality of the fit of the calculated differential cross
section to the experimentally measured one is assessed
by means of the standard χ2 magnitude per data point.
The calculations are made by use of the expansion of
the scattering amplitude into a series of Legendre poly-
nomials. The elastic-scattering differential cross section
is equal to the squared modulus of this amplitude.

It is often claimed that the amount of the large scattering
angle data is insufficient to determine the scattering matrix
and/or the optical potential in a unique way. Thus we
add several additional pseudo data points after the last
actual ones, which follow the tendency of the cross-section
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FIG. 6. Five best results from Figs. 1–5. Notation is the same as
in Fig. 1.

behavior (see, e.g., Ref. [14]). Of course, this prescription
cannot be universal and must be used with care in the
context of the data under study. The incorporation of
the invented data points to the χ2 criterion can appear
misleading for the fitting procedure; therefore we use the
penalty-free corridor around those points and apply the
prescription only after the fitting to the actual data set has
been accomplished.

(3) Letting each individual in the population produce M off-
spring. The replication is performed according to the
transformation:

log[δ′
i (l)] = log[δi(l)] + Ai Ni (0, 1) D(l, lm,i , dm,i),

(9)
i = a, r,

where δi (l) and δ′
i (l) are the parent’s and the offspring’s

S-matrix phases, respectively, Ai > 0 is the mutation
amplitude, Ni (0, 1) denotes a normally distributed one-
dimensional random number with mean zero and one
standard deviation, lm,i stands for the mutation point
chosen randomly in the interval 0 � lm,i � lmax − 1, and
dm,i > 0 is the value characterizing the diffuseness of the
mutation point. The diffusing function D

(
l, lm,i , dm,i

)
must be of a bell-like shape with the only maximum at
l = lm,i and the falloff tail around this point. To be definite
and to ensure the proper localization of the consequences
of the mutation, we choose the diffusing function in the
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FIG. 7. Two scattering matrices and differential
cross sections for 16O-16O elastic scattering at
350 MeV, calculated by our procedure with primary
model b for S (l) [Eq. (5)]. Solid (dashed) curves
are the results of calculations with the invented data
points taken (not taken) into account in the region
of large scattering angles. (a) Scattering matrix
moduli η (l) and (b) nuclear phases δr (l) in the
region of small momenta; (c) δr (l) in the region
of large momenta; (d) deflection functions � (l) in
the vicinity of the minima; (e) the differential cross
sections (ratio to Rutherford). Experimental data
are taken from Refs. [25] and [26]. Solid curves
presenting S (l) correspond to the same ones shown
in Fig. 2.

following form:

D(l, lm,i , dm,i) = exp

[
− (l − lm,i)2

d2
m,i

]
. (10)

The mutation amplitude Ai and the mutation diffuseness
dm,i are the quantities automatically tuned within some
intervals. The limits of these intervals, having extremely
large values at the beginning of the procedure, are smoothly
decreased in the course of the run and acquire small values
at the end. Such a schedule provides for both the removal
of the features of the primary parametrizations a–e from
the individual’s S (l) and the fine tuning of the details of
S (l).

(4) Evaluating the fitness values of all offspring. Sort the
offspring in descending order according to their fitnesses.
Select N best offspring to form the new population.

(5) Going to step 3 or stopping if the best fitness in the
population is sufficiently high (the χ2 value is small
enough).

EAs make up, generally, the global optimization technique
that, however, cannot guarantee that the optimum found is
the global one. Therefore it is necessary to run the procedure
several times. Besides, there is no way to know in advance
what the minimum value of the χ2 magnitude will be. Thus it
is instructive to monitor the dynamics of the best, worst, and
mean fitness values and the rms deviation from the mean fitness
in the population during those several runs of the procedure.

Such monitoring usually helps to localize the region of the
potentially lowest χ2 values.

III. SCATTERING MATRIX FOR 16O-16O ELASTIC
SCATTERING AT 350 MeV

We applied our technique to analyze the well-known test
case of 16O-16O elastic scattering at 350 MeV, for which
the approaches that give a very good quality of fit predict
the existence of the nonmonotonic structures in the S matrix
(see, e.g., Refs. [12,13]).

In our calculations, bearing in mind that the collision
energy is sufficiently high, we let σC (l) in Eq. (3) be
the quasi-classical phase of the point-charge scattering by
the uniformly charged sphere (see, e.g., Ref. [3]) having the
radius RC = 0.95 × 2 × 161/3 [24]. The calculated differential
cross sections were symmetrized for the scattering of identical
nuclei. The experimental errors are assumed to be equally
weighted (10% error bars).

Figures 1–5 show the results of our calculations with
primary models a–e for S (l), respectively. The χ2 values for
our fits to the data are 2.4−2.5. For each initial case, the
results of five different runs of the procedure are presented
to display the error bands within each of the primary S (l)
models. Figure 6 compiles the five best results from Figs. 1–5
to illuminate their sensitivity to the details of the particular
primary S (l) model. Figure 7 demonstrates the consequences
of consideration of the invented data points in the region of
large scattering angles.
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IV. DISCUSSION

The evolutionary procedure of determining the scattering
matrix presented in this article is aimed at searching for
the globally optimal solution. However, being aware of the
complexity of the problem under study and the fact that the
actual number of fitting parameters (twice the number of
angular momenta, which is lmax = 120 in our test case) is
substantially greater than the actual number of data points
(which is equal to 105 in our test case), we do not expect
to achieve it. Therefore we consider the obtained results
(Figs. 1–7) as very promising.

First, we see that, within every model used for the primary
S (l) dependence, regardless of the variety of their shapes, the
moduli η (l) and the nuclear refraction phases δr (l), as well
as the total deflection functions � (l), obtained in different
runs of the procedure, go close to each other (Figs. 1–5). The
differences among them can sometimes be seen only in the
enlarged or even logarithmic scale. The same observation can
be made if one analyzes the compilation of the best results
(Fig. 6), which points out their independence of the initial
conditions. At the same time, the nuclear phases δr (l) deviate
from each other in the region of large angular momenta. There
the scattering matrix moduli η (l) are very close to unity,
which makes the contributions of the partial waves with these
values of l to the scattering amplitude vanishingly small. To
introduce the corresponding bias into the searching procedure,
we probably need more precise experimental information in
the region of small scattering angles. Nevertheless, we are
able to conclude that, under requirements i–v imposed on the
phases δa,r (l), we have managed to localize the region of
the scattering-matrix shapes that gives the lowest values to the
χ2 magnitude.

It is important to emphasize the remarkable fact that
the application of power-type function e [Eq. (8)] as the
primary S (l) parametrization, which has no proper physical
meaning, does not produce any difficulties for our proce-
dure to find the physically meaningful scattering matrix
(Fig. 5). From the formally mathematical viewpoint, the
iterative application of replication transformation (9) to the
phases δa,r (l) is equivalent to the addition to the primary
phases of the ultimately “infinite” sum of diffusing function
(10) with various parameters and weights. Because of the
special schedule of choosing and tuning the latter, the phase
shapes are transformed almost adiabatically across the run of
the procedure. As a result, the phases evolve to equilibrium,
with respect to the fitness, shapes that are free from any
recollections about the particular models for the primary
S (l) and the diffusing function. That is why, we believe, our
procedure is actually a model-free one.

It is somewhat surprising that the incorporation of the
additional pseudo data points in the fitness function, which
really forces the cross section to behave as desired, produces
no noticeable corrections to the scattering matrix (Fig. 7) in
the whole range of l. This is against the conventional way of
thinking, but could be just a feature of that particular data set
under study.

From the physics viewpoint, our results support the rainbow
interpretation of the given data: The maximum in the differen-

tial cross section observed near 50◦ is identified as the primary
nuclear rainbow. The nuclear rainbow angle that corresponds
to the minimum of the deflection function � (l) acquires the
values θr = 61◦–64◦. At this point, one might ask whether it
is possible to improve the quality of fit, bearing in mind the
number of fitting parameters. In fact, the answer is positive.
If, from the very beginning, we abandon all requirements i–v
imposed on the shapes of δa,r (l), then the procedure becomes
able to find the results with χ2 ≈ 0.5–0.6. However the
S matrices for these cases are nonmonotonic and substantially
different from run to run, belonging to different local optima.
The other way to search for a better quality of fit could be
found in testing the stability of the monotonic shapes of
the S-matrices obtained in our study against nonmonotonic
transformation (9). Then it seems more probable to find
the results that belong to the same local optimum or the
nearest ones. Following this way, if and only if the substantial
improvement in the quality of fit is accompanied by repeated
observations of the same equilibrium nonmonotonic structures
in S (l), then one should admit that the appearance of these
structures is necessary and the search for their physical
interpretation urgent.

The proposed recipe can also be useful in analyzing some
important cases in which the presence of nonmonotonic
(or even nonsmooth) structures in the S matrix seems to
be justified; namely, those cases in which, for instance,
the behavior of S (l) is resonance dominated (see, e.g.,
Refs. [6,27]), or it is important to account for the dynamic
effects (parity dependence of the interactions between nuclei,
elastic transfer; see, e.g., Refs. [28,29]), or the interfer-
ence effects condition the nonmonotonic scattering matrices
(see, e.g., Ref. [10]). To confirm the existence of the discussed
equilibrium structures in the S matrix, we need to extract
them directly from the respective experimental data, using,
for instance, our approach with requirements i–v switched off
either from the very beginning or after the monotonic shape
of the S matrix is obtained. If we succeed, then we must admit
that requirements i–v cannot apply to all cases.

The evolutionary procedure presented in this article has
been initially devised to determine the scattering matrix in
the angular momentum representation. Obviously, a similar
approach can be used to develop the evolutionary procedure
for the determination of radial dependence of a complex optical
potential. With the help of this procedure, the optical potential
can be extracted directly from the experimental data: data −→
V (r). Moreover, with the similar procedure, the scattering
matrix produced by the optical potential can be fitted to the
scattering matrix extracted directly from the data: data −→
S (l) −→ V (r). This means that the optical potential found
in this way will correspond to the scattering matrix extracted
immediately from the data. Having unified these three search
procedures, data −→ S (l), data −→ V (r), and data −→
S (l) −→ V (r), into one, we obtain a powerful tool for
the deep theoretical investigation of heavy-ion collisions at
intermediate energies.
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W. von Oertzen, M. Wilpert, and Th. Wilpert, Phys. Lett. B223,
291 (1989).

[26] M. E. Brandan and G. R. Satchler, Phys. Lett. B256, 311
(1991).

[27] K. W. McVoy, Phys. Rev. C 3, 1104 (1971).
[28] W. E. Frahn, Nucl. Phys. A337, 324 (1980).
[29] W. E. Frahn, M. S. Hussein, L. F. Canto, and R. Donangelo,

Nucl. Phys. A369, 166 (1981).

014611-7


