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We calculate the density-dependent spin-isospin asymmetry energy J (kf ) of nuclear matter in the three-loop
approximation of chiral perturbation theory. The interaction contributions to J (kf ) originate from one-pion
exchange, iterated one-pion exchange, and irreducible two-pion exchange with no, single, and double virtual
�-isobar excitation. We find that the approximation to 1π -exchange and iterated 1π -exchange terms (which leads
already to a good nuclear matter equation of state by adjusting an emerging contact term) is spin-isospin stable,
since J (kf 0) � 24 MeV > 0. The inclusion of the chiral πN� dynamics, necessary in order to guarantee the spin
stability of nuclear matter, keeps this property intact. The corresponding spin-isospin asymmetry energy J (kf )
stays positive even for extreme values of an undetermined short-distance parameter J5 (whose possible range we
estimate from realistic NN potentials). The largest positive contribution to J (kf ) (a term linear in density) comes
from a two-body contact term with its strength fitted to the empirical nuclear matter saturation point.
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In recent years a novel approach to the nuclear matter
problem has emerged. Its key element is a separation of
long- and short-distance dynamics and an ordering scheme
in powers of small momenta. At nuclear matter saturation
density ρ0 � 0.16 fm−3 the Fermi momentum kf 0 and the pion
mass mπ are comparable scales (kf 0 � 2mπ ), and therefore
pions must be included as explicit degrees of freedom in
the description of the nuclear many-body dynamics. The
contributions to the energy per particle Ē(kf ) of isospin-
symmetric (spin-saturated) nuclear matter as they originate
from chiral pion-nucleon dynamics have been computed up
to three-loop order in Refs. [1,2]. Both calculations are able
to reproduce the empirical saturation point of nuclear matter
by adjusting one single parameter (either a contact coupling
g0 + g1 � 3.23 [1] or a cutoff scale � � 0.65 GeV [2]) related
to unresolved short-distance dynamics.1 The basic mechanism
for saturation in this approach is a repulsive contribution to
the energy per particle Ē(kf ) generated by Pauli-blocking
in second order (iterated) pion exchange. As outlined in
Sec. 2.5 of Ref. [2] this mechanism becomes particularly
transparent by taking the chiral limit mπ = 0. In that case the
interaction contributions to Ē(kf ) are completely summarized
by an attractive k3

f term and a repulsive k4
f term where the

parameter-free prediction for the coefficient of the latter is
very close to the one extracted from a realistic nuclear matter
equation of state.

In a recent work [3] we have extended the chiral approach
to nuclear matter by including systematically the effects from
2π exchange with virtual �(1232)-isobar excitation. The
physical motivation for such an extension is threefold. First, the
spin-isospin-3/2 �(1232) resonance is the most prominent fea-
ture of low-energy πN scattering. Secondly, it is well known

1Fitting a cutoff scale, as done in Ref. [2], must be viewed as a
short-term intermediate step before an eventual full effective field
theory calculation. Cutoff independence of physical observables is in
fact a primary goal of effective field theory.

that 2π exchange between nucleons with excitation of virtual
� isobars generates the needed isoscalar central NN attraction
[4] which in phenomenological one-boson exchange models
is often simulated by a fictitious scalar “σ”-meson exchange.
Thirdly, the delta-nucleon mass splitting � = 293 MeV is of
the same size as the Fermi momentum kf 0 � 2mπ at nuclear
matter saturation density and therefore pions and � isobars
should both be treated as explicit degrees of freedom. A large
variety of nuclear matter properties has been investigated in
this extended framework in Ref. [3]. It has been found that
the inclusion of the chiral πN� dynamics is able to remove
most of the shortcomings of previous chiral calculations of
nuclear matter [2,5–7]. However, there remain open questions
concerning the role of yet higher orders in the small momentum
expansion and its “convergence.” The relation of the fitted
short-distance parameters [2] to those of few-nucleon systems
is not clear at this moment. Also, a rigorous power counting
that justifies the perturbative chiral expansion for nuclear
matter has not yet been formulated. Recent work by Bogner
et al. [8] based on the universal low-momentum NN potential
Vlow-k may open interesting perspectives in this direction.

Irrespective of such foundational questions it is also
necessary to check various stability conditions for nuclear
matter in the chiral framework. In a recent paper [9] we
have analyzed spin stability. It turned that the inclusion of
the chiral πN� dynamics is essential in order to guarantee
the spin stability of isospin-symmetric nuclear matter. The
truncation to fourth order terms in the small momentum
expansion with interaction contributions only from 1π and
iterated 1π exchange is spin-unstable [9]. This statement holds
independently of the regularization scheme if the contact terms
(generating contributions linear in the nucleon density) are
consistent with the empirical nuclear matter bulk properties:
Ē(kf 0) � −16 MeV and A(kf 0) � 34 MeV. Now, since a
nucleon possesses four internal spin and isospin degrees of
freedom one can prepare nuclear matter also in a spin-isospin
mixed asymmetric configuration. The stability of nuclear
matter against such correlated spin-isospin deformations is the
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FIG. 1. The two-loop one-pion exchange
Fock diagram and the three-loop iterated one-
pion exchange Hartree and Fock diagrams.
The combinatoric factors of these diagrams are
1/2, 1/4, and 1/4 in the order shown.

subject of the present paper. For recent work on generalized
symmetry energy coefficients in the context of phenomeno-
logical Skyrme forces, also see Ref. [10]. Analogous earlier
studies within Brueckner theory using the Reid soft-core NN
potential can be found in Ref. [11].

Let us begin with defining the spin-isospin asymmetry
energy J (kf ) of (infinite) nuclear matter. Consider this many-
nucleon system in a state where the equal densities of the
spin-up protons (p↑) and the spin-down neutrons (n↓) have an
excess over the equal densities of the spin-down protons (p↓)
and the spin-up neutrons (n↑). With the help of the spin- and
isospin-projection operators, (1 ± σ3)/2 and (1 ± τ3)/2, such
a spin-isospin mixed asymmetric configuration is realized by
the substitution

θ (kf − | �p|) → 1 + σ3τ3

2
θ (k+ − | �p|) + 1 − σ3τ3

2
θ (k− − | �p|),

(1)

in the medium insertion.2 Here, k± = kf (1 ± ε)1/3 (with ε

a small parameter) are different Fermi momenta, chosen
such that the total nucleon density ρ = (k3

+ + k3
−)/3π2 =

2k3
f /3π2 stays constant. Note that Eq. (1) describes a rather

peculiar asymmetric configuration of nuclear matter with
equal densities of protons, neutrons, spin-up states, and spin-
down states: ρp = ρn = ρ↑ = ρ↓ = k3

f /3π2. The expansion
of the energy per particle of spin-isospin polarized nuclear
matter,

Ē(k+, k−)στ−pol = Ē(kf ) + ε2J (kf ) + O(ε4), (2)

defines the spin-isospin asymmetry energy J (kf ). The obvious
criterion for the spin-isospin stability of nuclear matter is
then the positivity of the spin-isospin asymmetry energy:
J (kf ) > 0. The energy per particle at fixed nucleon density
ρ must take on its absolute minimum value in the spin- and
isospin-saturated configuration.

The first contribution to the spin-isospin asymmetry energy
J (kf ) comes from the kinetic energy

√
M2 + p2 − M of a

noninteracting relativistic Fermi gas of nucleons:

J (kf ) = k2
f

6M
− k4

f

12M3
, (3)

with M = 939 MeV the (average) nucleon mass. The next term
in this series, k6

f /16M5, is negligibly small at the densities of
interest.

2Medium insertion is a technical notation for the difference between
the in-medium and vacuum nucleon propagator [2]. Effectively, it
sums hole propagation and the absence of particle propagation below
the Fermi surface | �p | < kf .

Next, we come to interaction contributions to J (kf ). The
closed in-medium diagrams related to one-pion exchange
(Fock diagram) and iterated one-pion exchange (Hartree
and Fock diagrams) are shown in Fig. 1. Differences in
comparison to the calculation of the energy per particle Ē(kf )
in Ref. [2] occur only with respect to the factors emerging
from the spin and isospin traces over closed nucleon lines
and the radii k± = kf (1 ± ε)1/3 of the Fermi spheres to be
integrated over. After some analytical calculation we find the
following contribution to the spin-isospin asymmetry energy
J (kf ) from the 1π exchange Fock diagram in Fig. 1 (including
its relativistic 1/M2-correction):

J (kf ) = g2
Am3

π

(4πfπ )2

{
u3

9
− u

2
+

(
2u

9
+ 1

8u

)
ln(1 + 4u2)

+ m2
π

M2

[
19u3

18
− 4u5

9
− u2

2
arctan 2u

− u

72
(1 + 18u2) ln(1 + 4u2)

]}
. (4)

Here, we have introduced the abbreviation u = kf /mπ where
mπ = 135 MeV stands for the (neutral) pion mass. As usual
fπ = 92.4 MeV denotes the weak pion decay constant and
we choose the value gA = 1.3 of the nucleon axial-vector
coupling constant in order to have a pion-nucleon coupling
constant of gπN = gAM/fπ = 13.2. In the second and third
diagrams in Fig. 1 the 1π -exchange interaction is iterated
(once) with itself. These second order diagrams carry the
large scale enhancement factor M (the nucleon mass). It stems
from an energy denominator that is equal to a difference of
small nucleon kinetic energies. With a medium insertion at
each of two equally oriented nucleon propagators we obtain
from the three-loop Hartree diagram in Fig. 1 the following
contribution to the spin-isospin asymmetry energy:

J (kf ) = πg4
AMm4

π

6(4πfπ )4

{(
15u + 7

2u

)

× ln(1 + 4u2) − 14u − 16u2 arctan 2u

}
. (5)

The right Fock diagram of iterated 1π exchange (see
Fig. 1) with two medium insertions on non-neighboring nu-
cleon propagators gives rise on the other hand to a contribution
to the spin-isospin asymmetry energy of the form:

J (kf ) = πg4
AMm4

π

9(4πfπ )4

{
21u

5
− 64u3

15

−
(

9 + 16u2 + 64u4

15

)
arctan u +

(
33

10u
+ 14u

3

)
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× ln(1 + u2) −
(

3

u
+ 2u

)
ln(1 + 4u2)

+ (9 − 4u2) arctan 2u + (9 + 4u2)

×
∫ u

0
dx

arctan x − arctan 2x

u(1 + 2x2)

}
. (6)

This expression does not include the contribution of a linear
divergence

∫ ∞
0 dl 1 of the momentum-space loop integral.

In dimensional regularization such a linear divergence is
set to zero, whereas in cut-off regularization it is equal to
a momentum space cut-off �. The additional term specific
for cut-off regularization will be given in Eq. (13). An
in-medium diagram with three medium insertions represents
Pauli-blocking effects in intermediate NN states induced by
the filled Fermi sea of nucleons. The unequal filling of the
(p↑, n↓) and (p↓, n↑) Fermi seas shows its consequences
in the spin-isospin asymmetry energy. After some extensive
algebraic manipulations we end up with the following double-
integral representation of the contribution to the spin-isospin
asymmetry energy J (kf ) from the Hartree diagram in Fig. 1
with three medium insertions:

J (kf ) = g4
AMm4

π

(4πfπ )4u3

∫ u

0
dx x2

∫ 1

−1
dy

×
{[

2uxy(3u2 − 5x2y2)

(u2 − x2y2)
− (u2 + 5x2y2)H

]

×
[

2s2 + s4

1 + s2
− 2 ln(1 + s2)

]
+ 4u2H s5(8s ′ − 9s)

9(1 + s2)2

+ [2uxy + (u2 − x2y2)H ]

× [(5 + s2)(9s2 − 16ss ′ + 16s ′2)

+ 8s(1 + s2)(2s ′′ − 10s ′ + 9s)]
s4

9(1 + s2)3

}
, (7)

where we have introduced several auxiliary functions

H = ln
u + xy

u − xy
, s = xy +

√
u2 − x2 + x2y2,

(8)

s ′ = u
∂s

∂u
, s ′′ = u2 ∂2s

∂u2
.

Note that Eq. (7) stems from a nine-dimensional principal-
value integral over the product of three Fermi spheres of
varying radii k± = kf (1 ± ε)1/3 which has been differentiated
twice with respect to ε at ε = 0. Of similar structure is the
contribution to J (kf ) from the iterated 1π -exchange Fock
diagram with three medium insertions. Because of the two
different pion propagators in the Fock diagram one ends
up (partially) with a triple-integral representation for its
contribution to the spin-isospin asymmetry energy:

J (kf ) = g4
AMm4

π

72(4πfπ )4u3

∫ u

0
dx

{
G(9G20 + 2G11 + 9G02

− 16G01 − 9G) + 9G2
10 + 2G01G10 − 5G2

01

+ 4x2
∫ 1

−1
dy

∫ 1

−1
dz

yz θ (y2 + z2 − 1)

|yz|
√

y2 + z2 − 1

×
[

2s3t3(16s ′t − 9st − 12s ′t ′)
(1 + s2)(1 + t2)

+ s2[t2 − ln(1 + t2)]

(1 + s2)2
[(3 + s2)(16ss ′ − 9s2 − 16s ′2)

+ 4s(1 + s2)(12s ′ − 9s − 4s ′′)]
]}

. (9)

Here, we have split into factorizable and nonfactorizable parts.
These two pieces are distinguished by whether the (remaining)
nucleon propagator in the three-loop Fock diagram can be
canceled or not by terms from the product of πN -interaction
vertices. The factorizable terms can be expressed through the
auxiliary function

G = u(1 + u2 + x2) − 1

4x
[1 + (u + x)2][1 + (u − x)2]

× ln
1 + (u + x)2

1 + (u − x)2
, (10)

and its partial derivatives for which we have introduced a
(short-hand) double-index notation:

Gij = xiuj ∂i+jG

∂xi∂uj
, 1 � i + j � 2. (11)

For the presentation of the nonfactorizable terms one needs
also copies of the quantities s and s ′ defined in Eq. (8) which
depend (instead of y) on another directional cosine z:

t = xz +
√

u2 − x2 + x2z2, t ′ = u
∂t

∂u
. (12)

In the chiral limit mπ = 0 the fourth order contributions
in Eqs. (5)–(9) sum up to a negative k4

f term of the
form: J (kf )|mπ=0 = −(gAkf /4πfπ )4(M/405)(32π2 + 741 +
1848 ln 2). Finally, we give the expression for the linear
divergence specific to cut-off regularization:

J (kf ) = 10g4
AM�

3(4πfπ )4
k3
f , (13)

to which only the iterated 1π exchange Fock diagram (with
two medium insertions) has contributed. In the case of the
Hartree diagram the linear divergence drops out after taking
the second derivative with respect to ε. One observes that the
term in Eq. (13) is just −1/3 of the corresponding contribution
to the energy per particle Ē(kf ) (see Eq. (15) in Ref. [2]). In
this context it is interesting to note that for terms linear in
density ρ the relation 3J (kf )lin = −Ē(kf )lin holds generally.
It is a consequence of the spin-isospin structure 3 − �σ1 · �σ2 �τ1 ·
�τ2 of a Fierz-antisymmetric NN contact interaction (see, e.g.,
Eq. (35) in Ref. [12]).

Now we can turn to numerical results. In Fig. 2 we
show the spin-isospin asymmetry energy J (kf ) of nuclear
matter as a function the nucleon density ρ = 2k3

f /3π2. The
solid line corresponds to a calculation up to fourth order
in small momenta. It includes besides the kinetic energy
term Eq. (3) the contributions from static 1π exchange and
iterated 1π exchange. For reasons of consistency we have
dropped the small relativistic 1/M2 correction in Eq. (4)
since it is of fifth order in the small momenta kf and mπ .
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FIG. 2. The spin-isospin asymmetry energy J (kf ) of nuclear
matter versus the nucleon density ρ = 2k3

f /3π 2. The solid line
shows the result of a calculation up to fourth order in small
momenta including 1π exchange and iterated 1π exchange. The
cut-off scale � = 0.61 GeV has been adjusted to the saturation
point: ρ0 = 0.173 fm−3, Ē(kf 0) = −15.3 MeV. The positive values
of J (kf ) indicate the spin-isospin stability of nuclear matter in this
approximation.

The cut-off scale � = 0.61 GeV has been adjusted to the
nuclear matter saturation point ρ0 = 0.173 fm−3 and Ē(kf 0) =
−15.3 MeV. The resulting value of the nuclear matter com-
pressibility K = k2

f 0Ē
′′(kf 0) = 252 MeV is consistent with

a recent extrapolation from giant monopole resonances of
heavy nuclei [13], which gave K = (260 ± 10) MeV. One
can read off from Fig. 2 a positive value of the spin isospin
asymmetry energy at saturation density: J (kf 0) = J (2mπ ) =
23.9 MeV. It indicates the spin-isospin stability of nuclear
matter in this approximation. The largest positive contribution
to J (2mπ ) = 23.9 MeV comes from the term, Eq. (13), linear
in density and amounts to 59.2 MeV at saturation density
kf 0 = 2mπ . Compared to that the largest negative contribution
is −32.8 MeV and it stems from the iterated 1π -exchange
Fock diagram with two medium insertions, Eq. (6). The
remaining numerically smaller contributions cancel each other
to a large extent. It must however be stressed that at this
level of approximation, with interaction terms only from
1π exchange and iterated 1π exchange, nuclear matter is spin
unstable [9]. The inclusion of higher order terms (in particular
2π exchange with virtual �-isobar excitation) is mandatory in
order to achieve spin-stability of nuclear matter.

Therefore, we turn now to contributions to J (kf ) of fifth
order in the small momentum expansion. At three-loop order
these terms are generated by (irreducible) two-pion exchange

between nucleons. The corresponding one-loop diagrams
for elastic NN scattering are shown in Fig. 3. Since we
are counting the delta-nucleon mass splitting � = 293 MeV
(together with kf and mπ ) as a small momentum scale
the diagrams with single and double virtual �(1232)-isobar
excitation shown in Fig. 4 belong to the same order. By
closing the two open nucleon lines of the one-loop diagrams in
Figs. 3 and 4 to either two or one ring one gets (in
diagrammatic representation) the Hartree or Fock contribution
to the energy density. The Hartree contribution to the spin-
isospin asymmetry energy J (kf ) vanishes identically because
the relevant 2π -exchange NN T matrix in forward direction
is spin-independent [4,12]. The Fock contribution on the
other hand is obtained by integrating the spin- and isospin-
contracted T matrix over the product of two Fermi spheres of
radii k± = kf (1 ± ε)1/3. We separate regularization dependent
short-range contributions to the T matrix (originating from the
ultraviolet divergences of the one-loop diagrams in Figs. 3
and 4) from the unique long-range terms with the help of a
twice-subtracted dispersion relation. The occurring subtrac-
tion constants give rise to a contribution to the spin-isospin
asymmetry energy of the form

J (kf ) = −B3

k3
f

3M2
+ J5

k5
f

M4
. (14)

The dimensionless parameters B3 = −7.99 has been adjusted
in Ref. [3] to the saturation minimum Ē(kf 0) = −16 MeV.
Again, we recognize in the first part of Eq. (14) the relation
3J (kf )lin = −Ē(kf )lin for terms linear in the density ρ =
2k3

f /3π2. The other subtraction constant J5 in front of the
k5
f /M4-term is (a priori) not constrained by any empirical

(ground-state) property of nuclear matter. The long-range
parts of the 2π -exchange (two-body) Fock diagrams can be
expressed as a dispersion-integral:

J (kf ) = 1

6π3

∫ ∞

2mπ

dµ

{
Im(3WC + 2µ2VT + 4µ2WT )

× kf

3

[
4k2

f

µ
− 8k4

f

µ3
− µ ln

(
1 + 4k2

f

µ2

)]
+ Im(VC + 3WC + 2µ2VT + 6µ2WT )

×
[
µkf

2
− k3

f

µ
+ 8k5

f

3µ3
− µ3

8kf

ln

(
1 + 4k2

f

µ2

)]}
,

(15)

where ImVC , ImWC , ImVT , and ImWT are the spectral
functions of the isoscalar and isovector central and tensor
NN amplitudes, respectively. Explicit expressions of these
imaginary parts for the contributions of the triangle diagram

FIG. 3. One-loop diagrams of irreducible two-pion exchange between nucleons.
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FIG. 4. One-loop two-pion exchange diagrams with single and double �(1232)-isobar excitation. Diagrams for which the role of both
nucleons is interchanged are not shown.

with single � excitation and the box diagrams with single
and double � excitation can be easily constructed from
the analytical formulas given in Sec. III of Ref. [4]. The
µ- and kf -dependent weighting functions in Eq. (15) take
care that at low and moderate densities this spectral integral
is dominated by low invariant ππ masses 2mπ < µ < 1 GeV.
The contributions to the spin-isospin asymmetry energy J (kf )
from irreducible 2π exchange (with only nucleon intermediate
states, see Fig. 3) can also be cast into the form Eq. (15). The
corresponding non vanishing spectral functions read [12]

ImWC(iµ) =
√

µ2 − 4m2
π

3πµ(4fπ )4

[
4m2

π

(
1 + 4g2

A − 5g4
A

)
+µ2(23g4

A − 10g2
A − 1

) + 48g4
Am4

π

µ2 − 4m2
π

]
,

(16)

ImVT (iµ) = −6g4
A

√
µ2 − 4m2

π

πµ(4fπ )4
. (17)

Next, we come to the additional 2π -exchange three-body
terms which arise from Pauli blocking of intermediate nucleon
states (i.e., from the (1 ± σ3τ3)θ (k± − | �p |) terms in the in-
medium nucleon propagators [2]). The corresponding closed
Hartree and Fock diagrams with single virtual � excitation
are shown in Fig. 5. The contribution of the left three-body
Hartree diagram to the spin-isospin asymmetry energy J (kf )
has the following analytical form:

J (kf ) = g4
Am6

πu2

27�(2πfπ )4

[(
27

4
+ 8u2

)
ln(1 + 4u2)

+ 2u4(1 − 9ζ ) − 22u2 − 5u2

1 + 4u2

]
. (18)

The delta propagator shows up in this expression merely via
the (reciprocal) mass splitting � = 293 MeV. Furthermore,
we have already inserted in Eq. (18) the empirically well-
satisfied relation gπN� = 3gπN/

√
2 for the πN�-coupling

constant. The parameter ζ = −3/4 has been introduced in
Sec. II of Ref. [3] in order to reduce a too strongly repulsive
ρ2 term in the energy particle Ē(kf ). It controls the strength of
a three-nucleon contact interaction ∼(ζg4

A/�f 4
π )(N̄N )3 which

has the property that it contributes equally but with opposite
sign to the energy per particle Ē(kf ) and the spin-isospin
asymmetry energy J (kf ). The contribution of both three-body
Fock diagrams in Fig. 5 to the spin-isospin asymmetry energy
J (kf ) can be represented as

J (kf ) = g4
Am6

π

108�(4πfπ )4u3

∫ u

0
dx

{−4GS01GS10 − 10G2
S01

− 18G2
S10 + 2GS(9GS + 16GS01 − 9GS02 − 2GS11

− 9GS20) − 2GT 01GT 10 − 17G2
T 01 − 9G2

T 10

+GT (9GT + 16GT 01 − 9GT 02 − 2GT 11 − 9GT 20)
}
,

(19)

with the two auxiliary functions:

GS = 4ux

3
(2u2 − 3) + 4x[arctan(u + x) + arctan(u − x)]

+ (x2 − u2 − 1) ln
1 + (u + x)2

1 + (u − x)2
, (20)

GT = ux

6
(8u2 + 3x2) − u

2x
(1 + u2)2

+ 1

8

[
(1 + u2)3

x2
− x4 + (1 − 3u2)(1 + u2 − x2)

]

× ln
1 + (u + x)2

1 + (u − x)2
. (21)

The double indices on GS and GT have the same meaning as
explained in Eq. (11) for the function G.

In Fig. 6 we show again the spin-isospin asymmetry
energy J (kf ) of nuclear matter as a function of the nucleon
density ρ = 2k3

f /3π2. The solid line includes all the contri-
butions from chiral 1π and 2π exchange written down in
Eqs. (3)–(9), (14)–(19). The (yet undetermined) short-range
parameter J5 has been set to zero, J5 = 0. We note as an
aside that the term linear in the density and the cut-off
�, Eq. (13), is now not counted extra since the parameter
B3 = −7.99 [3] collects all such possible terms. Numerically,
these two terms linear in density are anyhow almost identical.
One observes in Fig. 6 a positive spin-isospin asymmetry
energy J (kf ) which rises monotonically with the density ρ.

FIG. 5. Hartree and Fock three-body diagrams related to 2π exchange with single virtual �-isobar excitation. They represent interactions
between three nucleons in the Fermi sea. The combinatoric factor is 1 for each diagram.
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FIG. 6. The spin-isospin asymmetry energy J (kf ) of nuclear
matter versus the nucleon density ρ = 2k3

f /3π 2. In comparison
to Fig. 2 the effects from 2π exchange with single and double
virtual �-isobar excitation are now included. The solid, dashed, and
dashed-dotted curves correspond to the choices J5 = 0, −0.95, and
−19 of the short-range parameter J5 introduced in Eq. (14). The
positive values of J (kf ) ensure the spin-isospin stability of nuclear
matter.

The inclusion of the chiral πN� dynamics does therefore
not disturb the spin-isospin stability of nuclear matter. It is
also interesting to look at numerical values of J (kf ) and
their decomposition. At a Fermi momentum of kf = 2mπ

(corresponding to ρ = 0.173 fm−3) the spin-isospin asym-
metry energy is now J (2mπ ) = 69.5 MeV (setting J5 = 0).
The most significant changes in comparison to the previous
fourth order calculation come from the two-body Fock and
three-body Hartree contributions Eqs. (15), (18) which amount
together to 30.6 MeV + 20.7 MeV = 51.3 MeV. About one-
third thereof (namely 16.6 MeV) stems from the three-body
contact interaction proportional to ζ = −3/4.

The size of the short-distance parameter J5 in Eq. (14) is still
open and large negative values could endanger the spin-isospin
stability. In order to get an estimate of J5 we bring into play
the complete set of four-nucleon contact couplings written
down in Eqs. (3) and (4) of Ref. [14]. This set represents the
most general short-range NN interaction quadratic in momenta
and it involves seven low-energy constants C1, . . . , C7. After
computing the spin-isospin asymmetry energy J (kf ) from the

corresponding contact-potential in Hartree-Fock approxima-
tion we find

J5 = M4

18π2
(C2 − 4C1) = M4

144π3

[
3C

(1
P1

) + C
(3
P0

)
+ 3C

(3
P1

) + 5C
(3
P2

)]
. (22)

In the second line of Eq. (22) we have reexpressed the relevant
linear combination of C1,2 through the so-called spectroscopic
low-energy constants which characterize the short-range part
of the NN potential in the spin-singlet and spin-triplet S- and
P-wave states. In that representation we obtain from the entries
of Table IV in Ref. [14] for the three NN potentials3 CD-Bonn,
Nijm-II, and AV-18 the numbers: J5 = −1.34,−0.57, and
−0.94. The dashed line in Fig. 6 shows the spin-isospin
asymmetry energy J (kf ) which results from taking their
average value J5 = −0.95. The corresponding reduction of
the spin-isospin asymmetry energy is negligible. The dashed-
dotted curve in Fig. 6 corresponds to the extreme choice
J5 = −19. One can see that even with such a large negative
J5-value the spin-isospin stability of nuclear matter remains
still preserved. We can therefore conclude that spin-isospin
stability is a robust property of the chiral approach to nuclear
matter (at least in the three-loop approximation). This is a
important finding.

In summary we have investigated in this work the spin-
isospin stability of nuclear matter in the framework of chiral
perturbation theory. For that purpose we have calculated the
density-dependent spin-isospin asymmetry energy J (kf ) of
nuclear matter to three-loop order. The interaction contri-

butions to J (kf ) originate from 1π exchange, iterated 1π

exchange, and (irreducible) 2π exchange with no, single,
and double virtual �-isobar excitation. We have found that
the approximation to 1π - and iterated 1π -exchange terms
is spin-isospin stable, since J (kf 0) > 0. The inclusion of
the chiral πN�-dynamics (necessary to ensure the spin
stability [9] of nuclear matter) keeps this property intact. The
largest positive contribution to J (kf ) comes from a two-body
contact interaction with its strength fitted to the empirical
nuclear matter saturation point.

3The short-distance structure of realistic NN potentials and
effective field theory could be very different. The idea here is simply
to explore the extreme possible range of J5.
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