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General behavior of the effective nucleon-nucleon interaction as a function of the relative velocity
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We have studied volume integrals of the central part of optical potentials extracted from data analyses for a
variety of light and heavy systems. The data-extracted integrals present a quite simple behavior as a function of
the relative velocity between target and projectile. This behavior is system independent and, therefore, it reflects
a feature of the effective nucleon-nucleon interaction itself. The overall results are in good agreement with the

predictions of the Sdo Paulo potential, which is a model for the nuclear interaction that so far has been employed

mostly in analyses of heavy-ion reactions.
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I. INTRODUCTION

Elastic scattering of nucleus-nucleus systems has been an
important subject of study for several decades. Within the
context of the optical model, such studies usually have been
performed with the aim of determining the corresponding
mean-field interaction. Indeed, the optical model has provided
good data fits to angular distributions of numerous different
systems in a wide energy range. The resulting optical potential
parameters should provide physical information on the nuclear
interaction. However, in several cases the data-extracted
potentials are rather ambiguous in the sense that different
sets of parameters result in quite similar data fits. This is
clearly observed at near-barrier energies where potentials that
are similar in the surface region give equivalent fits to the data.
At these low energies, the Coulomb repulsion and strong ab-
sorption prevent the projectile from penetrating the target and
therefore it probes only the surface region. With the advent of
higher energy beams, much less ambiguity has been observed
in the extraction of the optical potential at short distances from
data analyses at intermediate energies. Such data were first
obtained for «-particle scattering and later for several heavy-
ion systems [1]. The resulting phenomenological potentials
present significant dependence on the bombarding energies,
and theoretical models have been developed to account for this
energy dependence through realistic mean-field interactions.
Among them, the Sao Paulo (SP) potential associates this
behavior with nonlocal quantum effects related to the exchange
of nucleons between target and projectile [2—4]. The SP
potential has successfully been used in the data description
of a large number of heavy-ion systems [3,5-13]. In the
present paper, we show that the energy dependence of volume
integrals obtained for potentials extracted from data analyses
is in agreement with the predictions of the SP potential [4], not
only for heavy-ion systems but also for quite light ones, such
as nucleon-nucleus and the « nucleus.

IL. SAO PAULO POTENTIAL

Pauli nonlocality arises from quantum exchange effects
and has been studied in the context of neutron-nucleus [14],
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o nucleus [15], and heavy-ion collisions [2—13]. The nonlocal
interaction has been assumed in the description of the elastic
scattering process through an integro-differential equation
[3,4,14]. It is possible to define a local-equivalent potential
that, within the usual framework of the Schrodinger differential
equation, reproduces the results of the integro-differential
approach [3,4,14]. For heavy-ion systems, we proposed a
model for the real part of the local-equivalent interaction, the
SP potential, which is defined through two equivalent versions
[4]. The first version is a conventional folding of the nucleon
distributions of the nuclei with an effective nucleon-nucleon
interaction

Vn(R) = /pl(;l)p2(?2)unn(1_é — P+ R)dRdr,. (1)

The SP potential consists in using Eq. (1) in the context of the
folding-type nucleon-nucleon interaction

Unn(r) = / PP om (F)VoS(R — Fy + Fo)e /< dF\dF,
@)

where p,, is the matter density of the nucleon, V=
—456 MeV fm3, v is the local relative velocity between the
nucleons (or nuclei), and c is the speed of light. Because of
the delta function, the folding in Eq. (2) is called the zero-
range approach. Based on the results for the charge den-
sity of the proton in free space, obtained from electron
scattering experiments, we assumed an exponential shape,
Pm(r) = ,ooe”/ % for the matter density of the nucleon. This
assumption results in

unn(r) =

\% r r2 .
647.’:0613 e—r/a,,, (1 4 a_ + ﬁ) €—4U2/L2. (3)

A diffuseness value of a,, = 0.30 fm was found [4] for the
matter density of the nucleon inside the nucleus.

The other version of the SP potential is obtained through
the matter density py, of the nucleus, which is defined as the
folding of the nucleon distribution of the nucleus with the
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matter density of the nucleon:

pur(r) = / P )om(F — FYF. @)

Thus, we distinguish the matter and nucleon densities of the
nucleus by taking into account the finite size of the nucleon.
By inserting Egs. (2) and (4) in Eq. (1), the SP potential can
be recast as

Vy(R) = f Pt P2 (P VoS(R — 7y + Fa)e /< diydF,.
(5)

The similar form of Egs. (5) and (2) implies a quite interesting
unification of the nucleus-nucleus and effective nucleon-
nucleon interactions: Both are calculated by folding the
corresponding matter distributions in the zero-range approach
with the same V|, value. Furthermore, the same dependence on
the relative velocity is present in both kinds of interaction. The
model also includes systematics for the densities [4]. Within
this context, the SP potential does not contain any adjustable
parameter and therefore it is a totally parameter free model for
the real part of the nuclear interaction.

An essential characteristic of the SP potential is the
dependence on the local relative velocity v(R). In a classical
physics framework, the velocity is related to the kinetic energy
Eg(R) by

, 2Ex 2
v'=—— = —[E - Ve(R) — Vy(R)], (6)

w 2
where p is the reduced mass of the system, E is the energy
in the center-of-mass frame and V is the Coulomb potential.
Although Eq. (6) connects energy and velocity, if one takes
into account the form of expressions (2) and (5) it seems
more appropriate to consider the nuclear interaction as velocity

dependent instead of energy dependent.

A standard physical quantity in optical model analyses is
the volume integral per nucleon of the real part of the nuclear
interaction:

_ 4
T AA

[e.¢]
Jr / Vn(R)R*dR. (7
0
Within the SP model, a simple expression for Jy is obtained if,
as an approximation, we replace in Eq. (5) the local velocity
by the asymptotic one, v,, = V(R — 00), that is,

Va(R) ~ Voe 2/ f ot P pasa )8R — Ty + Fo)dFydFs.
®)

In this case and taking into account the normalization of the
densities, one obtains

Jr = Voe /e, ©)

One should observe that Eq. (9) is deduced from Egs. (7) and
(8) without any hypothesis on the shape of the densities. Thus,
according to the SP model, the volume integral per nucleon
should be approximately a system-independent quantity with
a simple dependence on the relative velocity between target
and projectile.
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III. VOLUME INTEGRAL SYSTEMATICS

For heavy-ion systems, usually the optical potential in-
volved in data analyses presents only central real and imag-
inary parts. For lighter systems, other kind of interactions,
such as spin-orbit, are often included in the calculations. In the
present work, we consider only the volume integral per nucleon
of the central real part of the optical potential. Considering the
ambiguities present in the determination of optical potential
parameters from data analyses, one should expect similar
ambiguities in the corresponding volume integrals. For light
systems, in spite of ambiguities found for the data-extracted
parameters, the volume integral of the interaction is a rather
well-defined quantity, free of parameter correlations (see, e.g.,
[16]). For heavy systems, the degree of ambiguity is greater
at low energies, near the barrier. Thus, we selected potentials
extracted from data at higher energies and mostly from anal-
yses involving realistic potentials based on the folding model.
Even so, some degree of ambiguity still remains. For instance,
for 10 + 190 at Ep,, = 480 MeV it is possible to obtain
good elastic scattering data fits within about 40 MeV fm?
uncertainty, that is, with Jg ranging from 242 to 279 MeV fm?
[17,18].

Figure 1(a) shows the data-extracted volume integrals
[17-23] for a few heavy-ion systems as a function of the
asymptotic velocity that was calculated within the scenario
of the theory of relativity:

2

Ex = ———— — moc?, (10)

V1 —=1v%/c?

where mg and Eg are the rest-mass and asymptotic kinetic
energy of the projectile, respectively. The straight line in
Fig. 1(a) represents the SP potential prediction [Eq. (9)]. The
system-independent slope of the “data” is clearly compatible
with the velocity dependence of the theoretical model. How-
ever, the value Vy = —456 MeV fm? from the SP potential
seems to be too large to represent the data. This discrepancy
is, in fact, not very significant, because the SP potential has
been successfully used in the elastic scattering data description
for several heavy-ion systems, also including a few angular
distributions that correspond to volume integral data presented
in Fig. 1(a). Thus, we believe that such a discrepancy is due
to the approximation assumed in the deduction of Eq. (9), of
using the asymptotic velocity, and also due to the ambiguity
already mentioned in the determination of volume integrals
from elastic scattering data analyses. To illustrate this point
with an example, Fig. 2 presents an elastic scattering angular
distribution for the 2C + 12C system at Ep,, = 1016 MeV.
The solid line in the figure was obtained from optical model
calculations, where the SP potential and a Woods-Saxon
potential (with three adjustable parameters) were assumed for
the real and imaginary parts of the interaction, respectively.
As one can see in Fig. 2, the agreement between data
and theoretical results is excellent. In this case, the exact
volume integral of the SP potential, obtained from Eq. (7),
is Jg =227 MeV fm?, whereas expression (9) results in a
slightly greater value Jz = 241 MeV fm?>. Similar fits of the
same angular distribution have also been obtained within other
models for the nuclear interaction, with volume integrals that

014603-2



GENERAL BEHAVIOR OF THE EFFECTIVE NUCLEON-. . .

10°

PHYSICAL REVIEW C 72, 014603 (2005)

102

3
- Jg (MeV fm)

FIG. 1. Volume integrals per nucleon as a
function of the asymptotic relative velocity for
(a) heavy-ion systems, (b) «,d -+ nucleus,
(c) nucleon + nucleus, and (d) effective nucleon-

nucleon interactions. The solid lines in the figure
represent Eq. (9). The arrow in (a) points to the
date that represents earlier results [17,20] ob-
tained from analyses of the angular distribution
presented in Fig. 2.
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vary from 175 to 189 MeV fm? [17,20] [see arrow in Fig. 1(a)].
The range 175 < Jg <227 MeV fm? of values compatible with
this angular distribution shows, again, that a dispersion of
AJg ~ 50 MeV fm? is expected for Jx values extracted from
elastic scattering data analyses.

Figure 1(b) shows volume integrals for «-nucleus and
deuteron-nucleus systems. The data correspond to average
values over a large number of different target nuclei [25].
Volume integrals for nucleon-nucleus systems are presented
in Fig. 1(c). Again the data correspond to average values over
several nuclei [26]. Also in Fig. 1(c), we present data for the
very light system proton + « [27].

As shown in Figs. 1(a)-1(c), Eq. (9) is in reasonable
agreement with the data for all heavy and light systems studied
in the present work. The behavior of the volume integral
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FIG. 2. Elastic scattering angular distribution for the '2C + '2C
system at Ep,, = 1016 MeV (from [24]). The solid line represents
theoretical results from optical model calculations with the parameter-
free SP potential assumed for the real part of the interaction.

as a function of the velocity is clearly system independent,
and therefore it probably reflects a feature of the effective
nucleon-nucleon interaction itself. Obviously, the folding type
nucleon-nucleon interaction [Eq. (2) or (3)] obeys Eq. (9). We
have checked whether other models for the nucleon-nucleon
interaction are also in agreement with that equation. Two
different versions, Paris and Reid, of the M3Y interaction
have been used to describe low-energy (5-20 MeV/nucleon)
elastic scattering data [28]. Another model used in the analyses
of elastic scattering is the LAX interaction [29], which is the
optical limit of the Glauber high-energy approximation. The
LAX interaction is essentially a zero-range double-folding
potential used for both the real and imaginary parts of the
optical potential. The real part of the LAX interaction is written
as

h - =S
V(R) = —Ol(E)TvU(EN)/m(r)pz(R —rdr, (11

where o is the energy-dependent total nucleon-nucleon cross
section. The parameter « is defined by Ref,, = almf,,,
where f,, is the nucleon-nucleon amplitude. The volume
integral per nucleon corresponding to Eq. (11) is given by

hv
Jr = —Toz(E)a(E). (12)

Equation (11) has been derived from multiple-scattering
theories and should be valid only at high energies. In Fig. 1(d)
we present volume integrals for the M3Y and LAX effective
nucleon-nucleon interactions. For the LAX interaction, we
have obtained values for o and « in table 1 of Ref. [29], for both
proton-proton (pp) and proton-neutron (pn) interactions. One
can see in Fig. 1(d) that the M3Y and LAX interactions present
a similar behavior in comparison with that of the folding type
nucleon-nucleon interaction.

In Fig. 3 (bottom), we present the same volume integral
data set of Fig. 1, but on a linear scale to show that the
nuclear interaction becomes repulsive for v > 0.7¢, whereas
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FIG. 3. (Bottom) Volume integrals per nucleon as a function of
the asymptotic relative velocity. (Top) Average values of the volume
integrals over 0.1v/c bins. The solid lines in the figure represent

Eq. (9).

the prediction of the SP potential vanishes. However, for
v < 0.7¢ the data follow the behavior of Eq. (9). In this region,
the standard deviation of the data relative to the theoretical
predictions is AJg &~ 70 MeV fm?. This value is close to the
aforementioned data dispersion (40-50 MeV fm?) expected
as a result of the ambiguity in the determination of Jr from
elastic scattering data-analyses. Therefore, within the inherent
uncertainty of data-extracted Jg, the complete data set (for
v <0.7¢) is in agreement with the theoretical predictions. To
obtain smaller uncertainty, in Fig. 3 (top) we present average
values over 0.1v/c bins for the complete volume integral data
set. The agreement of these average values with the prediction
of the SP potential is remarkable up to about 0.7¢. Indeed,
for v<0.7c the dispersion of the average data around the
theoretical prediction is only AJz ~ 11 MeV fm?, which
corresponds to about 2.4% of the V, value. We point out
that such very good precision was obtained without using any
adjustable parameter in the calculations.

In several works (see, e.g., [25-27]), the volume integrals
have been parametrized as a function of the kinetic energy per
nucleon (Ey) with the following expression:

Jr=Jo+ B InEy. (13)

This type of energy dependence is in accord with Passatore’s
[30-32] application of Feshbach’s dispersion relation [33].
Figure 4 presents the average volume integral values as a
function of the kinetic energy per nucleon. The solid line in
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FIG. 4. Average values for the volume integrals as a function of
the energy per nucleon. The solid and dashed lines represent Eqgs. (9)
and (13), respectively.

Fig. 4 represents Eq. (9); the dashed line corresponds to a fit to
the data in the region Ey > 20 MeV/nucleon using Eq. (13).
We found Jo = —812 MeV fm? and B = 130 MeV fm?3, which
should be compared, for example, with Jy = —872 4+ 44 MeV
fm3 and B = 136 7 MeV fm? obtained for proton-nucleus
systems [26]. Figure 4 shows that Eqs. (9) and (13) provide
very similar Jg values for 30 < Ey < 300 MeV/nucleon, which
corresponds to 0.25 < v/c < 0.65. For low energies Eq. (9) is
much better than Eq. (13) whereas the inverse is observed at
very high velocities.

IV. CONCLUSION

We have studied volume integrals of the central real
part of optical potentials extracted from elastic scattering
data analyses for a large variety of systems. The behavior
of the volume integrals per nucleon as a function of the
relative velocity between target and projectile is clearly system
independent and therefore it reflects a characteristic of the
effective nucleon-nucleon interaction itself. The dependence
of these integrals on the relative velocity is compatible with
the prediction of the SP potential up to v & 0.7¢. So far, the SP
potential had been tested only up to £ = 200 MeV/nucleon
[3,5], which represents v & 0.57¢, and it has been employed
mostly in the study of heavy-ion reactions. The present
findings indicate that the model probably could be successfully
applied also in elastic scattering data analyses of much lighter
systems.
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