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Boson dominance in nuclei
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We present a new method of bosonization of fermion systems applicable when the partition function is
dominated by composite bosons. By restricting the partition function to such states, we obtain a Euclidean
bosonic action from which we derive the Hamiltonian. Such a procedure respects all the fermion symmetries,
particularly the fermion number conservation, and provides a boson mapping of all fermion operators.
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I. INTRODUCTION

The importance of effective bosons in nuclear physics
became clear after the observation that heavy deformed nuclei
display some of the features of superconducting systems [1].
In these nuclei there must then be Cooper pairs of nucleons.
In this line of thought, Arima and Iachello [2] introduced
two different composite bosons, the s and d bosons. Their
model, the interacting boson model (IBM), proved extremely
successful in reproducing low energy nuclear properties, but
it has not yet been derived in a fully satisfactory way from a
nuclear Hamiltonian.

Many attempts were made to reformulate the nuclear
Hamiltonian in terms of effective bosons before the interacting
boson model was invented. Of special importance are the
works of Beliaev and Zelevinsky [3], who constructed a
composite boson operator requiring its commutation with
the nuclear Hamiltonian, and of Marumori, Yamamura, and
Togunaga [4], who developed a method based on a map of
fermion into boson matrix elements.

The first important step in the derivation of the IBM
respecting nucleon number conservation was completed by
Otsuka, Arima, and Iachello [5]. Their work is based on a
map of a single j-shell nucleon space into a boson space.
The boson Hamiltonian so obtained reproduces exactly the
spectrum of the pairing model. Their procedure has been
somewhat extended [6] but not sufficiently generalized.

There are several recipes for bosonization [7] based on a
mapping of the nucleon model space into a boson space. Such
methods do not violate nucleon conservation and in principle
yield an exact solution to the problem, but in practice one
has to perform a truncation in the nucleon space related to a
selection of degrees of freedom guided by physical insight and
calculational convenience. One shortcoming of this procedure
is the appearance of “intruders,” namely, states which in spite
of their low energy do not appear in the boson space generated
by the mapping [8].

A different approach to bosonization, which does not
require a preliminary truncation of the nucleon space and
does not violate nucleon conservation [9,10], is based on
the Hubbard-Stratonovich transformation. The latter renders
quadratic the fermion interaction by introducing bosonic
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auxiliary fields which in the end become the physical fields.
The typical resulting structure is that of chiral theories [11]. In
such an approach, an energy scale emerges naturally, and only
excitations of lower energy can be described by the auxiliary
fields. In our opinion, this approach has not received enough
attention, and its potentiality has not been fully explored.

The physical idea behind bosonization is that certain
composite bosons dominate the partition function at low
energy (boson dominance), an assumption certainly justified
for Goldstone bosons like Cooper pairs. We present a new way
to implement boson dominance. We introduce generic nucleon
composites whose structure will be determined by a variational
procedure, and we evaluate the partition function restricted to
such composites. In this way, we obtain a Euclidean bosonic
action in closed form.

In the derivation of the effective action, we need only one
approximation, concerning the identity in the space of the
composites, but we respect all the nucleon symmetries, in
particular, nucleon number conservation. We emphasize that
the closed form of the action opens the way to numerical
simulations of fermion systems in terms of bosonic variables,
avoiding the “sign problem” [12].

Bosonization is achieved within the path integral formal-
ism. In this framework, the standard procedure to evaluate
physical quantities is to first find the minimum of the action at
constant fields. Depending on the solution, one has spherical
or deformed nuclei. In the latter case, rotational excitations
appear as Goldstone modes associated with the spontaneous
breaking of rotational symmetry. The notion of spontaneous
symmetry breaking survives in fact with a precise definition
also in finite systems [10]. Next, the quantum fluctuations
must be taken into account. But we anticipate a subtlety in this
program which in the present case is not completely standard
because of the composite nature of the bosons.

In nuclear physics, Hamiltonian formalism is of much
wider application. Because the effective bosonic action, due to
compositeness, is not in canonical form, it has been necessary
to devise an appropriate procedure to derive the Hamiltonian.
In this context, the mentioned subtlety finds a natural solution.

Only composites that have components on many nucleon
states can be approximated by bosons. But the boson space
cannot be arbitrarily truncated. For instance, even if the nuclear
potential contains only monopole and quadrupole pairing
interactions, the s and d bosons will be coupled to all the
other bosons permitted by angular momentum conservation.
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An approximate decoupling should arise dynamically; but at
the moment, a clearcut mechanism is not known. We will say
more about this point in our conclusions.

Bosonization appears in several many-fermion systems and
relativistic field theories. The effective bosons fall into two
categories, depending on their fermion number. The Cooper
pairs of the BCS model of superconductivity, of the interacting
boson model of nuclear physics, of the Hubbard model of high
T superconductivity [13], and of the color superconductivity
in QCD have fermion number 2. Similar composite bosons
with fermion number zero appear as phonons, spin waves,
and chiral mesons in QCD. The latter bosons can be included
in the present formalism by replacing in the composites one
fermion operator by an antifermion (hole) one. This becomes
necessary when the interaction contains, as in nuclear physics,
important particle-hole terms. This extension of the method
will be presented in a future work.

A preliminary presentation of our results was given in [14].
This paper is organized as follows. In Sec. II, we outline

our approach. In Sec. III, we report the bosonic effective
action. In Sec. IV, we derive the bosonic Hamiltonian as
the normal ordered form of a nonpolynomial function of
creation-annihilation boson operators. This result includes the
boson mapping of all fermion operators. For practical use, this
Hamiltonian must be expanded in the inverse of the dimension
of the nucleon space. In Sec. V, we report an independent
derivation of the boson Hamiltonian valid for a small number
of nucleons, and we specify this Hamiltonian to the case of a
single j shell. In Sec. VI, we come back to the path integral
formalism, introducing the Goldstone field, and in Sec. VII we
end with our conclusions.

In the presentation of our results, to facilitate the un-
derstanding of the logical development, we relegate many
technical details to a number of appendixes. In Appendix A, we
report results concerning Berezin integrals, and in Appendix B
we discuss their use in calculations with coherent states of
composites. The basics of this formalism can be found in a
condensed form in [15], while an exhaustive presentation is
given in [16]. In Appendix C, we discuss the properties of
an operator that approximates the identity in the space of the
composites. In Appendix D, we show some intermediate steps
in the derivation of the effective bosonic action.

II. OUTLINE OF THE APPROACH

Consider a nuclear partition function

Z = tr

{
exp

[
− 1

T
(H − µNn̂N )

]}
(1)

where T is the temperature, µN the nucleon chemical potential,
and n̂N the nucleon number operator. A sector of nN nucleons
can be selected by the constraint

T
∂

∂µN

ln Z = nN. (2)

Under the assumption of boson dominance, we can restrict the
trace to nucleon bosonic composites. The restricted partition

function can be written

Z = tr

{
P exp

[
− 1

T
(H − µNn̂N )

]}
, (3)

where P is a projection operator in the subspace of the
composites. We will only be able to construct an approximation
to such an operator. This is the only approximation we will do
(beyond the physical assumption of boson dominance). Similar
to the case of elementary bosons, we will assume

P =
∫

dµ(β∗, β)|β〉〈β|, (4)

where dµ(β∗, β) is an integration measure (to be specified
later) over the holomorfic variables β∗, β, and |β〉 are coherent
states of composites

|β〉 =
∣∣∣∣∣exp

(∑
J

β∗
J b̂

†
J

)〉
. (5)

Definition and properties of the operator P are discussed in
Appendix C. The |β〉 are defined in terms of composite creation
operators

b̂
†
J = 1

2
√

�J

c†B†
J c† = 1

2
√

�J

∑
m1,m2

c†m1
(B†

J )m1,m2c
†
m2

. (6)

The c† are nucleon creation operators, m represents all the
nucleon quantum numbers, the matrices BJ are the form
factors of the composites with quantum numbers J. �J is
the index of nilpotency of the J composite, which is defined as
the largest integer such that

(b̂J )�J �= 0. (7)

In the present paper, we will assume for simplicity the index
of nilpotency independent of the quantum numbers of the
composites and equal to half the dimension of the nucleon
space, but we will mention a possible consequence of this
simplification.

It is obvious that a necessary condition for a composite to
resemble an elementary boson is that its index of nilpotency be
large. But such condition is in general not sufficient. Consider
for instance the case

(B†B)m1m2 = δm1m2dm1 , (8)

where d1 = 1, dm � 1,m �= 1. Such a composite, irrespective
of its index of nilpotency, consists essentially of a unique state
of a nucleon pair. We must instead require that the composites
actually live in a large part of the nucleon space. This can be
ensured by the further requirement

det(B†
J BJ ) ∼ 1. (9)

Solutions to the equations for the B matrices that do not satisfy
the above condition must be discarded.

Evaluation of the trace (reported in Appendix D) gives

Z =
∫ [

dβ∗dβ

2πi

]
exp[−Seff(β

∗, β)]. (10)

Bosonization is thus achieved, and the nuclear dynamics
can be studied by functional or numerical methods. The last
possibility appears interesting because it avoids the “sign”
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problem [12] which affects the Monte Carlo approach to the
study of many-fermion systems.

In nuclear physics, a Hamiltonian formalism is generally
used. The Hamiltonian of the effective bosons, HB , cannot
be read directly from the effective action, because Seff(β∗, β)
does not have the form of an action of elementary bosons.
Indeed it contains anomalous time derivative terms, anomalous
couplings of the chemical potential, and nonpolynomial inter-
actions, which are all features of compositeness. Therefore,
it has been necessary to devise an appropriate procedure to
derive HB , which also has been given in closed form, in terms
of boson operators b†, b, satisfying canonical commutation
relations. In conclusion,

Z = tr

[
− 1

T
(HB − µBn̂B)

]
, (11)

where µB is the boson chemical potential and n̂B the boson
number operator.

For a practical use, however, it is necessary to perform an
expansion of HB . The expansion parameter is the inverse of �.

III. THE EFFECTIVE BOSONIC ACTION

We write the nucleon-nucleon potential as a sum of
multipole pairing terms, so that the Hamiltonian has the form

H = c†h0c −
∑
K

gK

1

2
c†F †

Kc†
1

2
cFKc. (12)

The one-body term includes the single-particle energy with
matrix e, the nucleon chemical potential µN , and any single-
particle interaction with external fields included in the matrix
M and is written as

h0 = e − µN + M. (13)

The matrices FK are the form factors of the potential,
normalized according to

tr
(
F

†
K1

FK2

) = 2�δK1K2 . (14)

Any potential can be written in the above form [17]. But it is
well known that this form is not convenient is when particle-
hole terms are important. To properly account for such terms
in the present scheme, it is necessary to introduce phonons,
which will be done in a separate work.

To evaluate Z, we divide the inverse temperature in N0

intervals of size τ

T = 1

N0τ
. (15)

Then as shown in Appendix D, the Euclidean effective action
has the form

Seff(β
∗, β) = N0 lnJ + τ

∑
t

tr

{
1

2τ
ln[11 + τ��†∇t�]

− 1

4

∑
K

gK [(��†F †
K ) tr(�FK�)

+ 2[(� − 1)F †
KFK ] − [��†F †

K, �FK�]+]

+ 1

2
[��†(�hT + h �)]

}
, (16)

where J is a function appearing in the measure defining the
operator P ,

h = h0 −
∑
K

gKF
†
KFK, (17)

∇t f = 1

τ
(ft − ft−1), (18)

�t = 1√
�

∑
J

(βJ )tB
†
J = 1√

�
βt · B†, (19)

�t = (11 + �
†
t �t−1)−1, (20)

and [.., ..]+ is an anticommutator. Notice in the second line
a trace inside the trace. The variables β∗, β are always
understood at times t, t − 1 respectively. Seff has a global U (1)
symmetry which implies boson conservation.

The fermion interactions with external fields are expressed
in terms of the bosonic terms which involve the matrix M
(appearing in h).

The dynamical problem of the interacting (composite)
bosons can be solved within the path integral formalism. Part
of the dynamical problem is the determination of the structure
matrices BJ . This can be done by expressing the energies in
terms of the BJ and applying a variational procedure which
gives rise to an eigenvalue equation.

Seff must be compared to the action of elementary bosons. If
HB(b†, b) is the Hamiltonian of these bosons in normal form,
the corresponding action is [15]

SB = τ
∑

t

{β∗∇tβ − H (β∗, β) + µBβ∗β}, (21)

where again the variables β∗, β are understood at times t, t −
1, respectively. We notice that Seff differs from SB in many
respects:

(i) There is no canonical time derivative term,
(ii) The coupling of the chemical potential (appearing in h is

also noncanonical), and
(iii) There are nonpolynomial interactions because of the

� function. This function becomes singular, as it will
become clear in the sequel, when the number of bosons
is of order �, reflecting the Pauli principle.

IV. THE BOSONIC HAMILTONIAN

Let us start by examining the features of compositeness
when the number of bosons is much smaller than �. Since
the expectation value of β∗ · β is of the order of the number
of bosons, in this case we can perform an expansion of
logarithm and � function in inverse powers of �. Expanding
the logarithm, we have

1

2τ
tr ln[11 + τ��†∇�]

= 1

2
tr(�†∇t�) − 1

4
tr[�†��†∇t�] + · · · (22)

The first term can be made canonical by normalizing the boson
form factors as the potential form factors

tr(B†
J BK ) = 2�δJ,K. (23)
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The other terms are then of order �−1. Notice that the
diagonal condition is only a matter of normalization, but the
off-diagonal one must be compatible with the dynamics. If this
is not the case, a redefinition of β is necessary.

Expanding the � function, we get the following couplings
of the nucleon chemical potential:

µN tr
[
�

†
t �t−1 − 1

2 (�†
t �t−1)2 + · · · ]

. (24)

Only the first term is canonical, and µN is not half the boson
chemical potential as one might expect. As we will see in
Sec. V, for n � � these anomalous couplings can be elim-
inated by a redefinition of the chemical potential, so that in
the case of a small number of bosons, the Hamiltonian can be
derived without difficulty.

But when the number of bosons is of order �, the expansion
of logarithm and � function can be performed only after an
appropriate subtraction, which can be performed by the change
of variables

βK =
(

1 − 1

�
r2

)− 1
2

β ′
K, (25)

where r is a parameter that will be fixed later. This subtraction
corresponds to the Bogoliubov transformation in other ap-
proaches, but does not violate nucleon number conservation.
We can then rewrite the � function in the form

� =
(

1 − 1

�
r2

)
�′, (26)

where

�′ =
[

11 + 1

�
(β ′∗ · B β ′ · B† − r2)

]−1

. (27)

For a suitable choice of r, �′ admits an expansion in �−1. Now
we take the function J appearing in Seff equal to the Jacobian
of the transformation (25)

J =
(

1 − 1

�
r2

)−NB

, (28)

where NB is the number of bosonic degrees of freedom.
Therefore, the partition function becomes

Z =
∫ [

dβ ′∗dβ ′

2πi

]
exp(−S ′), (29)

where

S ′(β ′∗, β ′) = τ
∑

t

tr

{
1

2τ
ln(11 + τ�′�′∗∇t�

′)

− 1

4

∑
K

gK

(
1 − r2

�

)
[�′�′∗F †

K tr(�′FK�′)

+ 2(�′F †
KFK ) − [�′�′∗F †

K, �′FK�′]+]

+ 1

2
[�′�′∗(�′hT + h �′)] + 1

2

∑
K

gK (F †
KFK )

}
,

(30)

with

�′
t = 1√

�
β ′

t · B†. (31)

We assume, and we will verify a posteriori, that the parameter r
can be chosen in such a way that the anomalous time derivative
terms be of order �−1. Then to this order, Z can be written as
a trace in a boson space

Z = tr exp

(
− 1

T
H ′

)
. (32)

The Hamiltonian H ′ is obtained [15] by omitting time deriva-
tive and chemical potential terms and replacing the variables
β ′∗, β ′ by corresponding creation-annihilation operators b†, b.
These satisfy canonical commutation relations and should
not be confused with the corresponding operators for the
composites, which are distinguished by a hat,

H ′(r, µN )

= : tr

{
−1

4

∑
K

gK

(
1 − r2

�

)
[�b�

†
bF

†
K

× tr(�bFK�b) + 2�bF
†
KFK − [�b�

†
bF

†
K, �bFK�b]+]

+ 1

2
[�b�

†
b(�bh

T + h �b)] + 1

2

∑
K

gKF
†
KFK

}
: .

(33)

The colons denote normal ordering, and

�b = 1√
�

b · B†,

�b =
[

11 + 1

�
(b† · B b · B† − r2)

]−1

. (34)

Here we meet with a subtlety. H ′ commutes with the boson
number operator, so we can select sectors with a given number
of bosons. But we are not guaranteed that these bosons carry
nucleon number 2, because of the noncanonical coupling of the
chemical potential. We can enforce this fundamental property
in the following way. Let us denote by E′

0(n) the lowest
eigenvalue of H ′ in the sector of n bosons. We require that
E′

0(n) be the lowest eigenvalue for n = 1
2nN

∂

∂n
E′

0| = 0, for n = 1

2
nN. (35)

This determines r as a function of the number of bosons and
the nucleon chemical potential: r = r(n,µN ), ensuring that the
bosons carry nucleon number 2. Condition (2) then determines
the nucleon chemical potential as a function of n: µN = µN (n).
The boson Hamiltonian in the sector of n bosons is finally

HB(n) = H ′(r, µN ) + 2µN n. (36)

It depends on n explicitly and through the dependence on n
of r, µN . Therefore also the matrices BJ will depend on n;
that is, the form factors of the bosons depend on the number
of the nucleons.

Notice that H ′ provides the mapping of the nucleon
interactions with external fields

c†Mc →: 1
2 tr[�b�

†
b(�b MT + M�b)] : . (37)
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A. s-boson condensates

This procedure becomes particularly simple if the ground
state contains only one species of bosons, which, having in
mind the interacting boson model, we call s bosons. We will
refer to such a ground state as an s-boson condensate. In such
a case, assuming for simplicity

F
†
0 F0 = B

†
0B0 = 11, (38)

in the evaluation of the ground state energy we can set

�b = 1√
�

b0B
†
0,

(39)

�b =
[

1 + 1

�
(b†0b0 − r2)

]−1

.

It is then convenient to adopt the following definitions

ĝK = 1

4�2
|tr(B0F

†
K )|2gK,

Ĝ =
∑
K

ĝK, (40)

G =
∑
K

gK.

Let us disregard normal ordering for a moment. This is
equivalent to the semiclassical approximation in the path
integral formalism, namely, to neglect quantum fluctuations.
We then get for the lowest eigenvalue of H ′ in the n boson
sector

E′
0 = −

[
1 + 1

�
(n − r2)

]−1 [
�G

(
1 − r2

�

)
− 2hn

]

+�G −
[

1 + 1

�
(n − r2)

]−2 (
1 − r2

�

)
× n(�Ĝ − G), (41)

where

h = 1

2�
tr h. (42)

Condition (35) determines r as a function of nN,µN

r2 = −2(� + n)h + �(� − 2n)Ĝ − 2�G

�(−2h − 2G + �Ĝ)
. (43)

Inserting this value in E′
0, we get

E′
0 = − �

�Ĝ − G

[
h − 1

2
(�Ĝ − 2G)

]2

. (44)

Condition (2) then determines µN

µN = e − 1

2
�Ĝ + nĜ − n

�
G, (45)

where

e = 1

2�
tr e. (46)

It is not surprising that with this value of µN ,

r2 = n. (47)

We then also get the lowest eigenvalue of HB (neglecting
normal ordering)

E0 = E′
0 + 2µNn = 2ne − n�Ĝ + n2

(
Ĝ − 1

�
G

)
. (48)

In the case of a monopole pairing interaction, Ĝ = G = g0,
comparing E0 to the exact spectrum (65), we see that the
coefficients of the powers of n are affected by errors of order
�−1. The form factor of the s boson is determined by the
minimizing E0

B0 = F0. (49)

To get an expression of HB of practical use, we must perform
an expansion in �−1. Since the energy scale is set by the single-
particle energies, we must make an assumption concerning the
magnitude of the coupling constants gK with respect to e. For
a system with infinitely many degrees of freedom, � → ∞,
in order to get finite energies we must assume gK ∼ �−1,
in which case µN is of order �0. Such a behavior is also
acceptable for many nuclei.

To take into account quantum effects, we must put H ′
in normal order. This corresponds to including quantum
fluctuations in the path integral formalism and requires an
expansion with respect to �−1. In the case where the ground
state is an s-boson condensate, we only need the following
equation:

1

n!

〈
bn

0

∞∑
s=0

cs : (b†0b0)s : (b†0)n
〉

=
n∑

s=0

csn(n − 1) × · · ·

× (n − s + 1). (50)

Notice that the expectation value of any normal ordered
function in a state of n bosons is a polynomial of degree not
greater than n.

A further simplification occurs if the number of the other
bosons, which we denote by the label K , is much smaller than
�. In such a case we can obviously classify the terms appearing
in the function �b, Eq. (34), according to

b
†
0 b0 − r2 +

∑
K1,K2

b
†
K1

bK2
BK1

B
†
K2

∼ 1,

(51)
b
†
0B0

∑
K

bKB
†
K

∼
√

�.

It is then easy to see that neglecting terms of order �− 1
2 or

smaller, HB is at most quartic in the K boson operators.

V. AN ALTERNATIVE DERIVATION OF THE BOSON
HAMILTONIAN FOR n � �

In this section, we restrict ourselves to the case of a small
number of bosons. Then the subtraction is not necessary, we
can set r = 0, and we can put the effective action in canonical
form by a shift of the chemical potential. It is to be emphasized
that no other quantum corrections are necessary after such a
shift.

For simplicity, we assume the coupling g0 to be positive
(attractive pairing force) and larger than the other ones, so that
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at the minimum only β0 is different from zero. Assuming B0

to satisfy Eq. (38), Seff at constant fields is

T S = �
∑
K

gK − �

(
g0|β0|2 +

∑
K

gK

) (
1 + 1

�
|β0|2

)−2

+ 1

�
tr(e − µN )|β0|2

(
1 + 1

�
|β0|2

)−1

. (52)

Its minimum with respect to |β0|2 can be determined exactly,
but since we will perform the 1/� expansion we put ourselves
in this framework from the beginning. We will retain only
the first-order corrections, which are of order �0, with the
exception of the coupling with external fields which are
of order �−1. We are reminded that the difficulties in the
derivation of the boson Hamiltonian are due to anomalous
time derivative terms and couplings of the chemical potential.
In this approximation, the first difficulty is overcome because,
as already noted, noncanonical time derivatives are of order
1/�. To get rid of the noncanonical couplings of the chemical
potential, we set

µN = �µ1 + 1
2µB (53)

and expand with respect to 1/�

T S = −�(2µ1 + g0)|β0|2 + (2e − µB)|β0|2
+ 2(µ1 + g0)|β0|4. (54)

Since |β0|2 � �, the first term at the minimum must vanish
separately from the others and we get

µ1 = −1

2
g0,

|β0|2 = 1

g0

(
1

2
µB − e

)
. (55)

We select a sector with a given number n of bosons by imposing
the condition

∂

∂µB

(T S) = n, (56)

which yields

|β0|2 = n. (57)

We see from Eq. (24) that to order �0 the only noncanonical
term is proportional to µ1, which does not depend on n. We can
then insert in the action the definition (53) and get a canonical
bosonic action with canonical chemical potential µB .

There remains a last point. The energies are given by
(minus) the logarithm of the partition function plus the
chemical potential times the number of bosons. But we can
subtract from the action the term �µ1β

∗
t · βt−1, and subtract

in the end from the energy only µB times the number of bosons.
In this way we get exactly the boson Hamiltonian HB .

A. Few bosons in a single j shell

If the nucleons live in a single j-shell the form factors of the
composites either vanish, or are equal to the form factors of
the potential. But unless I � j condition (9) is not satisfied,

the composites do not have a high index of nilpotency and
must be excluded.

We identify the quantum number K with the boson angular
momentum, K = (IK,MK ), so that the form factors of the
potential are proportional to Clebsh-Gordan coefficients

(FIM )m1,m2 =
√

2�〈jm1jm2|IM〉, � = j + 1
2 , (58)

with the conventions of [18].
The resulting action is

S(β∗, β) =
∑

t

{∑
I1I2

β∗
I1

[(∇t − µB) + ω]I1I2βI2

+
∑

I1I2I3I4

∑
IM

WI
I1I2I3I4

(
β∗

I1
β∗

I2

)
IM

(
βI3βI4

)
IM


 ,

(59)

where also for the 9j symbol we adopt the conventions of [18],
and

ωI1I2 = 1

�
tr

(
FI1F

†
I2
e
) − gI1�δI1I2 ,

WI
I1I2I3I4

=
(

−2g0 +
4∑

i=1

gIi

)

4

i=1[(2Ii + 1)]1/2

(60)

×�




j j I1

j j I2

I3 I4 I


 ,

(
βI3βI4

)
IM

=
∑

M3,M4

〈I3,M3, I4,M4|I,M〉βI3M3βI4M4 .

The Hamiltonian is obtained [15] by omitting the time
derivative and chemical potential terms and replacing the
variables β∗, β by corresponding creation-annihilation opera-
tors b†, b. These satisfy canonical commutation relations and
should not be confused with the corresponding operators for
the composites, which are distinguished by a hat,

HB =
∑

I1M1I2M2

ωI1M1I2M2b
†
I1M1

bI2M2

+
∑

I1I2I3I4

∑
IM

{
WI

I1I2I3I4

(
b
†
I1
b
†
I2

)
IM

(
bI3bI4

)
IM

}
. (61)

It is easy to check that due to the symmetries of the 9j symbols,
HB is Hermitian.

From the interaction with external fields, we get the
fermion-boson mapping of other operators

c†Mc →
∑

I1M1I2M2

2

�
tr

(
FI1M1MF

†
I2M2

)
b
†
I1M1

bI2M2

+
∑

allI,M

(
2

�

)2

tr
(
FI1M1MF

†
I4M4

FI2M2F
†
I3M3

)
× b

†
I1M1

b
†
I2M2

bI3M3bI4M4 . (62)

Since the above Hamiltonian has been derived under the
restriction n � � in a single j shell, we can assume

em1m2 = eδm1m2 , (63)
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so that the single boson energy matrix is diagonal

ωI1I2 = (2e − gI1�)δI1I2 . (64)

However, the bosonic interactions couple all the bosons with
angular momenta for which the 9j symbols do not vanish, even
if the corresponding potentials do vanish. It is important to
remember, though, that the coefficients of the terms involving
high angular momentum can change after the dependence of
the index of nilpotency on the angular momentum is taken into
account.

B. Monopole pairing

Let us consider the case of a pure monopole pairing
interaction, namely, gI = 0, I �= 0. The exact spectrum is

En,v = 2ne − g0(� + 1)(n − v) + g0(n − v)2 + g0(n − v)v.

(65)

We adopted definitions slightly different from the usual ones
but more convenient, we think, in the present context. Here n
is the total number of pairs, i.e., half the number of nucleons;
and v is half the standard seniority, i.e., the number of pairs
not coupled to zero angular momentum. It is then natural to
relate the number of s bosons ns to n and v according to

ns = n − v. (66)

In terms of ns and v, the eigenvalues can be written

Ens+v,v = 2ne − g0(� + 1)ns + g0n
2
s + g0ns(n − ns).

(67)

Setting b0 = s and denoting by K angular momenta greater
than zero, we get from Eq.(61) the bosonized pairing
Hamiltonian

Hpairing = [2e − g0(� + 1)] s†s + g0s
† s s†s

+ g0

∑
K1,K2,K3

(2K1 + 1)−
1
2 [(2K2 + 1)(2K3 + 1)]

1
2

×〈K20K30|K10〉[(s†b†
K1

)
K1

· (bK2
bK3

)K1
+ h.c.

]
+

∑
IM

vI
2 (d†d†)IM (dd)IM. (68)

The expression of vI
2 is given in the next section. The sector of

zero seniority, n = ns , decouples and has the exact spectrum.
The study of the seniority spectrum, in which the dependence
of the index of nilpotency on the angular momentum might be
important, is left for a future work.

C. Monopole plus quadrupole pairing

We consider now the case in which the nuclear Hamiltonian
contains a monopole pairing plus quadrupole pairing interac-
tion. One might hope in a repetition of the pattern found in the
bosonization of the pairing model, namely that the s-d bosons
should decouple from the others, but this does not happen. We
can write the Hamiltonian in the form

H = Hs-d + HQ, (69)

where HQ contains at least one boson with angular momentum
greater than 2 and Hs-d is the Hamiltonian truncated to the
s-d subspace

Hs-d = ω0s
†s + ω2d

† · d + v0s
†s†ss + ws†s d† · d

+
∑

I

vI
2 (d†d†)I · (dd)I + v02[(d†d†)0,0ss + h.c.]

+ ṽ0,2[(d†s†)2 · (dd)2 + h.c.]. (70)

The parameters in Eq. (70) are

ω0 = 2e − g0�,

ω2 = 2e − g2�,

v0 = 2�




j j 0
j j 0
0 0 0


 g0 = g0,

vI
2 = 50�




j j 2
j j 2
2 2 I


 (2g2 − g0),

(71)

w = 40�




j j 0
j j 2
0 2 2


 g2 = 4g2,

v02 = 10�




j j 2
j j 2
0 0 0


 g2 =

√
5g2,

ṽ02 = 10
√

5�




j j 2
j j 0
2 2 2


 (3g2 − g0),

∼
√

10

7
(3g2 − g0).

The last approximate equality holds for j � 1. Now in order
to see if we have at least an approximate decoupling of the
s-d sector, we might proceed in the following way. After
introducing the dependence of the index of nilpotency on the
angular momentum, we should evaluate the energy of the s
and d bosons first by assuming that the form factors of all the
others vanish, then assuming as nonvanishing only the form
factor of the boson with angular momentum 4 and so on. If
these energies reach their minimum when all the other form
factors vanish, we have an exact decoupling. Otherwise we can
have an approximate decoupling if these energies depend little
on the inclusion of higher momentum bosons. We leave this
investigation for a future work [17] in which the determination
of the form factors of the composites will be studied in a
nucleon space including many shells.

VI. THE PATH INTEGRAL FORMALISM: THE
GOLDSTONE FIELD

In this section we outline the treatment of the effective
action in the standard path integral formalism. This can be
helpful in performing a numerical simulation.

We must first determine the classical value of the s-boson
field without breaking nucleon conservation. This can be done
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by adopting the polar representation for this field

β0 = r exp

(
i
θ

r

)
, (72)

r2 = r2
(

1 + σ

r

)
. (73)

Boson number conservation is a consequence of the invariance
of the action under the transformation

β0 → β0 exp(iα). (74)

It leaves r, and therefore σ , invariant, while

θ → θ + α. (75)

We call [10] the Goldstone field by analogy with the Goldstone
model. r is the classical field. The integration over σ in the
partition function extends from −r to ∞, and one has to
devise different approximations depending on the value of
r . All the terms in the action must be expressed by means of
the polar fields. For the time derivative ones, for

∑
t

β∗ · ∇tβ =
∑

t


+1

8
τ 2(∇(−)

t σ )2 + 1

2
τ 2(∇(−)

t θ )2

+ iτσ∇(s)
t θ +

∑
K

β∗
K

· ∇t βK


 , (76)

where K refers to all the other bosons and ∇(s)
t is the

symmetric time derivative. The path integral must then be
evaluated as a function of r and µN , and these parameters
are fixed by minimizing the free energy and by imposing
condition (2), respectively. The evaluation of the path integral
is performed by first determining the minimum of the action
at constant fields, and then including the contribution of
quantum fluctuations. But at the end, we must check that
2n = nN .

VII. SUMMARY AND OUTLOOK

We have presented a new method of bosonization in which
we restrict the partition function of the nucleus to nucleon
composites. We obtain in this way the Euclidean action of the
effective bosons in closed form respecting all nucleon symme-
tries, in particular, nucleon number conservation. Indeed the
presence of a large number of nucleons in the ground state is
accounted for by a subtraction that does not violate nucleon
number conservation. The only approximation made concerns
the replacement of the identity operator in the space of the
composites by the operator P .

The nuclear dynamics can be studied by the methods of path
integrals, including numerical simulations which now are not
affected by the sign problem, or in the more usual Hamiltonian
formalism. Since the effective boson action does not have a
canonical form, it has been necessary to devise an appropriate
procedure to derive the boson Hamiltonian. However, this
can be put in a form useful for practical applications only

by performing an expansion in the inverse of the index of
nilpotency of the composites.

The formalism is consistent only if all the composite bosons
involved have a high index of nilpotency. Obviously, bosons
with high angular momenta do not satisfy such a condition,
as shown by the example of a boson with maximum angular
momentum

b̂2j−1,2j−1 =
∑
m1m2

〈jm1jm2|2j − 1, 2j − 1〉cm1cm2 , (77)

which has an index of nilpotency of 1. It is then necessary
to ascertain that bosons with low index of nilpotency will
decouple. This problem sometimes is not explicit in some
approaches, because the boson space is truncated directly or
as a consequence of a truncation of the nucleon space. In
this connection, it is important to observe that the restriction
to a definite boson space, like in the interacting boson
model, does not require an exact decoupling. An approximate
decoupling is sufficient, because states weakly coupled can
easily be integrated out in the path integral before deriving
the Hamiltonian. This fundamental feature is left for a future
investigation.

Another important point is the inclusion of particle-hole
terms in the nucleon-nucleon potential. This requires the
introduction of fonons, which will be done by an appropriate
extension of the present technique.

It is perhaps worthwhile to emphasize that for a derivation
of the interacting boson model it is not at all necessary that
phonons be unimportant. It is sufficient that they can be
integrated out like pions in the derivation of the nucleon-
nucleon potential.

In a future paper we will discuss in detail the determination
of the form factors of the composites [17]. This can be done
by adopting the natural parametrization

(BJ,M )m1,m2 =
∑
j1j2

pJ
j1j2

〈j1m1j2m2|JM〉. (78)

The energies of the bosons are functions of the matrices pJ

which can be determined by a variational calculation.
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APPENDIX A: BASIC FORMULAS FOR
BEREZIN INTEGRALS

We report for the convenience of the reader some basic
formulas for Berezin integrals that we need. Their definition
for a single Grassmann variable is∫

dγ (aγ + b) = a, (A1)
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the generalization to many variables being obvious. For a
change of variables

γi = γi(γ
′) (A2)

in a multiple integral we have∫ ∏
i

(dγi)f (γ ) =
(

det
∂γh

∂γ ′
k

)−1 ∫ ∏
i

(dγ ′
i )f (γ ′). (A3)

Notice the appearance of the inverse of the Jacobian, contrary
to the case of ordinary variables.

Gaussian integrals can be evaluated exactly, as for ordinary
variables. There are two types of such integrals∫ ∏

h

(dγ ∗
h dγh) exp

∑
ij

γ ∗
i Mijγj = det M, (A4)

∫ ∏
h

(dγh) exp
∑
ij

1

2
γiAijγj = Pf A, (A5)

where Pf A is called the Pfaffian of A. The following algebraic
identity holds:

(Pf A)2 = det A. (A6)

APPENDIX B: INNER PRODUCTS OF COMPOSITE STATES

Let us first consider the case of only one composite. To
evaluate the inner product of coherent states, we use the
identity operator in the fermion Fock space

I =
∫

dγ ∗dγ 〈γ |γ 〉−1|γ 〉〈γ |, (B1)

where γ ∗, γ are Grassmann variables and |γ 〉 are coherent
nucleon states

|γ 〉 = exp(−γ c†)〉. (B2)

We then have

〈β1|β〉 = 〈β1|I|β〉 =
∫

dγ ∗dγ exp(−γ ∗γ )〈β1|γ 〉〈γ |β〉.
(B3)

The matrix element 〈β1|γ 〉 can be evaluated using the defining
property of coherent states

c|γ 〉 = γ |γ 〉, (B4)

with the result

〈β1|γ 〉 = exp

(
1

2
√

�
β∗

1 γBγ

)
. (B5)

Therefore 〈β1|β〉 becomes

〈β1|β〉 =
∫

dγ ∗dγE(γ ∗, γ, β∗
1 , β), (B6)

where the function E is

E(γ ∗, γ, β∗, β) = exp

(
−γ ∗γ + 1

2
√

�
β∗γBγ

+ 1

2
√

�
βγ ∗B†γ ∗

)
. (B7)

By the change of variables,

γ ′ = γ ∗ −
√

�

β
(B†)−1γ, (B8)

the integral is factorized according to

〈β1|β〉 =
∫

dγ ′ exp

(
1

2
√

�
γ ′βB† γ ′

)

×
∫

dγ exp

{
1

2
γ

[√
�(βB†)−1 + 1√

�
β∗

1 B

]
γ

}
.

(B9)

The factors are of the form (A5), so that finally

〈β1|β〉 =
[

det

(
1√
�

βB†
)] 1

2
{

det

[√
�(βB†)−1

+ 1√
�

β∗
1 B

]} 1
2

det

[
11 + 1√

�
ββ∗

1 B†B

] 1
2

.

(B10)

It is perhaps worthwhile noticing that in the limit of infinite �,
assuming the structure function to satisfy the condition (38) we
recover exactly the expressions valid for elementary bosons,
in particular,

〈βt |β〉 =
(

1 + 1

�
β∗

t β

)�

→ exp(β∗
t β), � → ∞.

(B11)

We will further need the inner product

〈β|(b̂†)n〉 = Cn(β∗)n, (B12)

where

Cn = �!

(� − n)!�n
=

(
1 − 1

�

)

×
(

1 − 2

�

)
× · · · ×

(
1 − n − 1

�

)
. (B13)

In the general case of many composites, the above equations
become

〈βt |β〉 = [det (11 + �1�)]
1
2 , (B14)

〈βt |
(
b̂
†
I0

)n0 × · · · × (
b̂
†
Ii

)ni 〉 = ∂n0

∂x
n0
0

× · · · × ∂ni

∂x
ni

i

× exp

{
1

2
tr ln

[
11 + 1√

�
(x · B†)�†

t

]}
|x=0,

(B15)

where

x · B† =
∑

J

xJ B
†
J . (B16)

APPENDIX C: THE OPERATOR P

To implement the assumption of boson dominance, we
need the projection operator in the space of the composites
describing the physical degrees of freedom which dominate the
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partition function. Guided by the comparison with elementary
bosons, we approximate this operator by P . This comparison
suggests that the measure in P should be 〈β|β〉−1. But, not
surprisingly, we find that the measure must depend on the
number of nucleons, namely, of bosons

dµ(β∗, β) = J−1〈β|β〉−1, (C1)

where the Jacobian is given in Eq. (28).
For this reason it is necessary to introduce two types of

composite bosons. We distinguish by an overbar the new boson
operators and their structure matrices. These new bosons are
to be regarded as the “physical” ones, while those appearing
in P are auxiliary operators.

Let us see the action of P on physical states. Let us first
consider the case in which there is only one physical composite
with structure function satisfying the equation

B
†
B = γ 211. (C2)

Using the results of Appendix B we find

P|(b†)n〉 = J−1(�γ 2)
n
2

�2

(� − n)(� − n − 1)
|(b)n〉. (C3)

Setting r2 = n,P is the identity on states of n bosons provided

γ 2 = 1

�

(
� − n + 1

�

) 2
n

. (C4)

In the case of many composites, using the inequality

tr

(
1

�
B†B

)n

�
[

tr

(
1

�
B†B

)]n

, (C5)

which follows from condition (9) we find again that P
approximates the identity with an error of order 1/�, that
is,

P
∣∣(b†I0

)n0 × · · · × (
b
†
Ii

)ni
〉

= ∣∣(b†I0

)n0 × · · · × (
b
†
Ii

)ni + O(1/�)
〉
. (C6)

APPENDIX D: DERIVATION OF THE EFFECTIVE ACTION

For the following manipulations, we need the Hamiltonian
in the antinormal form

H = 1

2
tr(h + h0) − chT c† −

∑
K

gK
1

2
cFKc

1

2
c†F †

Kc†,

(D1)
where the T means “transposed” and h was given in
Eq. (17). Now we must evaluate the matrix element
〈βt | exp(−τH )|βt−1〉. To this end, we expand to first order
in τ (which does not give any error in the final τ → 0 limit)
and insert the operator P between annihilation and creation
operators

〈βt | exp(−τH )|βt−1〉 = exp

[
−1

2
tr(h + h0)τ

]
〈βt |P

− chT τPc†
∑

k

gkτ
1

2
cFKcP

× 1

2
c†F †

Kc†|βt−1〉. (D2)

Using the identity in the nucleon Fock space, we find

〈βt | exp(−τH )|βt−1〉 =
∫

dγ ∗dγE(γ ∗, γ, β∗
t , βt−1)

× exp

[
−1

2
tr(h + h0)τ − γ ∗hτγ

]

× exp

(∑
K

gKτ
1

2
γ FK γ

1

2
γ ∗F †

Kγ ∗
)

,

(D3)

where the function E(γ ∗, γ, β∗, β) is defined in (B7). By
means of the Hubbard-Stratonovich transformation, we can
make the exponents quadratic in the Grassmann variables and
evaluate the Berezin integral

〈βt | exp(−τH )|βt−1〉

=
∫ ∏

K

da∗
KdaK exp(−a∗ · a)

× exp

{
1

2
tr ln

[[
11 +

(
�

†
t +

∑
K1

√
gK1τa∗

K1
FK1

)

×R−1

[
�t−1 +

∑
K2

√
gK2τaK2

(
FK2

)†]
(RT )−1

]]}

× det R exp

[
−1

2
tr(h + h0)τ

]
, (D4)

where

R = 11 + hτ. (D5)

Performing the integral over the auxiliary fields a∗
K, aK we

obtain

〈βt | exp(−τH )|βt−1〉
=

∫ ∏
K

da∗
KdaK exp(−a∗ · a)

× exp

{
1

2
tr ln

[[
11 +

(
�

†
t +

∑
K1

√
gK1τa∗

K1
FK1

)

×R−1

[
�t−1 +

∑
K2

√
gK2τaK2

(
FK2

)†]
(RT )−1

]]}

× det R exp

[
−1

2
tr(h + h0)τ

]
. (D6)

The functional form of the composites partition function is

Z =
∫ [

dβ∗dβ

2πi

]
exp[−Seff(β

∗, β)], (D7)

where Seff is given in Eq. (16).
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