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The ground state binding energies of closed shell nuclei such as 4He, 12C, 16O, 28Si, 32S, 40Ca, and 56Ni are
calculated by using the local density approximation in the harmonic oscillator basis. Different channel effective
two-body interactions are generated from the lowest order constrained variational calculation for nuclear matter
with the Reid68 and �-Reid68 potentials. It is shown that the unlike nuclear matter, Reid68 potential gives
ground state binding energies closer to the experimental data with respect to the �-Reid68 interaction. The
different channel effective interactions as well as one- and two-body density distribution functions are discussed
and compared with the results of other approaches such as the correlated basis function, variational fermion
hypernetted chain, variational cluster Monte Carlo, Brueckner-Hartree-Fock, fermionic molecular dynamics, and
coupled cluster.
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I. INTRODUCTION

The simplest model for a nucleus is a collection of point
nucleons that obey the independent particle models, i.e., shell
models. But it is now understood that the nucleus wave
function is largely deviated from this traditional approximation
because of the complicated, strong, short-range nucleon-
nucleon interaction. At present, several N -N potentials are
available and most of them fit reasonably well the deuteron and
nucleon-nucleon scattering phase shift data. Handling such
complicated potentials in the nuclear system, however, has
been a great task for many-body theorists during the last five
decades.

Recently, the situation has changed for few-body nucleon
systems, i.e., A = 3 − 7. The Faddeev, Green’s function
Monte Carlo, and correlated hyperspherical harmonics ex-
pansion (CHHE) [1] theories have been developed, and sat-
isfactory results have been reproduced. The A > 7 light nuclei
(up to 16O) have been described by the variational or cluster
Monte Carlo (VMC, CMC) technique by using the Jastrow
variational wave function [2]. The VMC or CMC formalism is
very involved, and its accuracy is uncertain (ignoring 3, 4, . . .

cluster terms, the choice of the Jastrow correlation functions
especially with no center-of-mass dependence, uncertainty
in the values of normalization integral up to 10%, etc., for
example, in 16O [2]). So it cannot yet be considered an exact
or reliable formalism such as Green’s function Monte Carlo
technique.

For infinite nucleonic matter, we do not have a finite size
problem, but one needs a reliable many-body technique and a
true nucleon-nucleon potential to get reliable results.

Several of our works [3] noted that the many-body calcu-
lations on nuclear matter with phenomenological interactions
such as the Reid68 [3] potential which fit the two-nucleon
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data give substantially too much binding and saturate the
nuclear matter at densities that are too high. This problem
was reported by different groups during the last three decades
[4,5].

In 1979 [3,6], we included the NN → N� transition
potential explicitly in the Hamiltonian, by modifying the
Reid68 potential (�-Reid68) [3], from the beginning and
considered the isobar degree of freedom in our trial variational
wave function. The result of the lowest order constrained
variational (LOCV) calculation [3,6], with the above transition
potential and corresponding trial wave function, was shown to
give a reasonable binding and saturation density for nuclear
matter.

Since then, a few sophisticated interactions such as the
UV14 [7], AV14 [8], and new Argonne AV18 [9], as well as
Reid93 [10] potentials, have been generated and used. These
potentials fit the N -N scattering data very well [10]. But
all of them still overbind nuclear matter at large saturation
densities. On the other hand, a very good agreement was found
between results of the LOCV technique [11,12] and those
of more sophisticated methods such as variational fermion
hypernetted chain (FHNC) calculations [11,12], at both zero
and finite temperatures. The three-body cluster contribution to
the nuclear matter energy and the normalization integral 〈ψ |ψ〉
were calculated to test the convergence of cluster expansion
truncation [12]. It was shown that the LOCV technique is
capable of dealing with the well-defined phenomenological
potentials. However, as we said before, most of these works
found that all of the new potentials, like the old Reid68
potential, overbind nuclear matter at larger density than the
empirical prediction.

The LOCV method has also been applied to finite nuclei
[13], for which there was some difficulty in defining the
long-range behavior of the correlation functions. Since the
cluster expansion will not converge reasonably because of
certain restrictions on the correlation functions, which cannot
be satisfied by the inhomogeneous systems, then one should
ignore higher cluster terms; this is not a valid assumption
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especially for light nuclear systems, etc. The results of
LOCV calculation for the light closed shell nuclei were not
satisfactory [13].

To overcome this difficulty, in the spirit of the local density
G matrix, in 1984, we generated the effective two-body channel
interactions from our LOCV nuclear matter calculation at
different densities, and then we converted this dependence
to a local one by some fitting approximation [14] to calculate
properties of the 4He nucleus. The result was encouraging, but
we needed much more computer time (which was not available
for us in the 1980s) to extend this model to heavier nuclei and
eliminate the fitting approximations.

With respect to the above arguments, in this work we will
attempt to calculate the properties of light closed shell nuclei
such as 4He, 12C, 16O, 28Si, 32S, 40Ca, and 56Ni in the harmonic
oscillator basis by using a local density approximation and
the effective two-body channel-dependent potentials which
have been generated through the LOCV formalism with the
Reid68 and �-Reid68 interactions. We also try to eliminate
the approximations that we made in our previous work [14].
Then we can compare the present results with those of
the coupled cluster method (CCM) [15], correlated basis
function (CBF-FHNC) [16], variational or cluster Monte Carlo
(VMC, CMC) [2], Brueckner-Hartree-Fock (BHF) [17], and
fermionic molecular dynamics (FMD) [18] calculations which
have been presented recently, most of which need enormous
computational time on super or mainframe computers. A
comparison is also made with the present available data [19].

By using our asymmetrical nuclear matter code, we hope in
the near future to develop this technique for the heavier nuclei
with different numbers of protons and neutrons with more
realistic single-particle states such as those of the Woods-
Saxon potential.

In this article, we do not intend to use the recent
phenomenological potentials such as AV18 [9] since in our
previous calculations we found that these potentials do not
correctly predict the empirical saturation properties of nuclear
matter [12], and they are not much different from the old
Reid68 potential. This point has been also reported by other
groups [11,16,17]. However, we should mention that in 1993,
the properties of various N -N interactions were investigated
by the Nijmegen group [20], and their final report indicated
that the AV18 (charge-dependent version of the AV14) [9],
the Nijm I and II [20], and the update version of the Reid68
[10,20], Reid93, are truly N -N interactions, i.e., they give an
excellent description of both the pp and np scattering data
simultaneously. The Reid68 potential [3] fitted the pp data
very well, but not the np data. We do not know how good the
�-Reid68 interaction [5] is. According to the Helsinki group
[21], they modified the Reid68 1S0 interaction by including
the 1S0-5D0 transition potential such that they obtain the correct
N -N 1S0 scattering phase shift. Furthermore, as we pointed out
before, this potential can predict the nuclear matter saturation
properties closer to the empirical values than do the other
potentials. It also takes into the account the well-known Pauli
and mean-field effects of the intermediate N -� state [22],
which can be the origin of three-body forces. However, our
recent work on nuclear matter [23] shows that the new Reid
potential, Reid93, overbinds nuclear matter at much higher

saturation density than does Reid68 (as explained in [23], there
are discrepancies between our results using Reid93 and those
from BHF). Nevertheless, both Reid68 and Reid93 potentials
give similar saturation properties for nuclear matter up to
J = 2 channels [23]. On the other hand, as we said before,
the present available calculations on finite nuclei show that
the nucleus properties, unlike nuclear matter, are not very
sensitive to the choice of potential [16,17] (especially for light
nuclei). One reason could be the low-density properties of
nuclei compared to nuclear matter (the long-range parts of
different N -N potentials are roughly the same, and there is
always a balance between the central and tensor components
of the N -N forces).

So the paper is planned as follows: A short description
of the lowest order constrained variational method and
the calculation of effective potentials are given in Sec. II.
Section III is devoted to the evaluation of matrix elements and
energy of different closed shell nuclei obtained by using the
local density approximation. Finally, in Sec. IV, we present the
results and discussions.

II. THE LOCV FORMALISM AND
EFFECTIVE POTENTIALS

In the LOCV method, we use an ideal Fermi gas type of
wave function for the single-particle states and variational
techniques to find the wave function of the interacting system
[3,12], i.e.,

ψ = F�, (1)

where

F = S
∏
i>j

F (ij ), (2)

with S a symmetrizing operator. The correlation functions
F (ij ) are operators and written as

F (ij ) =
∑
α,k

f (k)
α (ij )O(k)

α (ij ). (3)

In the above equation, α = {S,L, J, T }, k = 1, 4, and

Ok=1,4
α = 1,

(
2
3 + 1

6SI
12

)
,
(

1
3 − 1

6SI
12

)
, SII

12 . (4)

For spin-singlet channels with orbital angular momentum
L �= 0 and the spin-triplet channels with L �= J ± 1, k is
superfluous and set only to unity; while for L = J ± 1, it
takes values of 2 and 3. It remains the L = 0 channel which
couples the 1S0 channel to the 5D0 channel. In this case, we set
k = 1 and 4.

In general, the N -� correlation function f (4)
α is required to

heal to zero while the rest of the channel correlation functions
f (1)

α , f (2)
α , and f (3)

α heal to the modified Pauli function fP (r),

fP (r) = [1 − l(kF r)2]−
1
2 , (5)

with

l(x) = 3

2x
J1(x), (6)
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where JJ (x) are the familiar spherical Bessel functions and
the Fermi momenta kF are fixed by the nuclear matter density,
i.e., kF = ( 3π2

2 ρ)
1
3 .

The nuclear matter energy per nucleon is [3,12],

Ein = TF + EMB[F ]. (7)

TF is simply the Fermi gas kinetic energy, and it is written as

TF = 3

5

h̄2k2
F

2m
. (8)

The many-body energy term EMB[F ] is calculated by con-
structing a cluster expansion for the expectation value of our
Hamiltonian,

H =
∑

i

pi
2

2m
+

∑
i>j

Vij , (9)

where Vij is the bare N -N interaction. Then, we keep only the
first two terms in a cluster expansion of the energy functional

E[F ] = 1

A

〈�|H |�〉
〈�|�〉 = TF + EMB = TF + E2 + E3 + · · ·.

(10)

The two-body energy term is defined as

E2 = (2A)−1
∑
ij

〈ij |V(12)|ij 〉a, (11)

where

V(12) = − h̄2

2m

{
F (12),

[∇2
12, F (12)

]} + F (12)V (12)F (12),

(12)

and the two-body antisymmetrized matrix element 〈ij |V|ij 〉a
are taken with respect to the single-particle functions com-
posing �, i.e., the plane waves. In LOCV formalism, EMB

is approximated by E2, and one hopes that the normalization
constraint makes the cluster expansion converge very rapidly
and bring the many-body effect into the E2 term.

By inserting a complete set of two-particle states twice in
Eq. (11) and performing some algebra, we can rewrite the
two-body term as

E2 = ENN
c + ENN

T + EN�
T , (13)

where c and T stand for the central and tensor parts,
respectively, then

E
j

i = 2

π4ρ

∑
α

(2T + 1)(2J + 1)
1

2
{1 − (−1)L+S+T }

×
∫ ∞

0
r2drV i,j

α (r, ρ)a(1)2

α (r), (14)

and (i = c, T and j = NN,N�)

Vc,NN
α (r, ρ) = h̄2

m

{
f (1)′2

α + m

h̄2 V c
α f (1)2

α

}
, (15)

VT ,NN
α (r, ρ)

=
{

h̄2

m

[
f (2)′2

α + m

h̄2

(
V c

α + 2V T
α − V LS

α

)
f (2)2

α

]
aα(r)(2)2

+ h̄2

m

[
f (3)′2

α + m

h̄2

(
V c

α − 4V T
α − 2V LS

α

)
f (3)2

α

]
a(3)2

α (r)

+
[
r−2

(
f (2)2

α − f (3)2

α + m

h̄2 V LS
α f (2)

α f (3)
α

)]
b2

α

}
a(1)−2

α (r)

(16)

VT ,N�
α (r, ρ) =

{
h̄2

2µ

[
f (1)′2

α + µ

µ�

(
f (4)′2

α + 6

r2
f (4)2

α

)]

+ (m� − m)c2f (1)′2

α + 2f (1)
α f (4)

α 〈V2〉

+V c
α f (1)2

α

}
, (17)

a(1)2

α (r, ρ) = IJ (r, ρ), (18)

a(2)2

α (r, ρ) = (2J + 1)−1[(J + 1)IJ−1(r, ρ) + JIJ+1(r, ρ)],

(19)

a(3)2

α (r, ρ) = (2J + 1)−1[JIJ−1(r, ρ) + (J + 1)IJ+1(r, ρ)],

(20)

b2
α(r, ρ) = 2J (J + 1)(2J + 1)−1[IJ−1(r, ρ) − IJ+1(r, ρ)],

(21)

IJ (r, ρ) = (2π6ρ2)−1
∫

|k1|,|k2|� kF

dk1dk2J 2
J (|k1 − k2|r).

(22)

The potential functions V c
α , V T

α , . . . , etc., are given in
Refs. [3,12].

The normalization constraint as well as the coupled and
uncoupled differential equations for the NN channels, coming
from the Euler-Lagrange equations, are similar to those
described in Refs. [3,12]. 〈V2〉 = 〈5D0|V2|1S0〉 is the spin-
isospin matrix element of V2 of the N -� transition potential
[17] and µ(µ�) is the reduced mass of the N -N (N -�)
channel. For example, the coupled differential equations for
N -� channels are

g(1)′′
α (r) −

{
a(1)′′

α (r)

a
(1)
α (r)

+ 2µ

h̄2

[
V c

1 − λ
]}

g(1)
α (r)

− 2µ

h̄2 〈V2〉g(4)
α (r) = 0,

(23)

g(4)′′
α (r) −

{
a(1)′′

α (r)

a
(1)
α (r)

+ 2µ�

h̄2 [(m� − m)c2 − λ] + 6

r2

}
g(4)

α (r)

− 2µ�

h̄2 〈V2〉g(1)
α (r) = 0,

with g(k)
α (r) = a(k)

α f (k)
α (r). The boundary conditions for solving

these equations are given in Eq. (5) and Refs. [5,10].
Finally, we can also define an effective state averaged two-

body potential and correlation function [12] as
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V(|r1 − r2|, ρ) =
∑

α,i,j,k

[
(2T + 1)(2J + 1) 1

2

]
[1 − (−1)L+S+T ]Vj,k

α (r, ρ)aα
(i)2

(r, ρ)∑
α,i

[
(2T + 1)(2J + 1) 1

2

]
[1 − (−1)L+S+T ]aα

(i)2(r, ρ)
, (24)

F2(|r1 − r2|, ρ) =
∑

α,i

[
(2T + 1)(2J + 1) 1

2

]
[1 − (−1)L+S+T ]f (i)

α

2
(r, ρ)aα

(i)2
(r, ρ)∑

α,i

[
(2T + 1)(2J + 1) 1

2

]
[1 − (−1)L+S+T ]aα

(i)2(r, ρ)
. (25)

III. THE MATRIX ELEMENT AND BINDING
ENERGY CALCULATIONS

To describe the localized finite nuclei, we no longer have
the translation invariance that characterized the nucleon fluid
calculations. In this respect, the single-particle wave functions
should be determined variationally from

δE

δφi

− εiφi = 0 (26)

subject to the constraints (φi, φj ) = δij , where the single-
particle energies εi are the Lagrange multipliers of the orthog-
onality constraints. Considering the truncating approximation
for the energy in Eq. (10), the above equations become a
set of Hartree-Fock equations with the effective two-body
interactionV i,j

α (r, ρ) of Eqs. (15)–(17). But as we stated before,
in this work we will not solve Eq. (26), but simply assume
that the φi may be approximated by the harmonic oscillator
wave functions, leaving the oscillator energy h̄ω as a single
variational parameter to fix the rms radius of the nucleus. Here,
we assume the following configuration for different closed
shell nuclei:

4He :
(
0s 1

2

)4

12C :
(
0s 1

2

)4(
0p 3

2

)8

16O :
(
0s 1

2

)4(
0p 3

2

)8(
0p 1

2

)4

28Si :
(
0s 1

2

)4(
0p 3

2

)8(
0p 1

2

)4(
0d 5

2

)12
(27)

32S :
(
0s 1

2

)4(
0p 3

2

)8(
0p 1

2

)4(
0d 5

2

)12(
1s 1

2

)4

40Ca :
(
0s 1

2

)4(
0p 3

2

)8(
0p 1

2

)4(
0d 5

2

)12(
1s 1

2

)4(
0d 3

2

)8

56Ni :
(
0s 1

2

)4(
0p3/2

)8(
0p 1

2

)4(
0d 5

2

)12(
1s 1

2

)4(
0d 3

2

)8(
0f 7

2

)16
,

(Note that 12C, 28Si, and 32S are not magic closed shell. We
considered them to see how our method works with these
nuclei as well.)

The origin of our coordinate system is fixed at the center
of mass of the nucleus,

∑A
i=1 ri = 0. Then we should only

consider the intrinsic Hamiltonian,

H0 = H − P2

2M , (28)

where P = ∑
i pi and M = Am are the nucleus total momen-

tum and mass, respectively.

Now, in the harmonic oscillator basis, we calculate the
expectation value of H0,

EBE
Total = 〈H0〉 =

∑
i

〈i, h̄ω| p2

2m
|i, h̄ω〉

+ 1

2

∑
ij

〈ij, h̄ω|V(12)|ij, h̄ω〉a − T A
c.m., (29)

where T A
c.m. = 3

4h̄ω and |i, h̄ω〉 stands for |ni, li , si , τi ; h̄ω〉,
the harmonic oscillator wave functions, angular and spin-
isospin parts of single-particle states, respectively. h̄ω or
γ = √

mω
h

is the harmonic oscillator parameter and will be
fixed variationally, as pointed out before. The matrix element
of one-body kinetic energy (first term) has the familiar form

T A
1 = 1

2

A∑
i=1

(
2ni + li + 3

2

)
h̄ω, (30)

while the second term can be written as the sum of two-body
kinetic and potential energies

EA
2 = T A

2 + V A
2 = 1

2

∑
ij

〈ij, h̄ω|V(12)|ij, h̄ω〉a

= 1

2

∑
ij

〈ij, h̄ω| − h̄2

2m

{
F (12),

[∇2
12, F (12)

]}|ij, h̄ω〉a

+ 1

2

∑
ij

〈ij, h̄ω|F (12)V (12)F (12)|ij, h̄ω〉a. (31)

Then by using (15)–(17), we can write our effective potentials
and two-body energy as

Vk,l
eff (r12, R12) =

∑
α

Vk,l
α

[√
2r, ρ

(
R√

2

)]
|α〉〈α|, (32)

with

r = 1√
2

(r1 − r2) = 1√
2

r12, R = 1√
2

(r1 + r2) =
√

2R12.

(33)

Next, we have assumed α = lJST , [j ] = 2j + 1, etc., and
first and second curly brackets are the 6-j and 9-j symbols,
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1S0 ∆(d)

(c)
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(a)

FIG. 1. (a) Averaged two-body effective
interaction with Reid68 (full curve) at nuclear
matter saturation density, ρ = 0.17 fm−3, vs
relative distance. (b) Same as (a), but for �-
Reid68. (c) and (d) are corresponding 1S0-
CDEPS, respectively. Dotted and dashed curves
are the two-body kinetic and potential parts of
the effective interactions.

respectively, in

EA
2 = 1

2

∑
1,2,k,l,α′

[j1][j2][j ][λ]2[S][J ][T ]

× [1 − (−1)l+S+T ]

{
L l λ

S j J

}2




l1
1
2 j1

l2
1
2 j2

λ S j




2

×〈n1l1, n2l2, λ|nl,NL, λ〉2〈nlJST ,NL|
Vk,l

α

[√
2r, ρ

(
R√

2

)]
{|α′〉〈α′|}|nlJST ,NL〉, (34)

where we have considered the local density approximation,
i.e.,

ρ

(∣∣∣∣ R√
2

∣∣∣∣
)

= ρ

( |r1 + r2|
2

)
= 1

2
[ρ(|r1|) + ρ(|r2|)]. (35)
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FIG. 2. Same as Fig. 1(c), but for CDEPs of
three other channels.

〈n1l1, n2l2, λ | nl,NL, λ〉 are the familiar Brody-Moshinsky
brackets [24]. The uncorrelated one-body density is defined
in terms of the harmonic oscillator wave functions for each
nucleus,

ρ(rj) =
A∑
i

|〈rj|i, h̄ω〉|2. (36)

We can also define the two-body distribution functions [25]
for the above nuclei as

ρ2(r1, r2) = ρ2(r12, R12)

= 1

A(A − 1)


 A∑

i

|〈r1|i, h̄ω〉|2
A∑
j

|〈r2|j, h̄ω〉|2

−
∣∣∣∣∣

A∑
i

〈r1|i, h̄ω〉〈i, h̄ω, |r2〉
∣∣∣∣∣
2



×F2[| r12 |, ρ(|R12|)], (37)

with the correlated one-body density distribution

ρ̄(r1) = 1

A − 1

∫
dr2ρ2(r1, r2), (38)

and the correlated relative two-body density distribution

ρ̄2(r12) = 1

A

∫
dR12ρ2(r1, r2). (39)
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FIG. 3. Same as Fig. 1(c), but for CDEPs of six other channels.

Obviously, we should have the normalization integral,

1

A(A − 1)

∫
ρ2(r1, r2)dr1dr2 = 1. (40)

Now, we can easily calculate the nucleus binding energy per
nucleon through the equation

EBE
A = 1

A
EBE

Total = 1

A

[
T A

1 + T A
2 + V A

2 − T A
c.m.

]
. (41)

IV. RESULTS AND DISCUSSION

The results of averaged (AEP) and channel-dependent
(CDEP) effective two-body potentials at nuclear matter sat-
uration density ρ = 0.17 fm−3 for nuclear matter LOCV
calculations with Reid68 and �-Reid68 potentials are given in
Figs. 1–3. The dotted (dashed) curves are the correspond-
ing two-body kinetic (potential) parts of these effective
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FIG. 4. (a) One-body density for different
closed shell nuclei at their saturation points.
Dashed curves are the corresponding experimen-
tal densities. (b) One-body density at experimen-
tal rms radius. (c) Difference between correlated
and pure harmonic oscillator one-body densities
at our calculated saturation densities.

interactions. From Figs. 1(a) and 1(b), it is seen that the
AEP with �-Reid68 is more repulsive than the AEP with
Reid68, and it has been pushed to the larger values of relative
distances. A similar effect can be seen by comparing Figs.
1(c) and 1(d), which plot the effective interactions for the
1S0 channels of Reid68 and �-Reid68 interactions. The other
CDEPs of Reid68 and �-Reid68 are very similar, so we only
present those of Reid68 in Figs. 2 and 3. As one expects, the
1S0 and 3S1 CDEPs are very similar, and both have attractive
and repulsive parts. Because of the tensor correlation, the
kinetic contribution has a longer range in the case of 3S1

CDEP. Its counterpart, 3D1 CDEP, has a similar shape, but
its two-body kinetic part becomes attractive for r � 0.6 fm,
due to the behavior of the tensor correlation function [3]. The
other channels mostly show the repulsive behavior both in their
kinetic and potential parts. In general, the J = 2 (α = JLST )
states are strongly repulsive with respect to J = 0 and 1
channels.

From Eqs. (35)–(38), the one-body densities are presented
in Fig. 4(a) for the closed shell nuclei, i.e., 4He, 12C, 16O,
28Si, 32S, 40Ca, and 56Ni. They have been calculated at their
saturation points with the Reid68 potential. The dashed curves
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FIG. 5. One-body densities without (full curve) and with (dotted
curve) two-body correlation function. Dashed curve is the CBF-
FHNC results with the Jastrow correlation function [16].

show the available experimental density distributions for 4He,
16O, and 40Ca [19]. For 4He and 16O our calculations give
roughly the experimental densities. But for 40Ca because
of the small calculated rrms large differences are observed.
The corresponding one-body densities obtained by using
Eq. (36) at available experimental rrms (charge radius) are
given in Fig. 4(b) for comparison with Fig. 4(a) (note that the
electromagnetic form factors of nucleons have not been folded
into our calculated one-body densities). One can conclude
that the pure harmonic oscillator approximation does not
give one-body densities close to the experimental prediction.
Figure 4(c) shows the difference between the correlated and
pure harmonic oscillator one-body densities, i.e., ρ̄(r1) −
ρ(r1), for different closed shell nuclei at our calculated
saturation rms radius. The effect is negligible, especially
as we go to heavier nuclei. To make a closer comparison,
we compared in Fig. 5 the one-body densities of 16O (at
rrms = 2.46 fm) and 40Ca (at rrms = 3.04 fm) obtained by
simply using the harmonic oscillator wave function [Eq. (36)]
(full curves) with those that were calculated by taking into
account the effect of short-range correlations [Eqs. (37) and
(38), i.e., ρ̄(r1)] (dotted curves). As pointed out before, we see
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FIG. 6. Same as Fig. 5, but for relative two-body density.

that there are very small changes in short distances. Obviously,
for large distances the effect will be reversed, and it becomes
too indistinguishable to be presented in the figure. We tested
our normalization integral, i.e., Eq. (40) and found that it
is satisfied within 1%. So we can argue that our binding
energy calculation will not be affected by the inclusion of
a short-range correlation in the one-body density. In other
words, the effect of the short-range correlation has already
been included in the CDEPs. However, in our future works,
we could iterate the one-body density, but we believe this
correction will not change our results very much. The results
of the CBF-FHNC calculation of Fabrocini et al. [16] with
the Jastrow correlation and UV14 plus three-body interactions
have been also given for comparison. In their work, they do
not vary the oscillator parameter, but they fix it from the
beginning. Their first calculations [16] show that the effect
of the correlation function is to reduce the central density.
While in their recent work, they claim that the correlation
does not change the one-body density significantly. On the
other hand, they use the nuclear matter correlation function at
some fixed density or they use the nuclear matter density as
a variational parameter [16]. The results of Arias de Saavedra
et al. [16] shows the same phenomena, i.e., no reduction in
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FIG. 7. Channel breakdown of LOCV nuclear matter correlation
functions by using Reid68 interaction at two different densities, 0.1
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correlation functions.

the central densities, which contradicts the outcome of CMC
calculations [2]. So this behavior should be investigated in
detail as has been pointed out in the recent work of Fabrocini
et al. [16].

Figure 6 shows the two-body relative density distributions
in 16O and 40Ca with (dotted curve) and without (full curve)
correlation functions. Again the CBF-FHNC calculations of
Fabrocini et al. [16] are presented for comparison (dashed
curve). There is much difference between our calculated

TABLE I. Variational binding energies (MeV) of closed shell
nuclei obtained by using the AEP in all the channels based on the
nuclear matter LOCV calculation with Reid68 interaction. See the
text for explanation of different columns.

Nucleus γ
T1−Tc.m.

A

T2
A

V2
A

BE
A

BEexp.

A
rrms r

exp.
rms

4He 0.46 4.94 3.34 −8.98 −0.71 −7.08 2.66 1.63
12C 0.50 10.58 6.76 −18.32 −0.98 −7.68 2.94 2.47
16O 0.53 12.56 9.55 −24.87 −2.77 −7.98 2.83 2.65
28Si 0.52 15.32 11.30 −29.87 −3.24 −8.45 3.21 3.35
32S 0.53 16.47 12.86 −33.53 −4.20 −8.49 3.20 3.42
40Ca 0.52 16.61 13.94 −36.32 −5.77 −8.55 3.33 3.39
56Ni 0.52 19.07 15.67 −40.63 −5.89 −8.64 3.56 —
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FIG. 8. Saturation curves of closed shell nuclei vs harmonic
oscillator parameter γ . Sunburst points are experimental predictions.

correlated relative two-body densities and pure harmonic
oscillator ones and those of the CBF-FHNC calculation. Since
our correlation functions start from zero, the probability that
one nucleon can come close to another one goes to zero.
This reflects the effect of nucleon-nucleon interaction at short
distances (strong 1

rn behavior). While the CBF-FHNC correla-
tion functions have finite value at r12 = 0. As we pointed out
before, their correlation functions are fixed at some nuclear
matter density (they do not depend on the center of mass of
two nucleons). We think these center-of-mass-dependent as
well as state-dependent (α = LJST ) considerations are very
important. To see this effect in Figs. 7(a) (central) and 7(b)
(tensor), we plotted the channel breakdown of our LOCV
nuclear matter calculations at two different densities, i.e,
0.1 fm−3 (full curves) and 0.2 fm−3 (dotted curves), with
the Reid68 interaction. Besides the dramatic state-dependent
effect, there are also considerable differences between the

TABLE II. Same as Table I, but for �-Reid68.

Nucleus γ
T1−Tc.m.

A

T2
A

V2
A

BE
A

BEexp.

A
rrms r

exp.
rms

4He — — — — — −7.08 — 1.63
12C — — — — — −7.68 — 2.47
16O 0.48 10.30 12.25 −23.43 −0.87 −7.98 3.12 2.65
28Si 0.46 11.99 13.70 −26.61 −0.93 −8.45 3.63 3.35
32S 0.48 13.51 16.58 −31.79 −1.70 −8.49 3.53 3.42
40Ca 0.50 15.36 20.84 −39.15 −2.95 −8.55 3.46 3.39
56Ni 0.48 16.25 21.22 −40.34 −2.87 −8.64 3.86 —
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TABLE III. Same as Table I, but for CDEP and Reid68.

Nucleus γ
T1−Tc.m.

A

T2
A

V2
A

BE
A

Vc

A

BEJ<3
c

A

BEc

A

BEexp.

A
rrms r

exp.
rms

4He 0.69 11.10 9.85 −25.34 −4.38 0.2 −4.19 −4.19 −7.08 1.77 1.63
12C 0.61 15.75 11.37 −30.56 −3.43 0.66 −2.66 −2.78 −7.68 2.41 2.47
16O 0.61 16.64 14.07 −36.89 −6.18 0.9 −5.20 −5.28 −7.98 2.46 2.65
28Si 0.59 19.72 15.71 −41.90 −6.48 1.43 −4.69 −5.06 −8.45 2.83 3.35
32S 0.58 19.72 16.34 −43.32 −7.26 1.59 −5.27 −5.67 −8.49 2.92 3.42
40Ca 0.57 19.96 17.95 −47.11 −9.20 1.91 −6.91 −7.30 −8.55 3.04 3.39
56Ni 0.56 22.12 19.10 −50.77 −9.55 2.40 −6.44 −7.15 −8.64 3.31 —

correlation functions at two different densities, especially
the tensor and p-wave correlations. Since in finite nucleus
calculations, the nucleus density varies from zero up to
0.3 fm−3, we believe that both the state and center-of-mass
dependences are very important.

Tables I and II show the variational binding energies of
closed shell nuclei by using the averaged effective interactions
in all of the channels with Reid68 and �-Reid68 potentials,
respectively. For comparison, the calculated and experimental
rms radius, one- and two-body kinetic energies, potential
energy, oscillator parameter, and experimental binding energy
are also given for each nucleus. Clearly, we do not get
reasonable results. We get large rrms for lighter nuclei, and
there are differences as large as 3–7 MeV difference in the
binding energies. The one- and two-body kinetic energies are
comparable, and the potential energies are roughly the same
as total kinetic energies. The saturation points are worst for
the �-Reid68 potential, and we do not find any bound states
for 12C and 4He.

Tables III and IV are similar to Tables I and II, but they
reflect the nuclear matter CDEPs. For channels with J � 3,
we used the averaged effective interaction. Here, there are
also three additional columns giving the Coulomb potential,
binding energies with zero effective interactions in channels
with J � 3, and binding energies with Coulomb interaction.
We get reasonable rrms with respect to the experimental data
for the whole range of closed shell nuclei. The binding
energies are close to their corresponding experimental values
as the nuclear mass increases, especially with the Reid68
interaction. The one- and two-body kinetic energies have
roughly the same size, and two-body potential energies are
also roughly twice each of them. The contributions of J � 3

channels are negligible. Again the results of binding energy
calculation with Reid68 is much closer to the experimental
data than the �-Reid potential. Our total and two-body kinetic
as well as potential and Coulomb energies are very close to
those of CBF-FHNC for 16O and 40Ca [16] and CMC for
16O [2].

To see how much our results vary with respect to the
harmonic oscillator parameter, i.e., rms radius, the saturation
curves of binding energies per nucleon for the closed shell
nuclei are given in Fig. 8. For larger nuclei, the saturation
point goes to lower energy and smaller harmonic oscillator
parameter γ or larger rrms, except for 12C, which has a small
size and is not a perfect closed shell nucleus. The saturation
curves are sensitive to γ . This indicates that one should take
a wider range of harmonic oscillator wave functions as the
single-particle states [including all of the principle quantum
number pairs (n1, n2)].

Finally, in Table V, we compare our calculated binding
energy and rms radius for 4He, 16O, and 40Ca with different
approaches, namely, the coupled cluster of Kümmel et al.
[15], cluster (variational) Monte Carlo of Pieper et al. [2],
CBF-FHNC of Fabrocini et al. [16], Brueckner-Hartee-Fock
of Coraggio et al. [17] with N3LO and AV18 interactions,
and Fermionic molecular dynamics of Roth et al. [18]. The
CCM calculation is with Reid68, while the other methods used
UV14 or AV18 plus the three-body interaction (TBI). We have
not included TBI in our calculation. Its contribution is about
a MeV binding. So by comparison we can conclude that we
get reasonable results especially for 40Ca with respect to both
experimental data and other theoretical calculations. It is worth
saying that for each harmonic oscillator parameter, the calcu-
lation for 40Ca takes about 20 min. on a Pentium IV 2400 MHz

TABLE IV. Same as Table I, but for CDEP and �-Reid68.

Nucleus γ
T1−Tc.m.

A

T2
A

V2
A

BE
A

Vc

A

BEJ<3
c

A

BEc

A

BEexp.

A
rrms r

exp.
rms

4He 0.64 9.55 13.99 −25.87 −2.32 0.18 −2.14 −2.14 −7.08 1.91 1.63
12C 0.55 12.80 14.81 −28.64 −1.02 0.58 −0.37 −0.44 −7.68 2.68 2.47
16O 0.57 14.52 20.07 −37.81 −3.21 0.83 −2.33 −2.38 −7.98 2.63 2.65
28Si 0.55 17.13 22.21 −42.52 −3.18 1.30 −1.63 −1.89 −8.45 3.03 3.35
32S 0.54 17.10 23.04 −43.97 −3.83 1.43 −2.13 −2.40 −8.49 3.14 3.42
40Ca 0.54 17.91 26.49 −49.85 −5.45 1.91 −3.41 −3.69 −8.55 3.21 3.39
56Ni 0.53 19.81 28.11 −53.48 −5.56 2.19 −2.86 −3.37 −8.64 3.49 —
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TABLE V. Comparison of ground state binding energies per nucleon (MeV) and rms radius
(fm) of 4He, 16O and 40Ca nuclei with different models and experimental data.

4He 16O 40Ca
BE
A

〈r〉 BE
A

〈r〉 BE
A

〈r〉
CCM (FBHF3), Kummel [15] −5.75 1.63 −5.36 2.57 −5.64 3.17
CMC, Pieper [2] −7.6 — −7.7 — — —
CBF-FHNC, Fabrocini (1998) [16] — — −5.15 2.32 −7.87 2.87
CBF-FHNC, Fabrocini (2000) [16] — — −5.11 2.93 −6.50 3.66
BHF, Coraggio (2003) [17] — — −7.52 2.65 −9.19 3.44
BHF, Coraggio (2005) [17] −6.85 1.69 −8.26 2.59 −9.53 3.22
FMD, Roth [18] −6.99 1.51 −7.40 −2.25 −8.19 2.89
LOCV (Reid68) −4.19 1.77 −5.28 2.46 −7.30 3.04
Experimental −7.08 1.63 −7.98 2.65 −8.55 3.39

personal computer. This can be, for example compared with a
CMC calculation estimated to take at least 10 h. of time on a
Cray-2 super computer.

In conclusion, we have calculated the binding energy of
light closed shell nuclei by considering the local density
approximation and the effective interaction which were calcu-
lated by using a reliable method such as LOCV formalism with
Reid68 and �-Reid68 potentials. One can argue that we do not
know the accuracy of the above approximations, especially the
truncation we imposed on the configuration space. However,
it is encouraging that our results are in agreement with
those of methods that use more complicated formalism and
computer simulation. Our binding energy results with the
Reid68 interaction become closer to the experimental data
as we go to the heavier light nuclei. So we can conclude that
we may get more reasonable results if we apply our method to
heavier nuclei.

We can improve our result by (i) taking into the ac-
count the TBI, (ii) using the new charge-dependent poten-

tial and our asymmetrical nuclear matter code, and (iii)
including the averaged three-body cluster effective interac-
tion into the present two-body channel-dependent effective
potential.

Finally, we would like to make the general remark that in
any cluster expansion calculation, the choice of many-body
correlation function and satisfaction of the normalization
integral is much more important than considering the higher
order many-body cluster energies such as the one usually
performed in different FHNC calculations [26], especially for
nuclear matter.
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A. Fabrocini, S. Fantoni, and E. Lagaris, Nucl. Phys. A549,
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