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Compound and quasicompound states in low-energy scattering of nucleons from 12C
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A multichannel algebraic scattering theory has been used to study the properties of nucleon scattering from 12C
and of the subthreshold compound nuclear states. The theory accounts for properties in the compound nuclei to
∼10 MeV. All compound and quasicompound resonances observed in total cross-section data are matched, and,
on seeking solutions of the method at negative energies, all subthreshold states in 13C and 13N are predicted with
the correct spin-parities and with reasonable values for their energies. A collective-model prescription has been
used to define the initiating nucleon-12C interactions and, via use of orthogonalizing pseudopotentials, account
is made of the Pauli principle. Information is extracted on the underlying structure of each state in the compound
systems by investigating the zero-deformation limit of the results.
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I. INTRODUCTION

In a recent paper [1], a multichannel algebraic scattering
(MCAS) theory for nucleons scattering from a nucleus was
specified in detail. At low energies, the approach is noteworthy
because its formulation facilitates a systematic determination
both of the subthreshold bound states and of the compound
resonances. The theory is built upon Sturmian expansions of
whatever one chooses to be an interaction matrix of potential
functions [2]. Of course, there is the usual limitation of coupled
channel problems, namely, that the dimension of the evaluation
rapidly increases with the number of channels considered.
However, the MCAS approach does treat all selected channels
equivalently, whether they be open or closed, so that solutions
can be found at both positive (scattering) and negative (bound
system) energies relative to the nucleon on nucleus threshold.

Whereas the MCAS approach may be used for any target
(and projectile) system, our formulation to date has been
for nucleon-nucleus interactions. However, the most practical
adaptations insofar as size of the problem and, concomitantly,
computation times, are with light mass targets. They have
well-separated low excitation spectra and usually the total
cross-section data show distinct resonances upon a smooth
background. Thus the first MCAS study [1] was of low-energy
neutron-12C (n+ 12C) scattering. For that only three states of
12C ostensibly were needed in the evaluations: the 0+

1 (ground),
the 2+

1 (4.4389 MeV), and the 0+
2 (7.6542 MeV). Herein we
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consider that same system in more detail and, as well, analyze
proton-12C (p + 12C) data.

The MCAS method solves the coupled-channel Lippmann-
Schwinger equations for the nucleon-nucleus system consid-
ered. The starting matrix of potentials may be constructed from
any nuclear model: shell or collective, rotational or vibrational.
We have used a rotational collective-model representation for
the interaction potential matrix but therein take deformation
to second order. We have chosen Woods-Saxon functions
and their various derivatives to be the form factors for all
components each with characteristic operators of central,
spin-orbit (l · s), orbit-orbit (l · l), and spin-spin (s · I) type.
The interactions were allowed to depend on parity as well.
With such a characterization, the model potential is sufficiently
flexible to describe all possible structures (at both positive and
negative energies) of the nucleon-12C system. However, any
such collective-model prescription violates the Pauli principle.
At these energies that violation is severe. But it is possible
[1,3] in the MCAS approach to account for Pauli blocking
of occupied nucleon states in the target, with this or any
collective-model specification of the matrix of potentials. That
is achieved by introducing orthogonalizing pseudopotentials
[3–5] (OPP) into the scheme by which the Sturmians are
specified. In that way all Sturmians in the (finite) set selected
as the basis of expansion of the matrix of potentials contain
few or no components equivalent to the external nucleon
being placed in an already densely occupied orbit. Treatment
of the Pauli principle has a significant effect on results
[1,3].

The aim of this paper is to extend calculations from the 13C
to the 13N system and to carry out a comparative analysis of the
bound and resonance spectra involved. A second version of the
program has been set up that can deal on the same footing with
the scattering of neutrons and protons from the target nucleus.
The neutron results confirm those of Ref. [1].
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TABLE I. n + 12C potential parameters (strengths in MeV).

Parity Central Orbit-orbit Spin-orbit Spin-spin

− −49.1437 4.5588 7.3836 −4.7700
+ −47.5627 0.6098 9.1760 −0.0520

Other r0 = 1.35 fm a0 = 0.65 fm β2 = −0.52
parameters

It will be shown that, in the n+ 12C process, the spectrum of
resonances up to about 6 MeV [in the laboratory (lab) system]
is almost completely described by a mechanism involving
excitation of the first 2+ level of 12C with energy ε2 =
4.4389 MeV. The spectrum shows a sequence of compound
resonances, generated by the 1

2
−
, 1

2
+

, and 5
2

+
bound (single-

nucleon) states in 13C. The situation is very similar in the
p + 12C process, with one overall energy shift due to the
Coulomb interaction. Because of this shift in energy, some of
the compound resonances in the n+ 12C system become
quasicompound ones in the p + 12C case.

We will show that when deformation (which for the
nucleon-12C system we consider is of quadrupole type and
so linked to a parameter β2) tends to zero, the compound
and quasicompound states tend to pure states. For compound
resonances, their widths tend to zero and their centroid energies
tend to those of single-particle bound states plus the core
excitations εi . For quasicompound resonances, the widths
tend to the natural widths of the single-particle resonance
upon which they are formed, whereas their centroid energies
tend to those of the single-particle resonance plus the core
excitations εi . It is interesting then to analyze the behavior
of the phenomenology contained in the model as β2 varies
continuously from the deemed physical value to zero. There
is a double purpose to this, namely, to check the rules
outlined here in a significant physical case and to describe the
spectroscopy of 13C and 13N in terms of the scheme specified.

In Sec. II, we discuss the results on the n+ 12C system,
some of which were reported previously [1]. But now we
analyze the origin of each state by studying results in
the zero-deformation limit. In Sec. III, the same analysis
is extended to a study of the p + 12C system, where the
Coulomb shift transforms some of the compound resonances
into quasicompound ones. All calculations of this system have
been carried out assuming charge symmetry. The potentials
that gave the results discussed in Sec. II (and previously [1])
have been used without change. We present conclusions we
have drawn from these studies in Sec. IV.

II. THE 13C SYSTEM

Calculations of the n+ 12C system have been carried out
with the parameters defining the initiating nucleon-nucleus
interaction matrix of potentials being those used previously [1].
They are presented again in Table I for easy reference.

Couplings of the input channel with the ground state
(ε1 = 0) and with the 2+ (ε2 = 4.4389 MeV) and 0+

2 (ε3 =
7.6542 MeV) excited states of the 12C target have been
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FIG. 1. (Color online) Comparison between data (filled circles)
and theoretical (solid curve) calculated elastic scattering cross
sections for n + 12C scattering to ∼5 MeV.

considered. Moreover, the Pauli principle has been taken into
account throughout using the OPP procedure [1,3]. However,
note that the OPP treatment [1] we use is an approximation. We
have used a large but finite strength in place of the infinite value
that the OPP theory presumes. One must thus expect some
small spuriosity, which may affect our calculated energies but
by about a tenth of an MeV at worst.

In Fig. 1, our calculated n+ 12C elastic cross section is
compared with data taken from the evaluated nuclear data file
(ENDF) formed by Pearlman [6]. Source data and references
were obtained using the computer index of neutron data
(CINDA) [7]. The energies are in the laboratory frame.

The sequence of resonances evident therein as energy in-
creases have spin-parity assignments 5

2

+
, 7

2
+
, 1

2
−
, 3

2
+
, 3

2
+
, 5

2

+
,

and 9
2

+
. Details of those resonances and of bound states

are compared with experimental values [8] in Table II. We
have found the parameters of the resonances by studying the
trajectories of the Sturmian eigenvalues using the algorithm
defined in Ref. [1]. This we defined as the resonance
identification (RI) process. As already noticed in Ref. [1],
this choice is unambiguous in the case of narrow resonances,
whereas for wider resonances it represents just one of the
possible methods for resonances identification. Note that, in
this table, the energies of the states (in MeV) are given in
the center-of-mass (c.m.) system. The widths are expressed in
keV.

In the first column of Table II we give an identifying
index (i) to each state that we use throughout the following
discussion.

In the spectrum, the 1
2

−
(i = 2) resonance is not seen

experimentally. However, from our model calculation it is
practically coincident with the first and strong 3

2
+

resonance
(i = 6) and is shown in the figure like a narrow spike over the
broader 3

2
+

peak. Possibly that is why it has not been seen in
experiments to date. But an isobaric analog to this has been
observed in 13N, and its nature is well explained within the
general logic of the spectroscopic structure we believe to be
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TABLE II. Subthreshold bound states and low-energy resonances
of the n + 12C system.

entry (i) J π Eexp
1
2 �exp Eth

1
2 �th (keV)

(MeV) (keV) (MeV)

1 1
2

− −4.9463 — −4.8881 —

2 1
2

−
— — 2.6829 0.332

3 1
2

+ −1.8569 — −2.0718 —

4 1
2

+
— — 4.6629 555

5 3
2

− −1.2618 — −1.4783 —

6 3
2

+
2.7397 35 2.7309 40.8

7 3
2

+
3.2537 500 3.2447 447

8 5
2

−
0.1 — −0.0338 —

9 5
2

+ −1.0925 — −1.8619 —

10 5
2

+
1.9177 3 1.9348 9.65

11 5
2

+
3.9314 55 4.0579 126

12 7
2

+
2.547 �2.5 2.6220 8.74 ×10−4

13 9
2

+
4.534 2.5 4.5091 0.745

sensible. The very narrow 5
2

−
resonance (i = 8) that lies just

above threshold, has a partner in our calculations, but as a
bound state just below threshold.

The peak shown in Fig. 1 at an energy of about 4.40 MeV
in the laboratory frame (4.06 MeV in the c.m. system)
corresponds to our calculated 5

2

+
(i = 11) resonance. In

the neighborhood the model also predicts (by using the RI
procedure) a 1

2
+

resonance (i = 4) whose centroid energy
is Elab = 5.05 MeV (Ec.m. = 4.66 MeV). No corresponding
peak is seen in the elastic cross section. In fact, that resonance is
missing entirely in Fig. 1. To solve this puzzle we calculated the
even-parity components of the cross section separately; that is,
the cross section was calculated for the unique Jπ value of 1

2
+

,

then with 3
2

+
, etc. The results shown in Fig. 2 clearly identify

the component responsible for each even-parity resonance.
The only peak not accounted for in the analysis is that having
a spin-parity 1

2
−

. In particular, under the maximum at about
4.4 MeV, there are two overlapping resonances. They are the
5
2

+
component, which has a sharp maximum in the energy

region under consideration, and the 1
2

+
component, revealed

as a very small bump at about the same energy. It is a very
broad resonance. The 1

2
+

component is more easily recognized
in the calculated cross section when, as we discuss later, the
deformation is decreased.

Thus the cross section is, as could be expected, a dominantly
s-wave background with strong narrow and broad resonances
superimposed. The individual values of energy at which the
s-wave cross section initially was calculated are represented by
the × symbols in the plot for Jπ = 1

2
+

. The clustering of ×’s
(around regions in which sharp resonances in the total cross
section occur) reflects the density of mesh points used to find
the variation through those regions as precisely as possible.
Such a requirement is further evidence of the need in any such
study to ensure that all resonance centroids and half widths
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FIG. 2. (Color online) Components in the n + 12C elastic cross
section. The theoretical curve (solid curve) is decomposed into its
even-parity components. The 1

2

+
component is shown by the generally

smooth curve connecting “×” marks. It constitutes virtually the entire
cross section at energies near threshold. The 3

2

+
and 5

2

+
components

are portrayed by the dashed and dotted curves, respectively. The
narrow 7

2

+
and 9

2

+
resonances at (lab) energies of 2.84 and 4.88 MeV,

respectively, are portrayed by long dashed curves.

are defined in the process and that energy steps in that region
are selected appropriately; otherwise with too large an energy
step they will be missed. The RI procedure [1] ensures all
resonances will be found in the overall energy regime to be
studied. Also built into the code implementing this procedure
is an automatic increase in numbers of energy points. The span
of those points depends on the half width of the resonance, as
defined by the RI procedure.

We conclude therefore that the 4.4-MeV peak in the
measured cross section is mainly a 5

2

+
resonance. The 1

2
+

resonance foreseen by the model calculations is weak and
completely masked by it. The effect may be understood better
by studying the (c.m.) energy variation of the 1

2
+

(total)
scattering phase shift. That variation is displayed in Fig. 3.
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FIG. 3. Energy variation of the calculated 1
2

+
scattering phase shift.
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This phase shift does not exhibit a regular increment
between 0◦ and 180◦ (as do the other resonant phase shifts),
but starts from 180◦ (because of Levinson’s theorem) at
zero energy, crosses twice the value of 90◦ between 2 and
4 MeV, and then increases again toward a value of 180◦. That
variation between 4 and 5 MeV relates to a broad and not
very pronounced peak in the partial cross section, as shown in
Fig. 2. Hence we assign our 5

2

+
(i = 11) level with the

well-defined experimental resonance at Ec.m. = 3.9314 MeV
rather than as the 1

2
+

state heretofore assumed in the literature
[8].

The agreement between theory and experiment shown in
Fig. 1 and in Table II is very good. Energies of both bound
and resonance states, and the widths of those resonances, are
quite well matched, particularly so when one recalls that the
target structure has been taken within a simple rotational model
scheme. A measure of the goodness of fit is the mean-square
error in the table entries. That measure formed using eleven of
the states is

µ = 1

N

√∑
(Eth − Eexp)2 = 0.0776 MeV. (1)

Entries i = 2 and i = 4 have been omitted because the first
has not been detected experimentally and for the second, we
propose a different assignment of quantum numbers.

Our procedure enables us to interpret the structure of the
spectra by following the general discussion that has been given
[9] about the properties of compound resonances. Consider
first the even-parity states. These can be specified in the chosen
representation in terms of pure states that are identified by the
set of quantum numbers {Jπ , I, j, �}. Although the relevant
details concerning these sets of quantum numbers have been
extensively discussed before [1], it is useful to note here that
the single-particle quantum numbers (l) and (j) can be related
to a state of the single nucleon in the mass-13 systems. Then,
in the energy range we study, and considering only the effect
of the most important couplings (i.e., with the ground and 2+
states of 12C), we list all possible configurations in Table III.
The second excited 0+

2 state will enter the discussion later

in relation to a particular ( 1
2

−
) excited state in the mass-13

spectra.
Assuming a shell model single-nucleon spectrum for an

additional nucleon coupling to states in 12C we expect at most
three even-parity bound states to be important, namely, those
relating to lodgment of that nucleon within the 1s-0d shell.
However, as reported [1], shell model studies suggest that the
low excitation mass-13 states dominantly are identifiable with
either 0d 5

2
or 1s 1

2
orbit couplings to the ground and 2+ states

in 12C. As such, the coupling to the ground state (in 12C) will
provide two states in the compound nucleus with spin-parity
values of 1

2
+

and 5
2

+
. Therefore we expect one doublet and

one quintuplet of even-parity states when the coupling is made
with the 2+ state.

Using this scheme, the bound state 1
2

+
(i = 3 of Table

II) in 13C should be dominantly described as a 1s1/2 neutron
bound to the 12C (0+) ground state core and identified with
the N = 1 entry in the table of pure states: This implies a
bound state of energy E � −2 MeV. Likewise there should

TABLE III. Quantum numbers of allowed even-parity basis
states (J π � 9

2

+
).

N J π I j l N J π I j l

1 1
2

+
0 1

2 0 14 5
2

+
2 9

2 4

2 1
2

+
2 3

2 2 15 7
2

+
0 7

2 4

3 1
2

+
2 5

2 2 16 7
2

+
2 3

2 2

4 3
2

+
0 3

2 2 17 7
2

+
2 5

2 2

5 3
2

+
2 1

2 0 18 7
2

+
2 7

2 4

6 3
2

+
2 3

2 2 19 7
2

+
2 9

2 4

7 3
2

+
2 5

2 2 20 7
2

+
2 11

2 6

8 3
2

+
2 7

2 4 21 9
2

+
0 9

2 4

9 5
2

+
0 5

2 2 22 9
2

+
2 5

2 2

10 5
2

+
2 1

2 0 23 9
2

+
2 7

2 4

11 5
2

+
2 3

2 2 24 9
2

+
2 9

2 4

12 5
2

+
2 5

2 2 25 9
2

+
2 11

2 6

13 5
2

+
2 7

2 4 26 9
2

+
2 13

2 6

be a 5
2

+
state (i = 9 of Table II), which can be identified with

the N = 9 entry in Table III. Then, when a neutron impinging
with energy ε2 + E loses ε2 to excitation and is bound to the
12C∗(2+) core, there should arise a very narrow resonance: a
bound state in the continuum for zero coupling. As the coupling
increases, this resonance splits, forming a doublet for which the
quantum numbers will be Jπ = 3

2
+

and 5
2

+
. The first of these

we identify with the state N = 5 (responsible for the resonant
behavior), coupled with an elastic background arising from
the effect of the N = 4 entry. The second part of the doublet
we link to the state N = 10 and expect that it is attached to a
background state for which N = 9. As the deformation (|β2|)
increases, both the splitting of the doublet and the resonance
widths increase. Also, all of the J components contribute since
entries N = 4, 5, 6, 7, and 8 are involved for J = 3

2 and those
of N = 9, 10, 11, 12, 13, and 14 are involved for J = 5

2 .

Hence the bound state 1
2

+
is expected to generate a doublet

of compound resonances, and by the same mechanism, the
bound state 5

2

+
when coupled to the 2+ state should generate

a quintuplet with spin-parities Jπ = 1
2

+
, 3

2
+
, 5

2

+
, 7

2
+
, and 9

2
+

.
To verify this scheme, we have made calculations starting

with the physical situation of having β2 = −0.52, and then we
form cross sections from calculations in which the coupling is
gradually reduced. By that means it is possible to track each
state/resonance continuously and so identify the underlying
base nature of each state. It is assumed that each resonance
conserves its identity in the adiabatic transition from the
physical to the unperturbed limit. We portray the results in
Fig 4, which shows the general trend that the background
cross-section values near threshold increase in size as |β2|
decreases. This trend is consistent with the strong subthreshold
s-wave 1

2
+

state moving closer to threshold as |β2| decreases.

Then what was just a subthreshold state, the 5
2

−
in the

physical case calculation, moves into the positive energy
regime with decrease in |β2|. That state has an extremely
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FIG. 4. (Color online) Total elastic cross sections for n + 12C
scattering as functions of neutron energy, showing the effects of
reducing the value of β2. Details are described in the text.

small width (�10−11 MeV) so that although its existence
is known, its strength has not been ascertained. The actual
resonances also have unique trends with decreasing |β2|. With
their identification (the entry “i” specified in Table II), the
narrow 5

2

+
(i = 10) and the first 3

2
+

(i = 6) states track
smoothly with decreasing width till they have essentially the
same centroid energy and vanishing width; these features
will be discussed subsequently. The very narrow 7

2
+

(i = 12)

resonance initially sits upon the 3
2

+
resonance shape and its

centroid increases in value with decreasing |β2|. It remains a
feature upon the 3

2
+

shape until |β2| � 0.35, after which that
7
2

+
centroid moves up in energy to be one of the quintuplet

of sharp resonances at ∼4.3 MeV. The other four members
of the quintuplet are the very broad second 3

2
+

(i = 7), the

reasonably broad strong 5
2

+
(i = 11), the sharp 9

2 (i = 13), and

the reasonably broad but weak 1
2

+
(∼4.6 MeV) resonances.

The last is not readily seen until, with decreasing |β2|, the
width of the nearby 5

2

+
resonance decreases sufficiently. In the

figure, this 1
2

+
resonance is seen as the highest energy track

that curves back in energy to meet the rest of the quintuplet
when β2 = 0. The 9

2
+

resonance sits initially on the tail of

the 5
2

+
resonance, appearing to gradually decrease in size

(because the 5
2

+
resonance is contracting as |β2| decreases)

before some enhancement at small values of |β2| resulting
from the proximity of all members of the quintuplet. The
centroids of the two broad resonances (the 3

2
+

and the 5
2

+
)

of this quintuplet cross as |β2| decreases and while each width
gradually decreases, they combine to form quite distinctively
changing cross sections until, as β2 → 0, they become very
narrow and tend to the same centroid energy. Of course, when
β2 is exactly zero, since the widths are vanishingly small, a
calculated cross section loses almost all trace of individual
compound resonances. Nevertheless, by means of the RI

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
β2

−2

−1

0
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FIG. 5. (Color online) Variation of energies of the 1
2

+
bound

and doublet states and of the 5
2

+
bound and quintuplet states with

deformation. The numbers in brackets attached to each curve are the
specific values of 2J .

procedure, the resonance centroid energies may still be (and
were) found.

In Fig. 5 we show our results of the calculations of the
centroids of the positive-parity resonances and subthreshold
bound states.

Consider first the states built upon a 5
2

+
single-particle state.

They are the quintuplet of resonances having spin-parities
Jπ = 1

2
+
, 3

2
+
, 5

2

+
, 7

2
+

, and 9
2

+
plus the subthreshold (bound)

state in 13C. Their energy values when β2 = 0 (i.e., ∼−0.15
and 4.28) equate to the target excitation 4.28 − (−0.15) =
4.43 � ε2, and so we conclude that the quintuplet indeed is a
set of compound resonances due to coupling of a 5

2

+
neutron

with the 2+ excited state of 12C and that the 0d5/2 nucleon
binding to the ground state of 12C is ∼−0.15 MeV. In a similar
way, the 1

2
+

bound state (i = 3) has a binding to the ground
state of 12C of ∼−0.83 MeV and the doublet of resonances
(i = 6 and 10) relate in energy to identify their origins as the
3
2

+
, 5

2

+
doublet of states generated by that 1

2
+

neutron being
coupled to the 2+ excited state in 12C. In the zero-deformation
limit, the energies of the bound and collapsed doublet states
are ∼−0.83 and 3.60 MeV, respectively, thereby differing by
the 4.43 � ε2 value.

This leads to a complete understanding of the spectroscopy
of the even-parity states in 13C as they are revealed by low-
energy n + 12C scattering. Note that the two 3

2
+

states (i = 6
and 7) that come from analysis solely of the scattering data
basically are indistinguishable because only Jπ is conserved.
Nevertheless, we expect that i = 6 is part of the doublet and
i = 7 is part of the quintuplet because of the continuity in
the limit β2 → 0. Of course, similar information should be
obtained by large-space structure model analyses of the wave
functions in the two cases. Work is in progress to do just that.

We note that the β2 = 0 limit values of energies of the
even-parity states discussed tend only approximately to the
same values. There are small but significant shifts. That effect
is due to the residual operator character of the interaction
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TABLE IV. Properties of the even-parity quintuplet of resonances in the limit β2 = 0.

n J π Eth (MeV) K(�, j, j, J ) �Eth (MeV) �K | �K

�Eth
| (MeV−1)

4 1
2

+
4.3094 −14 — — —

7 3
2

+
4.3039 −11 −0.0055 3 545

11 5
2

+
4.2948 −6 −0.0091 5 549

12 7
2

+
4.2820 1 −0.0128 7 546

13 9
2

+
4.2656 10 −0.0164 9 548

potentials. Although the coupling between the channels caused
by deformation was removed, there remain some linkages
arising from the diagonal potentials being

Vc(r) ≡ Vcc(r) = [V0 + �(� + 1)V��] f0(r)

− 1

ar
WlsA(r)[l · s]cc + Vssf0(r)[s · I]cc. (2)

This is the reduced form of Eq. (B.5) of Ref [1], in the limit
β2 → 0, where it is meant that the channel index c denotes the
set of quantum numbers {Jπ , I, j, �}. Clearly this discussion
fails to hold exactly in the presence of a spin-spin interaction.
How much so is illustrated by the entries in Table IV.

In this table we have selected the states of the even-parity
quintuplet, and we show in column 3 the calculated values
of the unperturbed energies. They reveal the small defects of
convergence caused by the spin-spin (target) specific potential
term. It is easy to recognize that the members of the even-parity
quintuplet (in the unperturbed conditions) are pure states of
the type N = 3, 7, 12, 17, and 22, as given in Table III
with quantum numbers c ≡ { 1

2
+
, 2, 5

2 , 2}, { 3
2

+
, 2, 5

2 , 2},
{ 5

2

+
, 2, 5

2 , 2}, { 7
2

+
, 2, 5

2 , 2}, and { 9
2

+
, 2, 5

2 , 2}, respectively.
These states differ (only) in the total angular momentum J
and therefore are discriminated (only) by the spin-spin part of
the potential.

In particular, from Eqs. (B8), (B9), and (B10) of Ref. [1],
it may be seen that the spin-spin potential eigenvalues depend
on the quantum number J through functions K(�, j, j ′, J ).
Those numbers are listed in column 4 of Table IV. To verify
the proportionality of the values of Eth and K, we give the
differences �Eth between adjacent states in the list [i.e.,
Eth(i = 7) − Eth(i = 4), etc.] in column 5. Then, in column 6,
the associated differences �K [namely, K(i = 7) − K(i = 4),
etc.] are given; in column 7 we present the ratios �K/�Eth.
The value reported in the last column is constant within 0.4%,
most readily confirming the assumption that the degeneracy
of the multiplet in the unperturbed limit is broken only by the
spin-spin interaction. Therefore we have repeated calculations
with β2 = 0 but additionally with the spin-spin potential set
to zero. All other parameters remain the same as those values
given in Table I. The energies of the states then found are
presented in Table V. Therein also, in the rightmost column,
we give the gap energies �Ei , which are the differences
between the resonance energies of the listed value and of
the bound-state energy of the particle coupled to the 12C
ground state. Therein the states for i = 1, 3, and 9 are taken
as coupling a 0p1/2, 1s1/2, and a 0d5/2 neutron, respectively, to

the ground state of 12C. Then all of the remaining differences
shown in the last column (except for the i = 2 case) are
exactly the assumed excitation energy of the 2+ state in
12C (ε2). As already observed, our assumption is that the
even-parity quintuplet, i = 4, 7, 11, 12, and 13, derives from
the bound state giving i = 9 (and therefore the definitions
of the gap energies are �E4 = E4 − E9,�E7 = E7 − E9,
etc), whereas the even-parity doublet, i = 6 and 10, derives
from the bound state that leads to i = 3 (and therefore
�E6 = E6 − E3,�E10 = E10 − E3). The i = 2 entry results
from the coupling of the 0p1/2 (that gave i = 1) to the third
state we chose to include in the target spectrum used in MCAS.
This is the only effect of the excitation of the 0+

2 excited state
in 12C, at least for the energy range we have considered. To
explore more effects of the 0+

2 state, higher energy results
need to be analyzed. But then one would also need to
consider effects of other states such as the strong collective 3−
(9.63 MeV).

As far as the other odd-parity states are concerned, the
values listed in Table V strongly suggest that the states i = 5
and i = 8 (the latter of which is reproduced as a near-threshold
bound state in our calculations) are the result of coupling a
0p1/2 neutron (as identified in the i = 1 level) with the 2+
excited state in 12C. All these conclusions about the odd states

TABLE V. Subthreshold bound states and resonances in n + 12C
when β2 = 0 and Vss = 0.

i J π Eth (MeV) �Ei (MeV)

1 1
2

− −4.7017 0

2 1
2

−
2.9525 7.6542

3 1
2

+ −0.8376 0

4 1
2

+
4.2839 4.4389

5 3
2

− −0.2627 4.4390

6 3
2

+
3.6013 4.4389

7 3
2

+
4.2839 4.4389

8 5
2

− −0.2627 4.4390

9 5
2

+ −0.1550 0

10 5
2

+
3.6013 4.4389

11 5
2

+
4.2839 4.4389

12 7
2

+
4.2839 4.4389

13 9
2

+
4.2839 4.4389
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FIG. 6. (Color online) Even-parity-component contributions to
the elastic n + 12C cross sections in the case of small deformation
(β2 = −0.2). In this case the narrow 7

2

+
and 9

2

+
resonances lie at

(lab) energies of 4.0 and 4.8 MeV, respectively.

may be drawn only after dropping the spin-spin term, because
the spin-spin interaction is stronger for the odd states (see
Table I) and masks completely the effect of the convergence
in the unperturbed limit.

Finally, with the n+ 12C system, in Fig. 6 we show the
even-parity components of the cross sections but now when
a small finite deformation β2 = −0.2 has been used. In this
case only cross sections in the energy range 2.4–5.5 MeV
are displayed, which suffice to show the three groupings of
interest. The resonances seen in the total elastic cross section
for this (small) deformation in sequence as energy increases
have spin parities 1

2
−
, 5

2

+
, 3

2
+
, 7

2
+
, 5

2

+
, 3

2
+
, 9

2
+

, and 1
2

+
. The

total cross section is depicted by the solid curve. The notation
for the separate component even-parity cross sections is as
given for Fig. 2.

By comparison with results shown previously, we note the
following:

(1) The resonances can be assembled into three groups: an odd-
parity singlet, an even-parity doublet, and an even-parity
quintuplet.

(2) The 1
2

+
resonance (i = 4), though registered through the RI

procedure but not evident as a peak in the cross section in
Fig. 1, now is seen as a little bump in the cross section above
5 MeV. Of the even-parity components, the 1

2
+

one, which
dominates the lowest energy values, clearly identifies that
highest energy resonance in this figure as having that spin
parity.

(3) The widths are smaller than those found in Fig. 1, as
was also very evident in the three-dimensional diagram
(Fig. 4). They all tend to zero as |β2| is gradually taken
to zero, thereby confirming the nature of all of the
compound resonances analyzed. To illustrate that variation
in the widths �, a select set of those for some of the
larger resonances are plotted versus the deformation β2 in
Fig. 7. As foreseen by theory [9], the widths tend to zero as

0 0.1 0.2 0.3 0.4 0.5
|β2|

0

100

200

300

400

500

600

Γ J (
ke

V
)

FIG. 7. (Color online) Deformation dependence of widths
�th(J π ) (in keV) for some of the (broader) compound resonances.
Those from cases with i = 4, 6, 7, 10, and 11 are portrayed by
the long dashed, dot-dashed, solid, thin solid, and dashed curves,
respectively.

|β2|2. Note that in one case (i = 7), �th(Jπ = 3
2

+
) initially

increases as |β2| decreases. This is due to the coupling
being quite strong so that the physical regime is far from
the unperturbed limit.

(4) We have verified that with the small value for deformation,
the i = 8, 5

2

−
state is a resonance, a bound state in the

continuum. For the physical value of β2 = −0.52, it is an
actual subthreshold bound state.

III. THE 13N SYSTEM

In analyzing the 13N system we have assumed charge
symmetry, and so we use the parameter values given in Table I
for the n + 12C system to evaluate p + 12C scattering and to
assess properties of the subthreshold compound nucleus 13N.
Only a Coulomb interaction has been added. For simplicity we
have chosen the Coulomb potential to be that of a uniformly
charged sphere so that we have only one new parameter, the
Coulomb radius Rc. The best agreement with the experimental
data has been obtained with the value Rc = 2.4 fm.

The results, centroid energies and widths, are listed in
Table VI and are compared therein with experimental data [8].

The comparison is quite good with the mean-square error
µ, as specified by Eq. (1), relative to 13 states of Table VI
being 0.2563 MeV. The entry in row 11 has been excluded
from the sum since there is no experimental counterpart to that
state. The average of the differences between pairs of states in
13N and 13C with reference to the experimental and theoretical
spectra, respectively, are the following:

〈Eexp(13N) − Eexp(13C)〉 = 3.01 MeV;
(3)〈Eth(13N) − Eth(13C)〉 = 2.54 MeV.

Thus, through coupling with the 2+ level, the bound state
underlying the i = 1 entry generates the compound odd-parity
doublet i = 5 and 8 in the tabulation, and that underlying the
resonance for i = 3 generates the quasicompound even-parity
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TABLE VI. Comparison between experiment and theory for the
p + 12C system.

i J π Eexp (MeV) 1
2 �exp (keV) Eth (MeV) 1

2 �th (keV)

1 1
2

− −1.9435 — −1.9104 —

2 1
2

−
6.9745 115 5.6391 17.8

3 1
2

+
0.4214 15.8 −0.0158 —

4 1
2

+
8.3065 140 6.9911 995

5 3
2

−
1.5675 31 1.5793 11.1

6 3
2

+
4.9425 57.5 4.7280 44.5

7 3
2

+
5.9565 750 5.8942 653

8 5
2

−
5.4325 37.5 2.9281 3.38 × 10−3

9 5
2

+
1.6035 23.5 0.6379 0.899

10 5
2

+
4.4205 5.5 4.1794 8.86

11 5
2

+
— — 6.5281 726

12 7
2

+
5.2115 4.5 5.1234 1.50

13 9
2

+
7.0565 140 6.8341 153

14 5
2

+
9.5865 215 9.7895 910

doublet i = 6 and 10. Likewise, the resonance i = 9 links
to the quasicompound even-parity quintuplet formed by the
i = 4, 7, 11, 12, and 13 entries in Table VI. Finally, the i = 1
bound state when coupled with the second 0+ level gives rise
to the single compound resonance for i = 2.

For confirmation, in Table VII we give the results of
calculations of the p + 12C system in the unperturbed limit
(β2 = 0) with the spin-spin term set to zero.

The fourth column shows the differences that are consistent
with the couplings we suggest. All the members of each
multiplet tend to the same limit, and the difference between
this limit and the relative generator single-particle state

TABLE VII. Subthreshold bound states and resonances in
p + 12C when β2 = 0 and Vss = 0.

i J π Eth (MeV) �En (MeV) 1
2 �th (keV)

1 1
2

− −1.6785 0 —

2 1
2

−
5.9757 7.6542 0

3 1
2

+
1.0217 0 468

4 1
2

+
6.6841 4.4389 115

5 3
2

−
2.7604 4.4389 0

6 3
2

+
5.4606 4.4389 467

7 3
2

+
6.6841 4.4389 115

8 5
2

−
2.7603 4.4388 0

9 5
2

+
2.2452 0 115

10 5
2

+
5.4606 4.4389 466

11 5
2

+
6.6841 4.4389 115

12 7
2

+
6.6841 4.4389 115

13 9
2

+
6.6841 4.4389 115

14 5
2

+
9.8995 7.6543 115

corresponds to the energy of the relevant target excited state
involved in the coupling. But there are some differences. For
example, the proton calculations predict four 5

2

+
resonances in

the energy range selected. That is one more than found from
the neutron calculations in an equivalent energy range. Also,
whereas the 5

2

+
resonances i = 9, 10, and 11 are, respectively,

the single-particle state, a component of the even-parity
doublet, and a component of the even-parity quintuplet as
found in the neutron case, the i = 14 resonance is new. Our
β2 → 0 analysis indicates that this (extra) state originates from
the coupling to the excited 0+

2 state in 12C.
An analysis of the widths listed in Table VII is interesting.

In the past [9], it was noted that the width of the compound
resonance (derived from a purely mathematical example),
approaches zero as the coupling approaches zero (because
its origin was a bound state), whereas the width of the
quasicompound ones tend to the natural width of the resonance
from which such originated. It is evident in Table VII that
the odd-parity doublet (i = 5 and 8) and the odd-parity
resonance (i = 2) are compound resonances as their widths
vanish in the limit of zero deformation. The even-parity
quintuplet (i = 4, 7, 11, 12, and 13) and the resonance (i = 14)
have the width of the common resonance partner (i = 9)
and so are quasicompound resonances. The width of the
quasicompound even-parity doublet (i = 6 and 10) is that of
the partner resonance for which i = 3.

Thus there is a one-to-one correspondence between the
states calculated by the model and those experimentally
known, with the exception of the 5

2

+
resonance (i = 14). But

that resonance, although missing in n+ 12C experimental data,
has an observed partner in the p + 12C system. Also, although
it is clear from the comparisons to be made within Table VI
that the calculated energy centroids generally are in good
agreement with data and that the widths concur in order of
magnitude, there are some exceptions. In particular, the 5

2

−

(i = 8) state is not well reproduced. Also, state i = 3 is very
close to threshold and, in spite of the small difference between
theory and experiment, calculations make it be a subthreshold
bound state instead of a resonance.

Of course, we have adopted a strict charge symmetry
assumption and have used a very simple form for the Coulomb
interaction. It should be possible to find improved 13N
properties from the MCAS approach with but slight changes
of these potentials.

Proton scattering from 12C: cross section and
analyzing power

Since Coulomb scattering amplitudes diverge at zero degree
scattering, measurements of proton scattering do not lead
to total elastic scattering cross sections. Instead, the usual
procedure is to find cross sections at fixed scattering angles
and/or differential cross sections at fixed energies. However, as
the MCAS approach yields complete scattering (S)-matrices,
such angular observables are readily predicted.

For energies to 7 MeV, proton elastic scattering from 12C
at fixed (c.m.) scattering angles of 54◦ and at 90◦ are shown in
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FIG. 8. (Color online) Cross sections from proton elastic scatter-
ing from 12C for two (c.m.) scattering angles, 54◦ (top panel) and 90◦

(bottom panel). Details are given in the text.

the top and bottom panels of Fig. 8, respectively. Therein our
calculated cross sections, shown by the continuous lines, are
compared with available data. With energies in the laboratory
frame, the data were taken from Ref. [10] (open circles) while
those depicted by filled black circles come from Ref. [11].

At 54◦, the 3
2

−
(i = 5) resonance in the data is very well

reproduced. The other resonances, 5
2

+
(i = 10), 3

2
+

(i = 6),

and the broad 3
2

+
(i = 7), also are well reproduced in shape

and require but a small shift in energy. That need for a small
energy shift is also evident in their centroid values, which are
listed in Table VI. The sharp peak shown in the theoretical
curves near 3.2 MeV is the 5

2

−
(i = 8) resonance; a state that

has been experimentally detected at higher energies. These
findings are confirmed by comparison of the calculated results
with the data taken at 90◦ and displayed in the bottom panel.

Usually, analyzing powers Ay from nucleon-nucleus scat-
tering are more sensitive to details of structure than are the
differential cross sections. Two results for this observable are
presented in Fig. 9. In the top panel of this figure, analyzing
powers for proton elastic scattering at 90◦ (c.m.) and for (lab)
energies of 1–8 MeV are depicted. In the bottom panel, angular
variation of the analyzing power for a fixed energy of 3.5 MeV
is shown.

The experimental data [10] are depicted by open circles
and our calculated results are given by the solid curve. The
resonances seen in this figure are those that were discussed
in relation to Fig. 8. The bottom panel gives an angular
variation of analyzing powers for an energy (3.5 MeV) that
is well removed from any strong resonance influence. The
calculated result then reflects what the model predicts as
background effects. The agreement with data is good. Note
that no additional parameter variation was done to achieve this
agreement.

To investigate deformation effects on differential cross
sections, we calculated them again using the values of

0 30 60 90 120 150 180

θc.m. (deg)

−0.4

0

0.4

Ay

1 2 3 4 5 6 7 8

Elab (MeV)

–0.8

–0.4

0

0.4

0.8

FIG. 9. (Color online) Experimental analyzing powers from pro-
ton scattering from 12C compared with our theoretical calculations.
Data and results taken for a range of energies at a fixed scattering
angle of 90◦ are shown in the top panel; angular variations at a fixed
energy (of 3.5 MeV) are shown in the bottom panel.

parameters as listed in Table I but with the deformation
parameter β2 = −0.2. The results are shown in Fig. 10 for
a (c.m.) scattering angle of 90◦ and (lab) energies ranging
between 1 and 6 MeV.

This figure reveals how the single-particle and compound
resonances behave with decreased deformation. The 1

2
+

(i =
3) and 5

2

+
(i = 9) single-particle resonances (the first of which

was not seen in the preceding figure because it lies too low in
energy) maintain their natural width, whereas the 3

2
−

(i = 5)

and 5
2

−
(i = 8) compound resonances sharpen. With β2 =

−0.2, already they are very narrow. The small bump between

Elab (MeV)

0
1 2 3 4 5 6

0.1

0.2

0.3

dσ
/d

Ω
(E

) 
(b

/s
r)

FIG. 10. Energy variation of the theoretical differential cross
section for proton scattering from 12C at a c.m. scattering angle of
90◦. The calculation was made using β2 = −0.2.
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FIG. 11. (Color online) The genesis of the
theoretical spectrum for 13C schematically rep-
resented and compared with the experimental
spectrum.

5 and 6 MeV corresponds to the 5
2

+
(i = 10) resonance,

which maintains its natural width but, being quasicompound, is
strongly damped as the unperturbed limit is approached. Thus
the behavior of the three kinds of resonances (single-particle,
compound, and quasicompound), as the coupling constant is
decreased, is just that foreseen previously [9]. Namely, as
β approaches zero, single-particle resonances conserve their
shapes, compound resonances reduce their widths gradually,
keeping constant heights, and quasicompound resonances
reduce their heights gradually, keeping constant widths.

IV. CONCLUSIONS

We have analyzed the low-energy spectra of 13C and 13N
and low-energy data from the elastic scattering of neutrons
and of protons on 12C. Our method of analysis was that of
a multichannel algebraic scattering theory with which both

the (positive energy) scattering of nucleons from 12C and
(by using negative energies) the subthreshold bound states of
the compound nuclei could be predicted. The method, based
upon Sturmian expansions of a matrix of interaction potentials,
ensures that all subthreshold as well as resonant states within
the chosen range of energies are found. Moreover, the approach
is adapted so that the Pauli principle is not violated even
when a collective model is used to define those interaction
potentials. In the cases studied, just such a rotational model was
used for that purpose and the 0+ (ground), 2+ (4.438 MeV),
and the 0+

2 (7.96 MeV) states in 12C were taken as
active.

The results of our analysis are summarized in Figs. 11
and 12, for the compound nuclei 13C and 13N, respectively.
Each displays three ladder diagrams; the first two are the
results of our calculations (unperturbed resulting when β2 = 0)
and they are compared with the experimental values (far
right).

5+

1 ,3 ,5 ,7 ,9+ + + + +

1

3 ,5+ +

3 ,5

5+

1+

1

1

1+

3
5+

5+
3+
7+ 5

1

9+

1+

3+

5+

E (MeV)

2

0

5

10

unperturbed experimentaltheoretical

FIG. 12. (Color online) The genesis of the
theoretical spectrum for 13N schematically rep-
resented and compared with the experimental
spectrum.
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Considering Fig. 11 for 13C first, we note that it supports
three (dominantly single-particle) bound states, as is clear from
the unperturbed (β2 = 0) spectrum depicted on the left of the
figure. Those states are highlighted in that spectrum as dark
lines. In addition the coupling of the incoming neutron with
the excited levels in the target 12C then gives rise to metastable
states whose presumed unperturbed (β2 = 0) configurations
are represented by lighter lines. They are connected with what
we deduced as a partner by the curved lines. The energy
gaps between these are ε2 and ε3 as relevant for the two
possible cases. These unperturbed resonances are infinitely
narrow (�th → 0) and fully degenerate when one neglects the
small effect of the spin-spin interaction in this representation.
The finite deformation (β2 = −0.52) splits these components
to yield the predicted resonances as shown in the middle of
the set, which compares very favorably with the experimental
spectrum given in the box to the right.

Similar conclusions can be drawn from the spectra of 13N
that is shown in Fig. 12. Also, now, the unperturbed spectrum
shows the effects of couplings to the 0+

2 core state with the 0p−
1
2

and 0d+
5
2

single particle states. There is a similar result from

coupling the 1s+
1
2

to that core state namely a 1
2

+
state in the

unperturbed spectrum at 8.6759 MeV. That level has not been
shown in the figure since, with increasing deformation, it is
shifted to higher excitation energies out of the range displayed.

Because of the Coulomb energy shift, there is only one
subthreshold bound state, and the MCAS approach assuming
charge symmetry gives just that and with the correct spin parity.

As with the 13C system, accounting for the Pauli principle
is crucial. Otherwise, numerous spurious levels result. An
interesting difference, however, is that the Coulomb effect
transforms the 1

2
+

and 5
2

+
bound states to be single-particle

resonances, and owing to coupling with excited core states
their products become quasicompound resonances. The differ-
ent behavior of compound and quasicompound resonances in
the limit β2 → 0 confirms statements formulated in a previous
paper [9].

We conclude by noting that, with a unique set of potential
parameters, the MCAS approach reproduces the data. The
results facilitate interpretation of the phenomenology of both
the 13C and 13N systems in the considered energy range in both
a satisfactory and a fairly exhaustive way.
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