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Determination of the parameters of a Skyrme type effective interaction using the simulated
annealing approach
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We implement for the first time the simulated annealing method to the problem of searching for the global
minimum in the hypersurface of the χ 2 function, which depends on the values of the parameters of a Skyrme-type
effective nucleon-nucleon interaction. We undertake a realistic case of fitting the values of the Skyrme parameters
to an extensive set of experimental data on the ground-state properties of many nuclei, ranging from normal to
exotic ones. The set of experimental data used in our fitting procedure includes the radii for the valence 1d5/2 and
1f7/2 neutron orbits in the 17O and 41Ca nuclei, respectively, and the breathing-mode energies for several nuclei,
in addition to the typically used data on binding energy, charge radii, and spin-orbit splitting. We also include in
the fit the critical density ρcr and further constrain the values of the Skyrme parameters by requiring that (i) the
quantity P = 3ρ(dS/dρ), directly related to the slope of the symmetry energy S, must be positive for densities up
to 3ρ0; (ii) the enhancement factor κ , associated with the isovector giant dipole resonance, should lie in the range
of 0.1–0.5; and (iii) the Landau parameter G′

0 is positive at ρ = ρ0. We provide simple but consistent schemes to
account for the center-of-mass corrections to the binding energy and charge radii.
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I. INTRODUCTION

Since the pioneering work of Brink and Vautherin [1],
continuous efforts have been made to readjust the parameters
of the Skyrme-type effective nucleon-nucleon interaction to
better reproduce experimental data. Most of the parameters
of the Skyrme interactions available in the literature were
obtained by the fitting of the Hartree-Fock (HF) results to
experimental data on bulk properties of a few stable closed-
shell nuclei. Only recently, several families of the Skyrme
parameters, e.g., SkI1-6, SLy1-10, SKX, and SkO [2–7], were
obtained by the fitting of HF results to the experimental data
on the bulk properties of nuclei ranging from the β-stable
nuclei to those near the proton and/or neutron drip lines.
In the SKX interaction, to yield appropriately the values
for the binding-energy differences between mirror nuclei,
also referred to as the Coulomb displacement energy (CDE),
the contribution of the Coulomb exchange term in the HF
equations is ignored and the direct Coulomb term is evaluated
by replacement of the point-proton distribution by its charge
distribution. However, it has been further shown in Ref. [8] that
the SKX interaction is not suitable for studying the properties
of neutron stars because, for the SKX interaction, the quantity

P = 3ρ
dS

dρ
, (1)

which is directly related to the slope of the symmetry-energy
coefficient S, becomes negative for nuclear matter densities
ρ well below 3ρ0 (ρ0 = 0.16 fm−3 is the saturation density).
On the other hand, the SkI1-6, SLy1-10, and SkO Skyrme
interactions are found to be suitable for the study of neutron
stars [8]. However, these families of Skyrme interactions
significantly underestimate the values of the CDE for mirror
nuclei because the Coulomb exchange term was included. Thus
it is desirable to have a unified interaction that includes the
merits of several families of the Skyrme interactions, as already

mentioned. One can further enhance the applicability of the
Skyrme-type effective NN interaction by imposing certain
constraints, as subsequently discussed.

The aim of this work is twofold. We implement, for the
first time, the simulated annealing method (SAM) [9,10] to
fit the values of the Skyrme parameters and develop a more
realistic Skyrme-type effective interaction. The SAM is an
elegant technique for optimization problems of large scale,
in particular, where a desired global extremum is hidden
among many local extrema. This method has been found to
be an extremely useful tool for a wide variety of minimization
problems of large nonlinear systems in many different areas
of science (e.g., see Refs. [11–13]). Very recently [14,15], the
SAM was used to generate some initial trial parameter sets for
the point-coupling variant of the relativistic mean-field model.
In the present context, we use the SAM to determine the values
of the Skyrme parameters by searching for the global minimum
in the hypersurface of the χ2 function, given as

χ2 = 1

Nd − Np

Nd∑
i=1

(
M

exp
i − M th

i

σi

)2

(2)

where Nd and Np are the number of experimental data points
and the number of fitted parameters, respectively, σi is the
theoretical error, and M

exp
i and M th

i are the experimental
and the corresponding theoretical values, respectively, for a
given observable. The values of χ2 depend on the Skyrme
parameters, because, the M th

i in Eq. (2) is calculated with the
HF approach with a Skyrme-type effective nucleon-nucleon
interaction.

Toward the purpose of obtaining a more realistic
parametrization of the Skyrme interaction, we apply the SAM
to fit the HF results to an extensive set of experimental
data for the binding energy, charge radii, spin-orbit splitting,
and root-mean-square (rms) radii of valence neutron orbits.
Our data set used in the fit consists of 14 spherical nuclei,
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namely, 16O, 24O, 34Si, 40Ca, 48Ca, 48Ni, 56Ni, 68Ni, 78Ni,
88Sr, 90Zr, 100Sn, 132Sn, and 208Pb. We also include in our fit
the experimental data for the breathing-mode energies for the
90Zr, 116Sn, 144Sm, and 208Pb nuclei. In addition, we include
in the fit the critical density ρcr, which is determined from
the stability conditions for the Landau parameters [16,17].
We further constrain the values of the Skyrme parameters
by requiring that (i) the quantity P must be positive for
densities up to 3ρ0, a condition imposed by neutron star
models [8]; (ii) the enhancement factor κ , associated with the
Thomas-Reiche-Kuhn (TRK) sum rule for the isovector giant
dipole resonance, lies in the range of 0.1–0.5 [3,18–20]; and
(iii) the Landau parameter G′

0, crucial for the spin properties
of finite nuclei and nuclear matter, should be positive at
ρ = ρ0 [20,21]. We also provide simple but consistent schemes
to account appropriately for the CDE and the center-of-mass
(c.m.) corrections to the binding energy and charge radii. To
check the reliability of the proposed Skyrme interactions for
the study of high-density matter, we examine in detail the
behavior of the symmetry energy and the nature of the equation
of state (EOS) for pure neutron matter at densities relevant for
the neutron star models.

We have organized our paper as follows. In Sec. II we
briefly outline the form of the Skyrme nucleon-nucleon (NN)
effective interaction and the corresponding energy-density
functional adopted in the present work. In this section, we also
provide feasible strategies for the calculations of CDE and
the c.m. corrections to the total binding energy and charge
radii. In Sec. III we provide the relations between the Skyrme
parameters and the various nuclear matter properties, which
we have used to implement the SAM algorithm, as described
in Sec. IV. The set of the experimental data along with the
theoretical errors and the constraints used in the fit to determine
the values of the Skyrme parameters are given in Sec. V. In
Sec. VI we present our results for the two different fits carried
out in this work. Finally, in Sec. VII we summarize our main
results and discuss the scope for further improvement of the
present work.

II. SKYRME ENERGY-DENSITY FUNCTIONAL

In this work we adopt the following form for the Skyrme-
type effective NN interaction [1,3]:

V12 = t0
(
1 + x0P

σ
12

)
δ(r1 − r2)

+ 1

2
t1

(
1 + x1P

σ
12

)×[←−
k

2
12δ(r1 − r2) + δ(r1 − r2)

−→
k

2
12

]
+ t2

(
1 + x2P

σ
12

)←−
k12δ(r1 − r2)

−→
k12

+ 1

6
t3

(
1 + x3P

σ
12

)
ρα

(
r1 + r2

2

)
δ(r1 − r2)

+ iW0
←−
k12δ(r1 − r2)(

−→
σ1 + −→

σ2 ) ×−→
k12, (3)

where ti , xi, α, and W0 are the parameters of the interaction and
P σ

12 is the spin-exchange operator,
−→
σi is the Pauli spin operator,

−→
k12 = −i(

−→∇1 − −→∇2)/2, and
←−
k12 = −i(

←−∇1 − ←−∇2)/2 . Here, the
right and left arrows indicate that the momentum operators act
on the right and on the left, respectively. The corresponding

mean field VHF and the total energy E of the system are given
by

VHF = δH
δρ

, E =
∫

H(r)d3r, (4)

where the Skyrme energy-density functional H(r), obtained
with Eq. (3), is given by [1,3]

H = K + H0 + H3 + Heff + Hfin + Hso + Hsg + HCoul,

(5)

where, K = (h̄2/2m)τ is the kinetic-energy term, H0 is the
zero-range term, H3 the density-dependent term, Heff is an
effective-mass term, Hfin is a finite-range term, Hso is a spin-
orbit term, Hsg is a term that is due to tensor coupling with
spin and gradient, and HCoul is the contribution to the energy
density that is due to the Coulomb interaction. For the Skyrme
interaction of Eq. (3), we have

H0 = 1
4 t0

[
(2 + x0)ρ2 − (2x0 + 1)

(
ρ2

p + ρ2
n

)]
, (6)

H3 = 1
24 t3ρ

α
[
(2 + x3)ρ2 − (2x3 + 1)

(
ρ2

p + ρ2
n

)]
, (7)

Heff = 1
8 [t1(2 + x1) + t2(2 + x2)]τρ + 1

8 [t2(2x2 + 1)

− t1(2x1 + 1)](τpρp + τnρn), (8)

Hfin = 1
32 [3t1(2 + x1) − t2(2 + x2)](∇ρ)2

− 1
32 [3t1(2x1 + 1) + t2(2x2 + 1)]

× [(∇ρp)2 + (∇ρn)2], (9)

Hso = W0

2
[J · ∇ρ + xw(J p · ∇ρp + Jn · ∇ρn)], (10)

Hsg = − 1
16 (t1x1 + t2x2)J2 + 1

16 (t1 − t2)
[
J p

2 + Jn
2
]
. (11)

Here, ρ = ρp + ρn, τ = τp + τn, and J = J p + Jn are the
particle number density, kinetic-energy density, and spin
density, with p and n denoting the protons and neu-
trons, respectively. We have used the value of h̄2/2m =
20.734 MeV fm2 in our calculations. We would like to
emphasize that we have included the contributions from the
spin-density term as given by Eq. (11), which is ignored in
many Skyrme HF calculations. Although the contributions
from Eq. (11) to the binding energy and charge radii are not
very significant, they are very crucial for the calculation of the
Landau parameter G′

0 [22].

A. Coulomb energy

The contribution to the energy density [Eq. (5)] from the
Coulomb interaction can be written as a sum of a direct term
and an exchange term:

HCoul(r) = Hdir
Coul(r) + Hex

Coul(r). (12)

For the direct term it is common to adopt the expression

Hdir
Coul(r) = 1

2
e2ρp(r)

∫
ρp(r ′)d3r ′

| r − r′ | , (13)
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and for the corresponding exchange term to use the Slater
approximation [23]:

Hex
Coul(r) = −3

4
e2ρp(r)

[
3ρp(r)

π

]1/3

. (14)

It is very important to emphasize that the definitions of
Eqs. (13) and (14) are not for the bona fide direct and exchange
terms, as each of them includes the contributions of the
self-interaction, which appear in opposite signs and cancel
out in Eq. (12). Note, in particular, that the direct term of
Eq. (13) is proportional to Z2 and not to Z(Z − 1), as it should
be for a direct term; see a detailed discussion in Ref. [24]. We
point out that for the CDE of mirror nuclei the magnitude of
the self-interaction term is CDE/(2Z), i.e., one has a spurious
increase in the calculated CDE of about 6.3% and 2.5% for
the A = 17 and 41 systems of mirror nuclei, respectively.

We recall that, within the mean-field approximation, ad-
justed to reproduce the experimental values of the charge
rms radii, the calculated CDE of analog states [obtained with
Eq. (12)] are smaller than the corresponding experimental
values by about 7%. It was first shown in Ref. [25] that this
discrepancy, also known as the Nolen-Schiffer anomaly [26],
can be explained when the contributions that are due to
long-range correlations (LRCs) and to the charge symmetry
breaking (CSB) in the NN interaction are taken into account;
see also Ref. [27]. We add that for the mirror nuclei with
A = 17 and A = 41, the LRC and the CSB each accounts for
about half of the discrepancy between theory and experiment.
Also, the magnitude of the bona fide exchange Coulomb term
is about the same as that due to LRCs, but with opposite
sign. Therefore, neglecting the bona fide Coulomb exchange
term does not resolved the discrepancy between theory and
experiment, but can account for the contribution of LRCs.
We add that, in Ref. [28], it was shown that by ignoring
the Coulomb exchange term in the form of Eq. (14) in
Eq. (12), i.e., by including only the Coulomb direct term in
the form of Eq. (13) (as is the case for the SKX interaction),
one reproduces the experimental values of the CDE. It should
be clear that this is due to the fact that by adopting the
form of Eq. (13) for the Coulomb direct term one not only
neglects the bona fide Coulomb exchange term, but also adds
the spurious contribution of the self-interaction term. The
unphysical neglect of the bona fide Coulomb exchange term
together with the spurious contribution of the self-interaction
term results in a contribution to CDE that is similar in
magnitude to that obtained from the LRC + CSB terms. For
simplicity, we adopt in this work the form of Eq. (13) for the
Coulomb direct term.

B. Center-of-mass corrections to the binding
energy and charge radii

The HF approach applied to finite nuclei violates the
translational invariance, introducing a spurious c.m. motion.
Thus, one must extract the contributions of the c.m. motion
to the binding energy B, radii, and other observables. An
accurate way to restore the translational invariance is to use the
projection method. However, it is numerically very expensive.

Therefore, it is desirable to develop simple schemes for the
c.m. corrections to various observables. Normally, one makes
the c.m. corrections only to the binding energy and not to the
radii. However, the c.m. corrections to the rms radii for light
nuclei may be as large as 2% [24]. In the present work we
consider the c.m. corrections to the binding energy as well as
charge rms radii used to fit the Skyrme parameters.

To account for the c.m. correction to the total binding
energy, one must subtract from it the so-called c.m. energy,
given as

Ec.m. = 1

2mA
〈P̂2〉, (15)

where P̂ = −ih̄
∑A

i=1 ∇i is the total linear momentum opera-
tor. Traditionally, one simplifies the computation of Eq. (15)
by taking into account only the one-body parts of it, which can
be easily achieved by replacing 1

m
→ 1

m
[1 − 1

A
] in the kinetic-

energy term. In this case, the effects of neglecting the two-body
part of Eq. (15) are compensated for by renormalization of the
force parameters. This may induce in the forces an incorrect
trend with respect to A that becomes visible in the nuclear
matter properties. In fact, it is found in Ref. [29] that an
oversimplified treatment of Ec.m. obtained by renormalization
of the nucleon mass appearing in the kinetic-energy term
leads to a larger value of the surface-energy coefficient
than those obtained with the full c.m. correction. This gives
rise to differences in the deformation energy that becomes
quite pronounced for the superdeformed states. Very recently
[17], we also find that a large value of the surface-energy
coefficient yields a smaller value for the critical density. Thus
an appropriate and still simple scheme to evaluate Eq. (15) is
highly desirable. We note, however, that the SLy6, SLy7, and
SLy10 interactions [4] have been obtained by evaluation of
Eq. (15) [i.e., including the one- and two-body c.m. terms
of Eq. (15)]. In the harmonic-oscillator (HO) approximation,
Ec.m. of Eq. (15) is given by

EHO
c.m. = 3

4h̄ω. (16)

A value of h̄ω = 41A−1/3 MeV is used in many relativistic
mean-field calculations [30,31]. An improved version for
the c.m. correction can be obtained by modification of the
oscillator frequency as h̄ω = 45A−1/3 − 25A−2/3 MeV, which
has been used in Ref. [5] to obtain the SKX interaction. Here,
we employ a simple but more consistent scheme to evaluate
the Ec.m. by using the HO approximation. We determine the
oscillator frequency h̄ω appearing in Eq. (16) by using the
mean-square mass radii 〈r2〉 calculated in the HF approach as

h̄ω = h̄2

mA〈r2〉
∑

i

[
Ni + 3

2

]
, (17)

where the sum runs over all the occupied single-particle states
for the protons and neutrons and Ni is the oscillator quantum
number. We emphasize that this scheme is quite reliable
even for the nuclei away from the β-stable line, where the
values of the rms radii deviate from the A1/3 law. We have
calculated the total binding energy for the SLy7 interaction
by using our simple scheme for the c.m. correction, Eq. (17),
and compare them with those given in Ref. [4], obtained by
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using one- and two-body parts of the Eq. (15). For example,
we find that for the 16O, 40Ca, 132Sn, and 208Pb nuclei the
total binding energy B = 128.65 (128.55), 344.98 (344.90),
1102.38 (1102.77), and 1636.29 (1636.76) MeV, respectively;
the values in parentheses are taken from Ref. [4]. This clearly
indicates that the c.m. correction to the binding energy can be
reliably estimated with Eq. (17). We would also like to remark,
however, that the Ec.m. calculated with the oscillator frequency
as h̄ω = 45A−1/3 − 25A−2/3 MeV in Eq. (16) overestimates
the value of binding energy in light nuclei (e.g., 16O and 40Ca)
by about 1–2 MeV, which is quite significant.

The mean-square radius for the point-proton distribution
corrected for the c.m. motion is obtained as [24]〈

r2
p

〉 = 〈
r2
p

〉
HF − 3

2νA
, (18)

where ν = mω/h̄ is the size parameter. Therefore the cor-
responding mean-square charge radius to be fitted to the
experimental data is obtained as〈

r2
ch

〉 = 〈
r2
p

〉
HF − 3

2νA
+ 〈r2〉p + N

Z
〈r2〉n

+ 1

Z

(
h̄

mc

)∑
nljτ

(2j + 1)µτ 〈−→σ · −→
l 〉lj , (19)

where, 〈r2〉p and 〈r2〉n are the mean-squared radii of the proton
and neutron charge distributions, respectively. The last term in
Eq. (19) is due to the spin-orbit effect [32]. We use 〈r2〉n =
−0.12 fm2 and the recent [33] value of 〈r2〉p = 0.801 fm2.

C. Determination of the critical density

We use the stability conditions of the Landau parameters
for the symmetric nuclear matter and pure neutron matter to
calculate the critical density ρcr for the Skyrme-type effective
NN interactions. The stability conditions are given as [34]

Al > −(2l + 1), (20)

where Al are the Landau parameters Fl, F
′
l , Gl , and G′

l for
a given multipolarity l. Skyrme interactions contain only
monopolar and dipolar contributions to the particle-hole inter-
action so that all Landau parameters are zero for l > 1. Thus
there are 12 different Landau parameters, i.e., Fl, F

′
l , Gl and

G′
l (l = 0, 1) for the symmetric nuclear matter and F

(n)
l , G

(n)
l

(l = 0, 1) for the pure neutron matter. Each of these parameters
must satisfy the inequality condition given by inequality (20).
Explicit expressions for the Landau parameters in terms of the
Skyrme parameters can be found in Refs. [16,35]. The critical
density is nothing but the maximum density beyond which at
least one of the Landau parameters does not satisfy inequality
(20). Following Ref. [16], one can obtain the values of the
Landau parameters at any density for a given set of the Skyrme

parameters. Thus, for a given set of Skyrme parameters, one
can easily obtain the value of ρcr. As mentioned in Sec. I, we
include ρcr in the fit.

D. Breathing-mode energy

We also include in our fit the experimental data on the
breathing-mode energy for several nuclei. We consider the
fully self-consistent values for the breathing-mode constrained
energy, defined as

E0 =
√

m1

m−1
, (21)

where mk are the energy moments,

mk =
∫ ∞

0
ωkS(ω)dω, (22)

of the strength function

S(ω) =
∑

n

|〈n|F |0〉|2δ(ω − ωn), (23)

for the monopole operator F (r) = ∑A
i=1 f (ri), with f (r) =

r2. The moments mk for k = −1 and 1 appearing in Eq. (21)
can be obtained with the constrained HF (CHF) and the double-
commutator sum rule, respectively [36–38]. The moment m1

can be expressed in terms of the ground-state density ρ as

m1 = 2
h̄2

m
〈r2〉, (24)

where

〈r2〉 =
∫

r2ρ(r)dr. (25)

As described in detail in Refs. [36–38], m−1 can be evaluated
by means of the CHF approach and is given as

m−1 = 1

2

d

dλ

〈
r2
λ

〉∣∣∣∣
λ=0

(26)

where 〈r2
λ〉 = 〈λ|r2|λ〉, where λ is the HF solution to the

CHF Hamiltonian H − λf .

III. SKYRME PARAMETERS AND NUCLEAR
MATTER PROPERTIES

In this section we discuss the relationship between the
Skyrme parameters and the various quantities describing the
nuclear matter. In the next section we use these relations to
implement the SAM algorithm. The Skyrme parameters ti , xi ,
and α for a fixed value of W0 can be expressed in terms of
the quantities associated with the symmetric nuclear matter as
follows [3,16,39]:

t0 = 8

ρnm

{[−B/A + (2m/m∗ − 3)(h̄2/10m)k2
f

][
1

27Knm − (1 − 6m∗/5m)(h̄2/9m∗)k2
f

]
−B/A + 1

9Knm − (4m/3m∗ − 1)(h̄2/10m)k2
f

+
(

1 − 5m

3m∗

)
h̄2

10m
k2
f

}
, (27)
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t1 = 2

3
[T0 + Ts], (28)

t2 = t1 + 8

3

[(
1

4
t0 + 1

24
t3ρ

α
nm

)
2m∗

h̄2

kf

π2
+ G′

0

]
h̄2

m∗ρnm
,

(29)

t3 = 16

ρα+1
nm

[−B/A + (2m/m∗ − 3)(h̄2/10m)k2
f

]2

−B/A + 1
9Knm − (4m/3m∗ − 1)(h̄2/10m)k2

f

,

(30)

x0 = 4

t0ρnm

{
h̄2

6m
k2
f − 1

24
t3

(
x3 + 1

2

)
ρα+1

nm

+ 1

24
[t2(4 + 5x2) − 3t1x1]ρnmk2

f − J

}
− 1

2
, (31)

x1 = 1

t1

[
4

h̄2κ

mρnm
− t2(2 + x2)

]
− 2, (32)

x2 = 1

4t2
[8T0 − 3t1 − 5t2], (33)

x3 = − 8

αt3ρ
α+1
nm

{
h̄2

6m
k2
f − 1

12
[(4 + 5x2)t2 − 3t1x1]ρnmk2

f

− 3J + L

}
− 1

2
, (34)

α = B/A − 1
9Knm + (4m/3m∗ − 1)(h̄2/10m)k2

f

−B/A + (2m/m∗ − 3)(h̄2/10m)k2
f

, (35)

where

T0 = 1

8
[3t1 + (5 + 4x2)t2] = h̄2

mρnm

( m

m∗ − 1
)

, (36)

Ts = 1

8
[9t1 − (5 + 4x2)t2], (37)

and

kf =
(

3π2

2
ρnm

)1/3

. (38)

In Eqs. (27)–(35), the various quantities characterizing the
nuclear matter are the binding energy per nucleon B/A,
isoscalar effective mass m∗/m, nuclear matter incompressibil-
ity coefficient Knm, symmetry-energy coefficient J = S(ρ =
ρnm), the coefficient L = P (ρ = ρnm), enhancement factor κ ,
and Landau parameter G′

0. All these quantities are taken at
the saturation density ρnm. It must be pointed out that the
expression for the parameter G′

0 used in Eq. (29) includes
the contributions from the spin-density term present in the
Skyrme energy-density functional [22]. Therefore, for con-
sistency, the HF calculations are also performed with the
contributions from the spin density included. Once T0 is
known, Ts can be calculated for a given value of the surface
energy Es as [16]

Es = 8πr2
0

∫ ρnm

0
dρ

[
h̄2

36m
− 5

36
T0ρ + 1

8
Tsρ − m∗

h̄2 Vsoρ
2

]1/2

× [B(ρnm)/A − B(ρ)/A]1/2, (39)

where B(ρ)/A is the binding energy per nucleon given by

B(ρ)

A
= −

[
3h̄2

10m∗ k2
f + 3

8
t0ρ + 1

16
t3ρ

α+1

]
(40)

and,

r0 =
[

3

4πρnm

]1/3

, (41)

Vso = 9

16
W0

2. (42)

The manner in which Eqs. (27)–(35) can be used to evaluate
the Skyrme parameters ti , xi , and α is as follows. At first,
the parameters t0 and α can be calculated in terms of
B/A, ρnm,Knm and m∗/m by use of Eqs. (27) and (35). Then
the parameter t3 can be determined with Eq. (30). Next, T0

and Ts can be calculated with Eqs. (36) and (39), respectively.
Once the combinations T0 and Ts of the Skyrme parameters
are known, one can calculate the remaining parameters in the
following sequence: t1, t2, x2, x1, x3, and x0.

IV. SIMULATED-ANNEALING-BASED ALGORITHM
FOR THE MINIMIZATION OF χ 2

The SAM is a generalization of a Monte Carlo technique,
based on the Metropolis algorithm [40], initially developed
for examining the EOS of a many-body system. The concept
of SAM is based on the manner in which liquids freeze
or metals recrystallize in the process of annealing. In an
annealing process, a metal, initially at high temperature and
disordered, slowly cools so that the system at any time is in
thermodynamic equilibrium. As cooling proceeds, the system
becomes more ordered and approaches a frozen ground state
at zero temperature.

With this brief background, we now implement the SAM
to search for the global minimum of the χ2 function as given
by Eq. (2). One of the crucial key ingredients required for
implementing the SAM, in the present case, is to specify the
lower and the upper limits for each of the Skyrme parameters,
so that the global minimum for the χ2 is searched within these
limits. However, from the literature (e.g., see Refs. [8,39]) we
find that the Skyrme parameters vary over a wide range. To
make the search process more efficient, we make use of the fact
that most of the Skyrme parameters can be expressed in terms
of the various quantities related to the nuclear matter properties
as described in Sec. III. Most of these nuclear matter quantities
are known empirically within 10–20%. For convenience , we
define a vector v with the components as

v ≡ (B/A,Knm, ρnm,m∗/m,Es, J, L, κ,G′
0,W0). (43)

Once the vector v is known we can calculate the values of all
the Skyrme parameters as discussed in Sec. III. We also define
the vectors v0, v1, and d. The vectors v0 and v1 contain the
lower and the upper limits of each of the components of the
vector v. The vector d represents the maximum displacement
allowed in a single step for the components of the vector v. We
implement the SAM algorithm by using the following basic
steps,
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(i) We start with a guess value for the vector v and calculate
χ2 (say, χ2

old) using Eq. (2) for a given set of the
experimental data and the corresponding HF results
together with the theoretical errors.

(ii) We generate randomly a new set of Skyrme parameters by
using the following steps. First, we use a uniform random
number to select a component vr of the vector v. Second,
the randomly selected component vr is then assigned a
new value,

vr → vr + ηdr, (44)

where η is a uniform random number that lies within the
range of −1 to +1. The second step is repeated until the
new value of vr is found within its allowed limits defined
by v0 and v1. We use this modified v to generate a new
set of Skyrme parameters. It may be noted that a change
in the value of a component of the vector v may lead to
changes in the values of several Skyrme parameters. For
example, a change in the value of Knm will alter the values
of the Skyrme parameters t0, t3 and α.

(iii) The newly generated set of the Skyrme parameters is
accepted by use of the Metropolis algorithm as follows.
We calculate the quantity

P(χ2) = e(χ2
old−χ2

new)/T , (45)

where we obtain χ2
new by using the newly generated set of

the Skyrme parameters and T is a control parameter (an
effective temperature). The new set of Skyrme parameters
is accepted only if

P(χ2) > β, (46)

where β is a uniform random number that lies between
0 and 1. If the new Skyrme parameters are accepted
[i.e., condition (46) is satisfied], it is called a “successful
reconfiguration.”

To search for the global minimum of χ2 we begin with
some reasonable value of an effective temperature T = Ti .
For a given Ti , we repeat steps (ii) and (iii) for, say, 100Np

reconfigurations, or for 10Np successful reconfigurations,
whichever comes first. Then we reduce the temperature by
following a suitable annealing schedules. One encounters
various annealing schedules available in the literature such
as linear, exponential, Boltzmann, and Cauchy [13]. Among
these, the Boltzmann annealing schedule is the slowest one
and the exponential annealing schedule is the fastest one. In
the present work we have employed the Cauchy annealing
schedule given by

T (k) = Ti/ck, (47)

where c is a constant, which is taken to be unity in the present
work, and k = 1, 2, 3, . . . , is the time index. We keep on
reducing the value of T by using Eq. (47) in the subsequent
steps until the effort to reduce the value of χ2 further becomes
sufficiently discouraging.

In Table I we list the values of all the components of the
vectors v, v0, v1, and d used in the numerical computation.
We have varied the components of the vector v over a wide
range. The values of the maximum displacement as defined

TABLE I. Values of the components of the vectors v, v0, v1, and
d used for implementing the SAM-based algorithm for searching
the global minimum of χ 2. The vector v initializes the value of
χ 2, whereas v0 and v1 limit the search space for the Skyrme
parameters. The components of the vector d correspond to the
maximum displacements allowed for the reconfiguration.

v v0 v1 d

B/A (MeV) 16.0 17.0 15.0 0.40
Knm (MeV) 230.0 200.0 300.0 20.0
ρnm (fm−3) 0.160 0.150 0.170 0.005
m∗/m 0.70 0.60 0.90 0.04
Es (MeV) 18.0 17.0 19.0 0.3
J(MeV) 32.0 25.0 40.0 4.0
L (MeV) 47.0 20.0 80.0 10.0
κ 0.25 0.1 0.5 0.1
G′

0 0.08 0.00 0.40 0.10
W0 (MeV fm5) 120.0 100.0 150.0 5.0

by the components of d are so chosen that the corresponding
component of the vector v can be varied over the entire range
given by the vectors v0 and v1, within the adopted number
of reconfigurations. We have carried out several sample runs
and found that Ti = 1.25 along with the Cauchy annealing
schedule yields reasonable values of the Skyrme parameters.
We must mention here that the range for the quantities L, κ ,
and G′

0 as given in Table I is so chosen that they vary within
acceptable limits [17].

V. EXPERIMENTAL DATA AND SOME CONSTRAINTS

In this section we discuss our selection of the experimental
data and the corresponding theoretical errors adopted in the
χ2 fit, Eq. (2), to the HF results. In Table II we summarize
our choice of the experimental data. It must be noted that,
in addition to the typically used data on the binding energy,
charge radii, and spin-orbit splitting, we also include in our fit
the experimental data for the radii of valence neutron orbits
and the breathing-mode energies of several nuclei. All of
these experimental data are taken from Refs. [41–47]. For
the binding energy we use in our fit the error of 1.0 MeV,
except for the 100Sn nuclei. The binding energy for the 100Sn
nucleus is determined from systematics and is expected to
have large errors. Thus we assign it a theoretical error of
2.0 MeV. For the charge rms radii we use the theoretical error
of 0.02 fm except for the case of 56Ni nucleus. The charge
rms radii for the 56Ni nucleus is obtained from systematics
and we use the theoretical error of 0.04 fm. We consider in
our fit the experimental data for the spin-orbit splittings for the
2p neutrons and protons in the 56Ni nucleus and the rms radii
for the 1d5/2 and 1f7/2 neutron orbits in 17O and 41Ca nuclei,
respectively. We use [46]

ε(2p1/2) − ε(2p3/2) =
{

1.88 MeV, neutrons
1.83 MeV, Protons , (48)

where ε is the “bare” single-particle energy we obtain by
unfolding the experimental data for the energy levels in 57Ni
and 57Cu nuclei by appropriately accounting for the coupling

014310-6



DETERMINATION OF THE PARAMETERS OF A SKYRME . . . PHYSICAL REVIEW C 72, 014310 (2005)

TABLE II. Selected experimental data for the binding energy B, charge rms radius rch, rms radii
of valence neutron orbits rv , spin-orbit splitting S-O, breathing-mode constrained energy E0, and
critical density ρcr used in the fit to determine the parameters of the Skyrme interaction.

Properties Nuclei Ref.

B 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,132Sn, 208Pb [41]
rch

16O, 40,48Ca, 56Ni, 88Sr, 90Zr, 208Pb [42,43]
rv(ν1d5/2) 17O [44]
rv(ν1f7/2) 41Ca [45]
S-O 2p orbits in 56Ni [46]
E0

90Zr, 116Sn, 144Sm, 208Pb [47]
ρcr Nuclear matter See text

to core excitations. Of course, it is more appropriate to use
the splitting of high l orbits in a heavy nucleus (e.g., 208Pb
nucleus) to determine the strength of the spin-orbit interaction.
However, to the best of our knowledge, unlike for the 56Ni
nucleus, the bare single-particle energies for the heavier nuclei
are not available. For the rms radii of the valence neutron
orbits in 17O and 41Ca nuclei we use rv(ν1d5/2) = 3.36 fm and
rv(ν1f7/2) = 3.99 fm, [44,45] respectively. The theoretical
error taken for the spin-orbit splitting data is 0.2 MeV, and
for the rms radii for the valence neutron orbits we use the
experimental error of 0.06 fm. We must point out that the
choice of the theoretical error on the rms radii for the valence
neutron orbits is due to the large uncertainties associated
with their extraction from the experimental measurements.
To be consistent with the way these valence neutron radii are
determined, we do not include the c.m. correction to these data.
The experimental data for the breathing-mode constrained
energies E0 included in our fit are 17.81, 15.90, 15.25, and
14.18 MeV for the 90Zr, 116Sn, 144Sm, and 208Pb nuclei [47],
respectively, with the theoretical error taken to be 0.5 MeV for
the 90Zr nucleus and 0.3 MeV for the other nuclei. We also
include the critical density ρcr in the fit, assuming a value of
2.5ρ0 with an error of 0.5ρ0. Further the values of the Skyrme
parameters are constrained by the requirement that (i) P � 0
for ρ � 3ρ0, (ii) κ = 0.1 − 0.5, and (iii) G′

0 � 0 at ρ = ρ0.

VI. RESULTS AND DISCUSSIONS

In the preceding sections we have described in detail the
implementation of the SAM-based algorithm to fit the values
of the Skyrme parameters to a given set of the experimental
data considered in this work. We have carried out two different
fits. These fits are carried out with the same set of experimental
data along with some constraints as discussed in Sec. V. We
name these fits (i) KDE0, in which only the Coulomb direct
term in the form of Eq. (13) is included; and (ii) KDE, in which
the direct as well as the Coulomb exchange terms are included
[Eqs. (12)–(14)].

The c.m. corrections to the total binding energy, Eqs. (16)
and (17), and the charge rms radii, Eqs. (18) and (19), are
carried out with the schemes described in Sec. II B.

We first consider some technical aspects required for
implementing the SAM. As is evident from Sec. IV, there
are two crucial ingredients, namely (i) initial value for the

control parameter T = Ti and (ii) an annealing schedule that
determines the subsequent value for T. These ingredients
essentially control the computer time and the quality of the
final fit. If one starts with a smaller value for Ti and/or uses a
faster annealing schedule, one may not be able to hit the global
minimum of the objective function and rather get trapped
in one of the local minima. In the present work we have
employed the Cauchy annealing schedule. We have carried out
several trial calculations and find that Ti = 1.25, along with the
Cauchy annealing schedule as given by expression (47), yields
reasonable values for the best-fit parameters. To validate the
present approach we carried out the following checks. Starting
with the final values of the Skyrme parameters we obtained by
using the SAM, we attempted to minimize further the value of
χ2 by using the Levenberg-Marquardt (LM) method [10] as
conventionally used. However, we found no further decrease
in the value of the χ2. As an illustration, we plot in Fig. 1
the average value 〈χ2〉T as an inverse function of the control
parameter T for the KDE0 case. The curves labeled v and v1

represent the results obtained from two different choices of the

403020100 50
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1

FIG. 1. Variation of the average value of 〈χ 2〉T as a function of
the inverse of the control parameter T for the KDE0 interaction for the
two different choices of the starting parameters (see text for details).
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FIG. 2. Variation of the fluctuations �χ 2
T in the value of χ 2 as

a function of 1/T for the KDE0 interaction for the two different
choices of the starting parameters (see text for details).

starting values for the Skyrme parameters. The initial value of
the Skyrme parameters for the curve labeled v (solid curve)
and v1 (dashed curve) are obtained with the set of values given
in the second and fourth columns of Table I, respectively. The
value of 〈χ2〉T is obtained by averaging over all the successful
reconfigurations for a given T. We see from Fig. 1 that the value
of 〈χ2〉T shows a remarkable decrease at initial stages and then
oscillates before saturating to a minimum value for T � 0.05.
The value of χ2 at lower T is more or less independent of
the starting values for the Skyrme parameters. In Fig 2 we
show the variation of �χ2

T = 〈(χ2 − 〈χ2〉)2〉T as an inverse
function of T. We see that the fluctuations in the value of χ2

is large for larger values of T. As T decreases, fluctuations in
the value of χ2 also decrease rapidly. This means that initial
value for T should not be too small, because at smaller T it
is less likely to jump from a configuration with lower value
of χ2 to one having a higher value. As a result, one may get
trapped in a local minima. In Table III we give the values of the
parameters for the KDE0 interaction at the minimum value of
the χ2 obtained from different choices for the starting values
for the Skyrme parameters. It is interesting to note that not
only is the final value of the χ2 less sensitive to the choice of
the initial parameters, but the resulting Skyrme parameters are
also quite close. In what follows, we present the results for the
KDE0 and KDE interactions. The starting (or guess) values
for the Skyrme parameters used to generate these interactions
are obtained from the nuclear matter quantities given in the
second column of the Table I.

In Table IV we give the values for the various quantities
characterizing the nuclear matter obtained at the minimum
value of the χ2. We also note that the values of all the nuclear
matter properties for the KDE0 and KDE Skyrme interactions
are closer to those obtained for the SLy7 interaction. However,
it is worth mentioning that the values of the Knm and m∗/m

for both the interactions generated here emerge from the fit,

TABLE III. Comparison of the parameters for the KDE0 inter-
action at the minimum value of χ 2 obtained from different choices
for the starting values of the Skyrme parameters.

Parameter KDE0(v) KDE0(v1)

t0 (MeV·fm3) −2526.5110 −2553.0843
t1 (MeV·fm5) 430.9418 411.6963
t2 (MeV·fm5) −398.3775 −419.8712
t3 (MeV·fm3(1+α)) 14235.5193 14603.6069
x0 0.7583 0.6483
x1 −0.3087 −0.3472
x2 −0.9495 −0.9268
x3 1.1445 0.9475
W0 (MeV·fm5) 128.9649 124.4100
α 0.1676 0.1673

unlike the SLy type interactions for which the values for
these quantities were kept fixed. In our fits, the values of
Knm and m∗/m are mainly constrained by the inclusion of
the experimental data on breathing-mode energy and the value
of critical density ρcr = 2.5ρ0 ± 0.5ρ0 [16,17]. In the last row
of this table we give the values of χ2 at the minimum. For
the sake of completeness, we list in Table V the values of
the Skyrme parameters obtained in the fits. One can easily
calculate the values of these Skyrme parameters by using
the various nuclear matter quantities given in Table IV, as
described in Sec. III. In Table V we also give in parentheses the
values of the standard deviations for the Skyrme parameters.
Because, within the SAM algorithm one cannot calculate these
standard deviations in a straightforward manner, we resort to
some alternative approach. We have determined the values of
the standard deviations on the parameters for the KDE0 and
KDE interactions by using the LM method. The LM method
requires two inputs, namely, a set of the experimental data
and the starting values of the interaction parameters. The set
of experimental data is taken to be exactly the same as the
one used to generate the KDE0 and KDE interactions. The
starting values of the interactions parameters used are the ones
obtained by use of SAM for the KDE0 and KDE interactions.

In Table VI we present our results for the deviation �B =
Bexp − B th for the values of the binding energy obtained from
the newly generated KDE0 and KDE interactions. Similar

TABLE IV. Nuclear matter properties for the KDE0 and KDE
interactions at χ 2 = χ 2

min.

Parameter KDE0 KDE SLy7

B/A (MeV) 16.11 15.99 15.92
Knm (MeV) 228.82 223.89 229.7
ρnm 0.161 0.164 0.158
m∗/m 0.72 0.76 0.69
Es (MeV) 17.91 17.98 17.89
J (MeV) 33.00 31.97 31.99
L (MeV) 45.22 41.43 47.21
κ 0.30 0.16 0.25
G′

0 0.05 0.03 0.04
χ 2

min 1.3 2.2
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TABLE V. The values of the Skyrme parameters for KDE0 and KDE interactions obtained by minimization of the
χ 2. For the sake of comparison we have also listed the values of the parameters for the SLy7 interaction. The values
in parentheses are the standard deviations for the corresponding Skyrme parameters.

Parameter KDE0 KDE SLy7

t0 (MeV·fm3) −2526.5110 (140.6256) −2532.8842 (115.3165) −2482.41
t1 (MeV·fm5) 430.9418 (16.6729) 403.7285 (27.6336) 457.97
t2 (MeV·fm5) −398.3775 (27.3099) −394.5578 (14.2610) −419.85
t3 (MeV·fm3(1+α)) 14235.5193 (680.7344) 14575.0234 (641.9932) 13677.0
x0 0.7583 (0.0655) 0.7707 (0.0579) 0.8460
x1 −0.3087 (0.0165) −0.5229 (0.0298) −0.5110
x2 −0.9495 (0.0179) −0.8956 (0.0270) −1.0000
x3 1.1445 (0.0862) 1.1716 (0.0767) 1.3910
W0 (MeV·fm5) 128.9649 (3.3258) 128.0572 (4.3943) 126.00
α 0.1676 (0.0163) 0.1690 (0.0144) 0.1667

deviations �rch for the charge rms radii are presented in
Table VII. For comparison, in the last columns of these tables
we give the values of �B and �rch for the SLy7 interaction,
taken from Ref. [4]. One can easily verify from Table VI
that the magnitude of the deviations for the binding energy
for most of the cases is much less than 0.5% in the case of
KDE0 interaction. The KDE interaction yields larger error in
the values of the binding energy (∼0.6–1.0%) for the 16O,
48Ni, and 100Sn nuclei. We would also like to remark here that,
in determining the SKX interaction, the binding energy for
the 56Ni nucleus was not considered in the fit and that for the
100Sn nucleus was included in the fit with a theoretical error
of 1.0 MeV. We find that if one attempts to do so, the binding
energy for the 56Ni becomes off by more than 3 MeV. We

TABLE VI. Results for the total binding-energy B (in mega-
electron-volts) for several nuclei. The experimental data Bexp used to
fit the Skyrme parameters were taken from [41]. The theoretical error
σ was taken to be 2.0 MeV for the 100Sn nucleus and 1.0 MeV for
the other nuclei. In the third and fourth columns we give the values
for �B = Bexp − B th obtained from our new fits. The last column
contains the values for �B for the SLy7 Skyrme interaction taken
from Ref. [4].

Nuclei Bexp �B = Bexp − B th

KDE0 KDE SLy7

16O 127.620 0.394 1.011 −0.93
24O 168.384 −0.581 0.370
34Si 283.427 −0.656 0.060
40Ca 342.050 0.005 0.252 −2.85
48Ca 415.990 0.188 1.165 0.11
48Ni 347.136 −1.437 −3.670
56Ni 483.991 1.091 1.016 1.71
68Ni 590.408 0.169 0.539 1.06
78Ni 641.940 −0.252 0.763
88Sr 768.468 0.826 1.132
90Zr 783.892 −0.127 −0.200
100Sn 824.800 −3.664 −4.928 −4.83
132Sn 1102.850 −0.422 −0.314 0.08
208Pb 1636.430 0.945 −0.338 −0.33

see from Table VII that, except for the 16O and 48Ca nuclei,
the deviations in the values of the charge rms radii for the
KDE0 interaction is less than 0.5%. In addition to the binding
energy and the charge rms radii of the nuclei used in our fits,
we have also considered a few more experimental data, as
discussed in Sec. V. In Tables VIII and IX we present our
results for these additional quantities. The values of ρcr are
greater than 2ρ0. The values for the radii of valence neutron
orbits and the spin-orbit splittings considered in our fits are
quite reasonable for all the interactions considered here. It
can be seen from Table IX that our fit to the breathing-mode
constrained energies is overall in reasonable agreement with
the corresponding experimental data.

We now consider our results for the binding-energy differ-
ence between the 48Ca and 48Ni mirror nuclei. One may verify
from Table VI that the binding-energy difference B(48Ca) −
B(48Ni) = 67.23 and 64.02 MeV for the KDE0 and KDE
interactions, respectively, compared with the experimental
value of 68.85 MeV. We would also like to add that the
said difference for the SKX interaction is 66.3 MeV, which
is 1.0 MeV lower than our most realistic KDE0 interaction.

TABLE VII. Results for the charge rms radii rch (in
femtometers). The experimental data used in the fit to determine
the values of the Skyrme parameters are taken from Refs. [42,43].
The theoretical error σ is taken to be 0.04 fm for the 56Ni nucleus
and 0.02 fm for the other nuclei. In the third and fourth columns
we give the values for �rch = r

exp
ch − r th

ch obtained from our new fits.
The last column contains the values for �rch for the SLy7 Skyrme
interaction taken from Ref. [4].

Nuclei r
exp
ch �rch = r

exp
ch − r th

ch

KDE0 KDE SLy7

16O 2.730 −0.041 −0.039 −0.017
40Ca 3.490 0.000 0.011 0.020
48Ca 3.480 −0.021 −0.008 −0.015
56Ni 3.750 −0.018 0.000 −0.008
88Sr 4.219 −0.002 0.019
90Zr 4.258 −0.008 0.013
208Pb 5.500 0.011 0.041 0.002
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TABLE VIII. Critical density ρcr, rms radii of the valence neutron
orbits rv , and spin-orbit splitting (S-O). The experimental values
(and the theoretical error σ ) used in the fit to determine the Skyrme
parameters are taken as follows: For ρcr we assume a value of 2.5ρ0

(σ = 0.5ρ0); the values of rv were taken from Refs. [44,45] (σ =
0.06 fm); and the spin-orbit values in 56Ni were taken from Ref. [46]
(σ = 0.2 MeV). In columns 3−6 we give the results obtained from
our new fits.

Experimental KDE0 KDE

ρcr/ρ0 2.5 2.5 2.1
rv(ν1d5/2)(fm) 3.36 3.42 3.41
rv(ν1f7/2)(fm) 3.99 4.05 4.03
εn(2p1/2) − εn(2p3/2) (MeV) 1.88 1.84 1.81
εp(2p1/2) − εp(2p3/2) (MeV) 1.83 1.64 1.63

TABLE IX. Comparison of the breathing-mode constrained
energies (in mega-electron-volts) obtained for the KDE0 and KDE
interactions with the experimental data.

Nucleus Experimental KDE0 KDE

90Zr 17.81 17.98 17.91
116Sn 15.90 16.42 16.36
144Sm 15.25 15.53 15.47
208Pb 14.18 13.64 13.60

TABLE X. Results for the neutron skin, rn − rp (in femtometers),
for all the nuclei considered for obtaining the KDE0 and KDE
interactions.

Nuclei rn − rp

KDE0 KDE

16O −0.031 −0.025
24O 0.510 0.510
34Si 0.189 0.192
40Ca −0.051 −0.046
48Ca 0.158 0.159
48Ni −0.282 −0.274
56Ni −0.056 −0.052
68Ni 0.175 0.174
78Ni 0.287 0.285
88Sr 0.095 0.096
90Zr 0.064 0.065
100Sn −0.081 −0.078
132Sn 0.220 0.217
208Pb 0.160 0.155

TABLE XI. Single-particle energies (in mega-electron-volts) for
40Ca nucleus.

Orbits Experimental KDE0 KDE

Protons

1s1/2 −50±11 −39.40 −38.21
1p3/2 – −26.95 −26.42
1p1/2 −34±6 −22.93 −22.34
1d5/2 — −14.49 −14.51
2s1/2 −10.9 −9.48 −9.66
1d3/2 −8.3 −7.59 −7.53
1f7/2 −1.4 −2.38 −2.76

Neutrons

1s1/2 – −47.77 −46.13
1p3/2 – −34.90 −33.92
1p1/2 – −30.78 −29.73
1d5/2 – −22.08 −21.66
2s1/2 −18.1 −17.00 −16.78
1d3/2 −15.6 −14.97 −14.48
1f7/2 −8.32 −9.60 −9.58
2p3/2 −6.2 −4.98 −5.15

TABLE XII. Single-particle energies (in mega-electron-volts) for
208Pb.

Orbits Experimental KDE0 KDE

Protons

1g9/2 −15.43 −17.85 −17.34
1g7/2 −11.43 −13.77 −13.39
2d5/2 −9.70 −11.37 −11.23
1h11/2 −9.37 −9.87 −9.68
2d3/2 −8.38 −9.43 −9.30
3s1/2 −8.03 −8.67 −8.62
1h9/2 −3.77 −4.00 −3.99
2f7/2 −2.87 −2.78 −3.00
1i13/2 −2.16 −1.62 −1.72
3p3/2 −0.95 0.60 0.26
2f5/2 −0.47 −0.19 −0.42

Neutrons

1h9/2 −10.85 −12.39 −12.24
2f7/2 −9.72 −11.60 −11.64
1i13/2 −9.01 −9.33 −9.20
3p3/2 −8.27 −8.67 −8.77
2f5/2 −7.95 −8.59 −8.64
3p1/2 −7.38 −7.54 −7.65
2g9/2 −3.94 −2.86 −3.06
1i11/2 −3.15 −1.65 −1.69
1j15/2 −2.53 −0.41 −0.43
3d5/2 −2.36 −0.43 −0.64
4s1/2 −1.91 0.08 −0.08
2g7/2 −1.45 0.38 0.20
3d3/2 −1.42 0.56 0.40
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FIG. 3. Variation of the symmetry-energy coefficient S(ρ) as a
function of the nuclear matter density ρ.

On the other hand, most of the Skyrme interactions that
include the contribution from the exchange Coulomb term
yield B(48Ca) − B(48Ni) ≈ 63 MeV, which is 6 MeV lower
than the corresponding experimental value.

We present in Table X our results for the neutron skin,
rn − rp, the difference between the rms radii for the point
neutrons and proton density distributions, for the KDE0 and
KDE interactions. We compare in Tables XI and XII the values
of the single-particle energies with the available experimental
data for the 40Ca and 208Pb nuclei [48,49], respectively. We find
that the single-particle energies for the occupied states near the
Fermi energy compare reasonably well with the experimental
ones. We would like to remark here that the HF approach
alone is not expected to reproduce the experimental single-
particle energie, and therefore we have not included them in
our fit.

Finally, we consider the behavior of the symmetry-energy
coefficient S(ρ) for densities relevant to the study of neutron
stars. It is well known [50,51] that the values of S(ρ) and
the resulting EOS for pure neutron matter at higher densities
(ρ > 2ρ0) are crucial in understanding the various properties
of neutron star. For example, the proton fraction at any density
depends strongly on the value of S(ρ) at that density, which in
turn affects the chemical compositions as well as the cooling
mechanism of the neutron star [52]. Yet no consensus is
reached for the density dependence of S(ρ). We show in Fig. 3
our results for the variation of the symmetry energy S as a func-
tion of the nuclear matter density ρ. We see that for the KDE0
and KDE interactions the value of S increases with density
for ρ < 3ρ0. All of these interactions are quite suitable for
modeling the neutron star with masses close to the canonical
one [8], because they yield S > 0 for ρ < 4ρ0. In Fig. 4 we
plot the EOS for the pure neutron matter resulting from the
KDE0 and KDE interactions and compare them with the ones
obtained for SLy7 interaction and the realistic UV14+UVII
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FIG. 4. Energy per particle for pure neutron matter E(n)/A as
a function of density. Results for the two newly generated Skyrme
interactions KDE0 and KDE are compared with those obtained for the
SLy7 Skyrme force and the realistic UV14+UVII model of Wiringa,
Fiks, and Fabrocini [53].

model [53]. It is striking to note that our results for the KDE0
and KDE interactions are in harmony with the EOS for the
UV14+UVII model, though, unlike in the SLy7 interaction,
we did not include in our fit the neutron matter EOS of the
realistic UV14+UVII interaction. This seems to be due to
the constraint imposed on the quantity P, which is related to
the slope of the symmetry-energy coefficient [see Eq. (1)].

VII. CONCLUSIONS

We have implemented the SAM to fit the values of the
parameters of the Skyrme interaction of Eq. (3) by searching
for the global minimum in the hypersurface of the χ2 function,
Eq. (2). To demonstrate the applicability of this method we
have fitted the values of the Skyrme parameters to an extensive
set of experimental data together with a few additional
constraints. Our experimental data set consists of the binding
energies for 14 nuclei ranging from the normal to the exotic
(proton- or neutron-rich) ones, charge rms radii for 7 nuclei,
spin-orbit splittings for the 2p proton and neutron orbits of
the 56Ni nucleus, and rms radii for 1d5/2 and 1f7/2 valence
neutron orbits in the 17O and 41Ca nuclei, respectively. We also
include in the fit the critical density ρcr determined from the
stability conditions for the Landau parameters. The additional
constraints imposed on the Skyrme parameters are that (i) the
quantity P = 3ρ(dS/dρ), directly related to the slope of the
symmetry energy S, must be positive for densities up to 3ρ0,
a condition imposed by the neutron star models [8]; (ii) the
enhancement factor κ , associated with the TRK sum rule for
the isovector giant dipole resonance, should lie in the range
of 0.1−0.5; and (iii) the Landau parameter G′

0, crucial for the
spin properties of finite nuclei and nuclear matter, should be
positive at ρ = ρ0.
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Using these experimental data along with the additional
constrains, we have carried out two different fits named as
KDE0 and KDE, as described in Sec. VI. The corrections to
the binding energy and charge rms radii that were due to the
c.m. motion were performed by use of simple but consistent
schemes. The nuclear matter properties for both interactions
proposed in the present work are obtained directly from the
fit. The selection of the experimental data in conjugation with
some constraints ensures that these interactions can be used to
study the bulk ground-state properties of nuclei ranging from
the stable to the ones near the proton and neutron drip lines,
as well as the properties of neutron stars. The interactions
obtained in the present work encompass the merits of the SKX
and SLy types of Skyrme interactions.

Before closing, we would like to mention that the method
as well as the fitting strategy presented in this work can
be improved in several ways. The SAM is a very adaptive
approach, and therefore it offers significant scope for further
improvement. For example, in the present work we jump
from one configuration to another by randomly selecting a
component of the vector v as defined by Eq. (43). This selection
was done with a uniform random number. However, one can
think of performing random selection of a component of v by

assigning more plausible weight factors to these components.
One can also try out different annealing schedules to determine
the rate of cooling. In the present work we employed the
Cauchy annealin schedule, which yields a faster cooling rate
than that of the Boltzmann schedule, but a slower rate than
the exponential annealing schedule. The effects on the binding
energy and radii that are due to the correlations beyond mean
field [54–56] can be included in the fit. These effects are
important in particular for the light nuclei. One may also
include in the spin-orbit splitting the contributions that are
due to the electromagnetic spin-orbit interaction [46] and
modify the spin-orbit interaction by using the form proposed
by Sagawa and Yoshida in Ref. [57]. Last but not least, one
may also include the experimental data on the giant dipole and
quadrupole resonances while fitting the Skyrme parameters
in addition to the breathing-mode energy, as was done in the
present work.
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