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Electron-deuteron scattering in the equal-time formalism: Beyond the impulse approximation
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Using a three-dimensional formalism that includes relativistic kinematics, the effects of negative-energy states,
approximate boosts of the two-body system, and current conservation, we calculate the electromagnetic form
factors of the deuteron up to Q2 of 4 GeV2. This is done with a dynamical boost for two-body systems with spin.
We first compute form factors in impulse approximation, but then also add an isoscalar meson-exchange current
of pion range that involves the γπ contact operator associated with pseudovector πN coupling. We also consider
effects of the ρπγ meson-exchange current. The experimentally measured quantities A, B, and t20 are calculated
over the kinematic range probed in recent Jefferson Laboratory experiments. The ρπγ meson-exchange current
provides significant strength in A at large Q2 and the γπ contact-term exchange current shifts t20, providing good
agreement with the data from the Thomas Jefferson National Accelerator Facility. Relativistic effects and the γπ

meson-exchange current do not provide an explanation of the B observable, but the ρπγ current could help to
provide agreement if a nonstandard value is used for the tensor ρN coupling that enters this contribution.
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I. INTRODUCTION

The deuteron is a bound state of two spin-half particles.
Consequently the combined dictates of Poincaré invariance,
current conservation, and parity tell us that it has three
independent form factors. Conventionally these are taken
to be the deuteron charge, magnetic, and quadrupole form
factors, GC,GM , and GQ, respectively, which are related to the
Breit-frame matrix elements of the deuteron electromagnetic
current operator Aµ in the three deuteron magnetic substates
|+1〉, |0〉, and |−1〉 by the formulas

GC = 1

3
√

1 + ηe
(〈0|A0|0〉 + 2〈+1|A0| + 1〉), (1)

GQ = 1

2η
√

1 + ηe
(〈0|A0|0〉 − 〈+1|A0| + 1〉), (2)

GM = −1√
2η(1 + η)e

〈+1|A+|0〉. (3)

[Here η = Q2/(4M2
d ), and Q2 = −q2 is the absolute value of

the square of the four-momentum transfer to the deuteron.]
Three experimental quantities are therefore required for
disentangling the electromagnetic current of this nucleus. Two
of these—the structure functions A and B—can be obtained
from the electron-deuteron differential cross section by use of
the usual Rosenbluth separation:

dσ

d�
= dσ

d�Mott

[
A(Q2) + B(Q2) tan2

(
θe

2

)]
. (4)

The structure functions A and B are related to GC,GQ, and

GM as follows:

A = G2
C + 8

9η2G2
Q + 2

3ηG2
M, (5)

B = 4
3η(1 + η)G2

M. (6)

The third observable of choice is the dependence of the
scattering on the (tensor) polarization of deuterium. This
can be measured either with a polarized deuteron target
(and unpolarized beam) or with an unpolarized target by
measurement of the polarization of the recoil deuterons. Both
types of experiment result in the same tensor-polarization
observable, and in particular both can measure

t20 ≡ −
√

2
x(x + 2) + y/2

1 + 2(x2 + y)
, (7)

where

x = 2ηGQ

3GC

; y = 2η

3

[
1

2
+ (1 + η) tan2

(
θe

2

)]
G2

M

G2
C

. (8)

Recent experiments at the Thomas Jefferson National
Accelerator Facility (JLab) have probed the electromag-
netic form factors of the deuteron at large spacelike mo-
mentum transfers. t20 has been measured at Q2 up to
almost 2 GeV2 [1,2], B out to about 1.3 GeV2, and A
to Q2 = 6 GeV2 [3,4]. Two recent reviews provide up-to-
date information on these experiments and their theoretical
interpretation [5,6].

The kinematic range of these data pushes the limit of
theoretical descriptions of this simplest of nuclei. At small
values of Q2 the appropriate degrees of freedom for this des-
cription are nonrelativistic nucleons, interacting by means of
static nucleon-nucleon interactions, with small corrections that
are due to meson-exchange currents (MECs) and relativistic
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effects [7–11]. Provided Q2 is below the scale of chiral sym-
metry breaking, contributions to electron-deuteron scattering
can be organized by use of the nuclear effective theory first
proposed by Weinberg [12–14], and the results are in good
agreement with the extant data [15] below Q2 ∼ 0.5 GeV2.
As Q2 increases to ∼1 GeV2, nucleon and meson degrees of
freedom may still be appropriate, but a relativistic formalism
is needed to account for relativistic kinematics and dynamics.
At very high values of Q2 one expects a transition to a regime
where quark and gluon degrees of freedom provide the most
natural description of data. To date, we can summarize the
experimental and theoretical situation for elastic electron-
deuteron scattering by saying that there is no significant
evidence of having reached the quark regime [5]. The most
important aspects of the internal quark structure of a nucleon
appear to be taken into account by means of nucleon form
factors and relativistic NN dynamics.

Considerable effort has been invested in the construction
of these relativistic formalisms for the NN bound state and
associated MECs. The goal is to address elastic electron-
deuteron scattering at Q2 of a few GeV2; see, e.g., Refs.
[16–23]. Such an approach is a logical extension of the
standard nonrelativistic treatment of the NN system (see, e.g.,
Ref. [24]), which has had a significant amount of success in
describing A,B, and t20 by use of a nonrelativistic NN interac-
tion that is fit to the NN scattering data (see, e.g., Refs. [7–9]).
Like the nonrelativistic approach, relativistic approaches to
the NN problem are grounded in a phenomenological de-
scription of the NN scattering data. However, they seek to
implement dynamics that obeys the Poincaré algebra—even
if only approximately—and in so doing they go beyond the
nonrelativistic treatment of the NN system. If electromagnetic
interactions with the deuteron are also to be considered then—
regardless of the momentum transfer involved—it is crucial
that the consequences of electromagnetic gauge invariance
be incorporated in the calculation. Minimally this means
that the electromagnetic current of the deuteron must be
conserved. Indeed, the derivation of Eqs. (1)–(3) assumed
that the deuteronic current Aµ was conserved. This motivates
the use of meson-exchange interactions for which methods of
quantum field theory may be used to construct the conserved
current.

The three-dimensional (3D) “equal-time” (ET) formalism
that was developed and applied in Refs. [16–18] is one such
method. This approach starts from the four-dimensional (4D)
Bethe-Salpeter formalism and the Mandelstam construction of
the electromagnetic current. It includes relativistic kinematics,
negative-energy states, and relativistic pieces of the electro-
magnetic current explicitly at all stages of the calculation. In
Ref. [18] we reported on impulse-approximation calculations
of form factors (1)–(3). The Bonn-B interaction [25] that
was fit to NN scattering data by a relativistic equation
with only positive-energy states was used. In contrast to
Ref. [25] we employed pseudovector (PV) πN coupling,
since it is then easier to implement the constraints of chiral
symmetry. In Ref. [18] we focused particularly on the role of
negative-energy components of the deuteron wave function in
the ET formalism. The NN interaction with negative-energy
components was obtained by adjustment of the σNN coupling

so that the deuteron binding energy was the same as that in
Ref. [25]. Once this was done the inclusion of negative-energy
components of spinors produced only modest effects: There
were noticeable changes to some deuteron observables at
larger momentum transfers but not much improvement in the
description of the experimental data. This is in agreement
with earlier results of Hummel and Tjon [19] and is not
surprising because PV coupling suppresses the coupling to
the negative-energy states.

The results of Ref. [18] for observable t20 were in good
agreement with experiments but the description of the deuteron
magnetic form factor was poor. Similar conclusions held
regardless of whether the negative-energy components of the
deuteron wave function were included. Some other relativistic
approaches, e.g., Ref. [20], have found larger effects for
negative-energy components, and this point is discussed
further in Sec. IX.

However, a number of important effects were not in-
cluded in the impulse-approximation calculation of Ref. [18]
(here after ETIA). These included the dynamical boost of
bound-state vertex functions, an isoscalar pionic meson-
exchange contribution to Aµ that arises from use of PV πN

coupling and the ρπγ MEC. In the present work we use the
positive-energy-state ETIA calculation as a baseline. We then
include the various effects listed above that were omitted in
Ref. [18], and we also display the contribution of Z-graphs
computed to first order in perturbation theory.

These different contributions to Aµ can be organized
according to the power counting developed by Weinberg
[12–14] that has already been successfully applied to a number
of electromagnetic reactions involving deuterium. Because the
power counting is based on an expansion in powers of

P ≡ | �p|,mπ, |�q|
�

, (9)

where � is the scale of chiral symmetry breaking, it breaks
down at Q2 ∼ 0.5 GeV2, but examining the different contri-
butions to Aµ using the nuclear effective theory provides a
way to anchor their low-momentum behavior in a systematic
way.

In this counting the calculation of Ref. [18] included all
mechanisms of O(e) and O(eP). Formally the most important
neglected mechanism occurs at O(eP2) and arises because
electromagnetic currents are evaluated in the Breit frame,
where the deuteron has momentum − 1

2 q in the initial state and
momentum + 1

2 q in the final state. In this case the deuteron
wave functions must be boosted from the deuteron rest frame
to obtain the initial- and final-state wave functions in the Breit
frame. The ET formalism developed in Refs. [16–18] was not
boost invariant, and this failure to respect Poincaré invariance
resulted in an error at O(eP2) in the calculation of Ref. [18].
To remedy this, a boost rule for scalar particles was developed
in Ref. [26], where it was shown to provide an exact result for
the boost of the two-body energy. In this work, the boost rule is
extended approximately to the case of two interacting spin-half
particles, as discussed in Sec. V. We have verified numerically
that the ET equation together with the boost rule for the
NN interaction provides eigenstates of the deuteron with
energy EP = √

M2 + P2 when the total momentum is P. The
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deuteron mass M is therefore invariant for the total momentum
values of interest in this work.

An exact solution of the boost problem has been given in
the instant form of dynamics by Coester and Polyzou [27],
following the methods suggested by Bakamjian and Thomas
[28]. In that solution, interactions are introduced solely into
the rest-frame mass operator. In contrast, here we use the ET
reduction of field-theoretic expressions to find an effective
Hamiltonian as well as currents that are consistent with that
Hamiltonian. (In particular, we ensure that the currents satisfy a
Ward-Takahashi identity.) In the two-body rest-frame system,
the Hamiltonian found by means of our ET reduction could
be used to define a suitable mass operator, which could
then be used to implement an exact boost to other frames
following the methods of Ref. [27]. We do not use this “exact
boost” construction because the electromagnetic currents that
are obtained from the ET reduction are not consistent with
it. Instead, in our work we develop an approximate boost
rule that maintains a clear correspondence to field theory
and so facilitates a more consistent treatment of strong and
electromagnetic interactions.

Another important contribution not included in Ref. [18]
enters at O(eP3). When PV πN coupling is used, an additional
contribution to the two-body isoscalar charge operator—
first identified by Riska [29]—must be included. Without it
the unitary equivalence between PV and pseudoscalar πN

coupling will not be respected [30]. In this work we include
this PV-coupling current and find that it is significant, albeit
not as important as when it is added in some nonrelativistic
approaches [7]. The decreased importance of this effect in our
approach is traceable to a factor of half in the PV-coupling
current in the ET formalism relative to the current used
in Ref. [7]. This factor must be taken into account if the
unitary equivalence between different techniques for obtaining
relativistic corrections to the NN interaction and currents is to
be maintained [31].

The ρπγ MEC has often been invoked in calculations of
electron-deuteron scattering. In this MEC the photon interacts
with the ρ-meson cloud of one nucleon, producing a pion that
is absorbed by the other nucleon. Thus the γN interaction is
of short range but the MEC has long range because a pion
exchange is involved. This MEC contributes to GM at O(eP4)
in the nuclear effective theory, but, as we show, it can produce
substantial effects in the magnetic form factor at large Q. We
include it in our relativistic calculation and consider the extent
to which it can help to explain the magnetic form factor in
the ET formalism. Although there is not much improvement
in the description of data if the standard tensor ρN coupling
of one-boson-exchange NN models is adopted, other values
of fρ/gρ may help to explain B(Q2). Note that we do not
include the ωσγ current that has been considered by Hummel
and Tjon [19] because it is of shorter range.

Our paper is structured as follows. First we give a brief
review of the ET formalism, in which we display expressions
for the bound-state equation, the NN interaction, and the
current matrix element—all for the particular case of an
instantaneous two-body interaction. Second, we discuss the
boost of the bound-state wave function that is needed to
evaluate matrix elements in the Breit frame. Third, we discuss

inclusion of MEC contributions, especially the PV-coupling
current and the ρπγ MEC, each of which has been found to
give significant contributions to electron-deuteron scattering.
We then also describe the inclusion of Z-graph effects
(coupling to the negative-energy states) in perturbation theory.
Last, we present our results for A,B, and t20 when each of
these effects is added to the baseline ETIA calculation.

II. THE EQUAL-TIME APPROACH

A number of alternative 3D relativistic treatments of
deuteron dynamics exist (see, for instance, Refs. [19–23]).
Of these, the formalism that is closest to this work is
that of Hummel and Tjon [19], although here we eliminate
some approximations made in Ref. [19]. In this section we
summarize the development of the ET formalism with respect
to obtaining the one-body limit and a systematic reduction
from 4D to 3D.

Consider the 4D Bethe-Salpeter equation (BSE) for a
bound-state vertex function, 
:


 = KG0
. (10)

Here K is, in principle, the sum of all two-particle-irreducible
NN → NN graphs. The NN propagator G0 is the product of
spin-half Feynman propagators for each nucleon: G0 = id1d2.
In studies of this equation for the deuteron bound state [32]
the kernel K included a set of single-boson exchanges—in
analogy to many nonrelativistic potential models—yielding
the “ladder” approximation. However, it is well known that in
such an approximation the BSE does not give the correct one-
body limit [33]. In other words, if we consider unequal-mass
particles, and take one of them to be very heavy, Eq. (10) does
not become the Dirac equation for the light particle moving in
the static field of the heavy one. This limit is properly treated in
Eq. (10) only if the full set of ladder and crossed-ladder graphs
is taken for K [33]. In Ref. [16] we provided a remedy to this
flaw and showed that the pieces of the graphs that appear in K
and are responsible for the one-body limit can be resummed
so that Eq. (10) becomes


 = U (G0 + GC)
, (11)

where the precise form of GC was derived in [16,18]. For exact
correspondence between Eqs. (10) and (11) we should have

K = U + UGCK. (12)

At the level of the one-boson-exchange interaction, where
K and U have only their lowest-order pieces, we see that
Eq. (11) defines an improved “ladder” BSE, which does have
the correct one-body limit:


 = K (2)G
, (13)

where G = G0 + GC . Note that if the field theory to be
solved involves nucleons and mesons then the approximation
K → K (2) is equivalent to restricting ourselves to a one-boson-
exchange kernel.

This equation is still 4D. The next step is to perform a
systematic reduction to three dimensions. We can motivate the
reduction scheme by following Salpeter [34] and assuming
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that the dominant interaction is the instantaneous part, i.e., the
part obtained by the replacement:

K (2)(q) = 
1
2

q2 − µ2
−→ K

(2)
inst(q) = − 
1
2

q2 + µ2
, (14)

where 
1 and 
2 are Dirac-matrix structures of the meson-
nucleon vertices and q = (q0, q) is the four-momentum of
the meson. Because K

(2)
inst depends on only the three-vector

q, this replacement reduces Eq. (13) to a 3D equation. If
we were to stop at this point, the reduction would not
be systematic nor would it include retardation effects. A
central result of Ref. [16] was that the 3D reduction could
be implemented in a systematically improvable way. Instead
of simply neglecting the retardation effects, they can be
reorganized into a 3D interaction kernel KET. This interaction
shares the property of K

(2)
inst that it does not depend on the time

component of momentum transfer. If the reduction includes
only positive-energy matrix elements, then KET is the 3D
interaction obtained from time-ordered perturbation theory.

Thus the reduction to three dimensions produces the
following two-body equation:


ET = KET〈G〉
ET. (15)

Here the 3D propagator 〈G〉 is obtained by integration over
the time component of relative four-momentum:

〈G〉 ≡
∫

dp0

2π
[G0(p; P ) + GC(p; P )] (16)

and the ET interaction is defined in lowest order by

〈G〉KET〈G〉 ≡ 〈GKG〉. (17)

(Hereafter we always denote integration over zeroth compo-
nents of relative four-momenta by angle brackets.)

To explain the significance of the GC term in 〈G〉 and its
connection to Z-graphs and the one-body limit, consider the
more standard ET Green’s function [35,36] that omits GC . It
is sufficient to work in the c.m. frame of two particles of equal
masses because the boost discussed in Sec. V will provide the
results needed in other frames. Then one finds

〈G0〉 = �+
1 �+

2

E − 2ε
− �−

1 �−
2

E + 2ε
, (18)

where �± are related to projection operators onto positive-
and negative-energy states of the Dirac equation, E is the
total energy, and ε = (p2 + m2)1/2. The propagator 〈G0〉 is
not invertible [37], as it has no components in the +− and
−+ sectors. This is related to the lack of a correct one-body
limit in the ladder BSE. If we had applied 3D reduction (14) to
Eq. (10) we would have obtained the Salpeter equation:


S = Kinst〈G0〉
S, (19)

which has the noninvertible 〈G0〉 in the intermediate state.
However, adding GC—which comes from resumming pieces
of the crossed-ladder graphs—before reducing to three dimen-
sions gives a 3D NN propagator:

〈G〉 = �+
1 �+

2

E − 2ε
− �+

1 �−
2

2ε
− �−

1 �+
2

2ε
− �−

1 �−
2

E + 2ε
. (20)

FIG. 1. One example of a Z-graph that is included in 3D Eq. (15).

This is the 3D propagator that was derived by Mandelzweig
and Wallace [38], here specialized to the c.m. frame for two
equal-mass particles. In its more general form for unequal
masses, the contribution 〈GC〉 to 〈G〉 provides the correct
one-body limit as either particle’s mass tends to infinity. The
propagator also is invertible.

With regard to Z-graphs, one may compare the ++ → ++
piece of

K
(2)
ET〈G〉K (2)

ET (21)

with the amplitude obtained at fourth order in the full 4D field
theory. We find that the contribution of negative-energy states
agrees at leading order in 1/m [18] and that this would be true
even were different mass particles considered and the mass
of either one taken to infinity. In other words, effects such as
Fig. 1 are included in a bound-state calculation that employs
Eq. (15). This is true even if only the instantaneous ladder
kernel K

(2)
inst is used, because of our careful treatment of the

one-body limit.

III. THE INSTANTANEOUS NN INTERACTION

In Ref. [18] we examined the importance of retardation
effects in KET. We found that they had little impact on
deuteron electromagnetic form factors. Hence in this work
we report only on results we obtained by using Eq. (15) with
an instantaneous interaction. This is consistent with use of the
Bonn-B interaction that takes an instantaneous form in the
c.m. frame. Other reductions to three dimensions are certainly
possible but the result that retardation effects are small should
not be sensitive to the reduction used.

As an example of how the reduction to an instantaneous,
3D interaction is performed we consider the 4D PV pion
kernel:

Kπ = g2
πτ1 · τ2

q2 − m2
π

γ 5
1 γ1 · (p1 − p′

1)

2m

γ 5
2 γ2 · (p2 − p′

2)

2m
. (22)

We use the identity

ū′
1γ

5
1

γ1 · (p1 − p′
1)

2m
u1

= ū′
1

{
γ 5

1 +
(
p0

1 − p′
1

0 − ε1 + ε′
1

)
2m

γ 5
1 γ 0

1

}
u1, (23)

where u′
1 and u1 are Dirac spinors for positive-energy states

and carry out integrations over time components of momenta
as implied by the angle brackets in Eq. (17). To derive the
instantaneous interaction we then take the static limit, i.e., we
assume |E − ε − ε′| 	 ω. In the language of effective-field
theory this means we consider only the effects of “potential
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pions” (which have q0 ∼ 0) and ignore the impact of “radiation
pions” (q0 ∼ mπ ) on our results [39]. The result for the
instantaneous ET interaction in ++ states is then

Kπ
ET = − g2

π

q2 + m2
π

ū′
1ū

′
2

{
γ 5

1 γ 5
2 − d1d

′
1

4m2
γ 5

1 γ 0
1 γ 5

2 γ 0
2

+ d1 − d ′
1

4m

(
γ 5

1 γ 0
1 γ 5

2 + γ 5
1 γ 5

2 γ 0
2

)}
u1u2, (24)

where u1 and u2 are Dirac spinors, d1 = EP − ε1(p1) − ε2(p2),
and d ′

1 = EP − ε1(p′
1) − ε2(p′

2). This interaction differs from
a pseudoscalar one because of the terms involving d1 and d ′

1,
which are subleading in 1/m. They arise because—although
we ignored retardation in the denominator of Eq. (22)—we
must still choose an energy shell to determine the value of
p0

1 − p′
1

0. Interaction (24) agrees with the µ̃ = 1 interaction
used by Adam, Göller, and Arenhövel [31], up to terms of the
order of p4/m4.

IV. CURRENT CONSERVATION IN THE EQUAL-TIME
APPROACH

To compute deuteron electromagnetic form factors we must
also construct a conserved electromagnetic deuteron current.
In four dimensions there are two pieces to the impulse current,
the first being determined by the G0 part of the propagator:


̄(P + q)G′
0J0,µG0
(P )

= i
̄(P + q)d1(p1)d2(p2 + q)j (2)
µ d2(p2)
(P ) + (1 ↔ 2),

(25)

where 
 is the solution of Eq. (10) for initial deuteron
momentum P = p1 + p2, 


′ is the solution for final deuteron
momentum P + q, dn is the Dirac propagator for particle n,
and j (n)

µ is the usual one-nucleon current for particle n:

j (n)
µ = e(n)

[
F

(n)
1 (Q2)γ (n)

µ + F
(n)
2 (Q2)

i

2m
σ (n)

µν qν

]
, (26)

where e(n) = |e|
2 (1 + τ

(n)
3 ) is the charge. Using the Ward-

Takahashi identity associated with formally modified but
practically identical form of this current [40] we can easily
show that current (25) is conserved, i.e.,

qµ
̄(P + q)G′
0J0,µG0
(P ) = 0, (27)

provided that 
 obeys the ladder BSE.
To obtain an equivalent 3D current, we can replace 
 → 
S ,

yielding the conserved current

AS,µ = 
̄′
S{〈G′

0JµG0K
(2)G0〉 + 〈G′

0K
(2)′G′

0JµG0〉
− 〈G′

0JµG0〉}
S, (28)

where 
′,G′
0, and K (2)′ include the momentum Q from the

photon absorption. Because we are considering the ET case
we can also replace K (2) → Kinst, and because Kinst has no
dependence on time components of momenta, that replacement
applied to Eq. (28) leads to

AS,µ = 
̄′
S{〈G′

0JµG0〉Kinst〈G0〉 + 〈G′
0〉Kinst〈G′

0JµG0〉
− 〈G′

0JµG0〉}
S, (29)

where the angle brackets indicate where integrations have been
carried out over time components of momenta. This latter
expression collapses to the impulse-approximation form when
Eq. (19) is used in the first two terms:

AS,µ = 
̄′
S〈G′

0JµG0〉
S. (30)

The three terms in Eq. (28) are equal and they simplify to just
one term in Eq. (30).

However, in this work we did not begin with the ladder BSE.
Instead we began with the 4D equation (11). Constructing
a conserved impulse-approximation current for the vertex
function that is the solution of Eq. (11) is a little more involved.
In Ref. [18] we showed how to add a piece to current (25),
which results in a conserved current when 
 is the solution of
Eq. (11), giving a total 4D current


̄(P + q)G′
0J0,µG0
(P ) + 
̄(P + q)GCµ
(P ). (31)

The explicit expression for GCµ can be found in Ref. [18].
With this 4D current in hand, we calculate the reduction to

three dimensions as in Eq. (30). Replacing 
 with 
ET, we end
up with

Ainst,µ = 
̄′
ETG

γ
inst,µ
ET, (32)

where

Gγ
inst,µ = 〈G′JµG〉 = 〈G′

0JµG0 + GCµ〉. (33)

This is analogous to the reduction employed for the bound-
state equation itself. Once again, this reduction can be
performed in a systematic fashion, but here we keep only the
results for an instantaneous interaction. In that case Ainst,µ is
conserved, provided that 
ET is the solution of Eq. (15) by use
of the instant form of the interaction. The explicit form of Gγ

inst
is [18]

Gγ
inst,µ(p1, p2; P,Q) = i

〈
d1(p1)d2(p2 + Q)j (2)

µ d2(p2)
〉

+ i
〈
d1(p1)dc̃

2(p2 + Q)j (2)
c,µdc

2(p2)
〉

+ (1 ↔ 2). (34)

Only the γ µ piece of j (n)
µ is relevant for charge conservation,

the piece proportional to σµν is automatically conserved.
Meanwhile, dc

n is a one-body Dirac propagator used in GC(P )
to construct the approximation to the crossed-ladder graphs.
Correspondingly, dc̃

n appears in GC(P + q). It does not equal
dc

n, even if particle n is not the nucleon struck by the photon.
Finally,

j (2)
c,µ = (

q2γ
(2)
µ − j̃ (2)

µ

)
; j̃ (2)

µ = q2

p̂′
2µ + p̂2µ

ε′
2 + ε2

γ
(2)
0 , (35)

with p̂2 = [ε(p2), p2]. The current defined by Eqs. (32)–(35)
includes the effects of photons creating Z-graphs by means
of couplings from positive-energy states to negative-energy
states.

This defines our impulse-approximation current. Detailed
results for this current employed with the solutions of
Eq. (15) were presented in Ref. [18]. The various refinements
such as the j (2)

c,µ term in Eq. (34) that were not considered
by Hummel and Tjon [19] produce only very small changes
for electron-deuteron scattering. They are incorporated in our
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calculations because they ensure current conservation when
the ET propagator is used.

V. DYNAMICAL BOOST

To compute the current in Eq. (32) we consider electromag-
netic matrix elements in the Breit frame, where P = − 1

2 q in
the initial state and P′ = 1

2 q in the final state. In the impulse
approximation, using the instant interaction and the instant
current in the Breit frame, we may express the current matrix
element as∫

d3p

(2π )3

̄

(
p + 1

4
q;

1

2
q
)

×Gγ
inst,µ

(
p − 1

2
q,−p; P,Q

)



(
p − 1

4
q; −1

2
q
)

. (36)

In the ETIA calculation of Ref. [18], we calculate expression
(36) by using vertex functions 
 that we obtain by solving the
bound-state equation

(EP − ε1 − ε2)|EP〉 = v|EP〉, (37)

where εn = √
m2 + p2

n for the state vector |EP〉, and then
computing


(k; P) = 〈k; P|G−1
0 |EP〉. (38)

The operator

HET = ε1 + ε2 + v (39)

may be interpreted as the effective Hamiltonian. With the usual
conditions on the interaction v, it is bounded from below and
may be used to generate a Hilbert space of states.

The interaction v could be defined only in positive-
energy states, or it could be the effective interaction in
positive-energy states that includes the effects of couplings
to negative-energy states: +−,−+, and −−. The couplings to
negative-energy states obtained from the ET reduction do not
produce any singularities in the effective interaction v. Once
the interaction is defined in the c.m. frame of the two particles,
where P = 0, the lowest eigenvalue is the rest mass of the
two-particle bound state M.

The problem here is that this does not necessarily guarantee
that

EP =
√

M2 + P2 (40)

in other frames. That is because solving Eq. (37) in an arbitrary
frame means using the ET interaction KET for v, and KET is
calculated with Dirac spinors with arguments p ± 1

2 P. Such
an interaction depends on total momentum P and is not
guaranteed to produce a bound state of the appropriate energy.
In fact, in Ref. [18] we found that KET must be renormalized
by a factor λ(P2) if Eq. (40) is to hold in frames other than
P = 0. The ad hoc factor λ varies linearly from 1 at P2 = 0 to
about 1.10 at P2 = 4 GeV2 [18].

This occurs because the two-body ET interaction we obtain
by solving Eq. (37) by using the ET interaction does not respect
the Poincaré algebra. The basic requirement of Poincaré
invariance is that states must transform under a unitary
representation of the Poincaré group. The 10 generators of

translations in time, translations in space, boosts, and rotations
are the Hamiltonian operator, taken here to be of the form (39),
the total momentum P, the boost operator K, and the angular
momentum operator J. They obey the following commutation
relations:

[P,H ] = 0, [J,H ] = 0,

[K,H ] = iP, [Ki, Pj ] = iδijH,
(41)

[Ji, Pj ] = iεijkPk, [Ji,Kj ] = iεijkKk,

[Ji, Jj ] = iεijkJk, [Ki,Kj ] = −iεijkJk.

The two-body boost problem is to constrain the interaction
v such that the Poincaré generators satisfy the commutation
rules that are required for Poincaré invariance. Our strategy
will be to take v to agree with KET in the two-body rest-frame
(P = 0) and then impose conditions (41) to obtain approximate
expressions for the matrix elements of v in a frame where
P �= 0. We denote the Hamiltonian of this “approximate boost”
procedure by HET.

As mentioned earlier, we could instead employ an exact
solution to the two-body boost problem by following Ref. [27]
and introducing the interaction KET(P = 0) into the rest-frame
mass operator M̂ . A Hamiltonian that satisfies the Poincaré
algebra would then be

HBT =
√

M̂2 + P2. (42)

The reason we choose not to apply Eq. (42) is that for
electromagnetic interactions we also need current operators
that are consistent with both the rest-frame and boosted
Hamiltonian. The ET formalism solves that problem by
performing a consistent reduction of the quantum field theory.
As discussed above, this yields currents that are consistent
with KET. Such a construction is significantly more difficult
for HBT. To indicate this we merely point out that if HET

exactly satisfied the Poincaré algebra then the two different
Hamiltonians HET and HBT would be related by a unitary
transformation, i.e., there would exist an operator U with
U †U = 1 and

HET = UHBTU †. (43)

If this U were known, we could derive currents for use
with states obtained from Hamiltonian (42) by transforming
the currents we derived in the ET formalism by using
transformation (43). However, this unitary transformation is
not known. Therefore, to respect the consistency between the
ET bound states and current operators, we focus on the problem
of finding an approximate boost that preserves the form of HET

in frames with P �= 0.
It should be mentioned that if P �= 0 the Hamiltonian HET

has small differences from the operator ε1 + ε2 + KET that was
used in our analysis of the Ward-Takahashi identity. We leave
the issue of boosting the currents so as to exactly maintain the
Ward-Takahashi identity at P �= 0 as an unsolved problem.

An approximate solution to the boost problem within the
subspace of an eigenvalue of the Hamiltonian was obtained in
Ref. [26] for the case of two scalar particles. It provides an
exact result for the energy of the two-body system. Here we
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review the basic elements of that proof and extend the result
approximately to the case of two spin-half particles.

For the ET (and a number of other 3D) formalism(s), the
two-body boost problem is the same as for the instant form
of Hamiltonian dynamics [41]. In this form of dynamics, total
momentum and angular momentum operators do not depend
on the interactions. They are

P = p1 + p2, (44)

J = r1 × p1 + r2 × p2 + 1
2 (σ1 + σ2). (45)

It follows from H commuting with P and J that v must be
translationally and rotationally invariant. The commutation
relation of K and H requires the boost operator to depend on the
interaction. Such a boost is called “dynamical” to distinguish it
from a “kinematical” boost for which the boost generator does
not involve the interaction. The commutation rule between the
dynamical boost generator and Hamiltonian thus involves v2

terms.
Bakamjian and Thomas [28] derived the form of the boost

operator for instant dynamics. For a free boost, the operator is

K0 = 1

2
(r1ε1 + ε1r1) − 1

2

σ1 × p1

ε1 + m
+ (1 → 2). (46)

When interactions are present, there is an interaction part of the
Hamiltonian, v, and an interaction part of the boost operator
that is given approximately by

Kv = 1
2 (Rv + vR) , (47)

where R = 1
2 (r1 + r2). This boost operator omits some terms

from the standard Newton-Wigner construction [27] for R and
likely could be improved. We leave such possible improvement
of the boost for future analysis. Although it involves a
significant approximation, in the case of the deuteron the boost
operator of Eq. (47) yields relationship (40) between the mass
and energy of the bound state to good accuracy.

With the definitions given above, [Ki, Pj ] = iHδij is
satisfied. However, there is an error term of the order of 1/m2 in
the commutation relation [Ki,Kj ] = −iεijkJk . Accepting this
error, the interaction v must take an appropriate, but unknown,
form consistent with [K,H ] = iP.

Noting that the free-boost operator K0 and the free
Hamiltonian H0 = ε1 + ε2 obey the commutation relation
[K0,H0] = iP, it follows that when interaction-dependent
terms are introduced into that commutation relation, their
contributions must sum to zero, i.e.,

[K0, v] + [Kv,H0] + [Kv, v] = 0. (48)

This is equivalent to
1
2 [R,H0v + vH0 + v2] + 1

4 [r� + �r, v] + [Kσ , v] = 0,

where we have defined

Kσ ≡ −1

2

σ1 × p1

ε1 + m
+ (1 → 2), (49)

� ≡ ε1 − ε2. (50)

Algebraic manipulations lead to

[R,H0]v + v[R,H0] + 1
2H [R, v] + 1

2 [R, v]H

+ 1
2 (�rv − vr�) + [Kσ , v] = 0. (51)

In quantum field theory the boost of a mass eigenstate
appears to be kinematical. In fact the boost velocity β = P/EP
depends on the eigenvalue in the c.m. frame M, which of course
involves the interaction. This simple observation provides
the key to solving the boost problem in instant dynamics.
The v2 terms in the dynamical boost may be eliminated
when the boost is considered within the subspace of a single
eigenvalue of the mass.

The boost velocity appropriate to a mass eigenstate does
not enter the commutation relations. To restrict the boost to
the subspace corresponding to a particular eigenvalue of H we
evaluate the matrix element of Eq. (51) between eigenstates of
mass M that obey Eq. (37). This yields

〈EP|{[R,H0]v + v[R,H0] + 1
2EP[R, v] + 1

2 [R, v]EP

+ 1
2 (�rv − vr�) + [Kσ , v]

}|EP〉 = 0. (52)

The v2 pieces in the third and fourth terms of Eq. (51) have
been eliminated in favor of the energy eigenvalue EP. Because
of this, the boost appears to be kinematical in much the same
way that the boost of a mass eigenstate in quantum field theory
appears to be kinematical.

Performing the manipulations discussed in Ref. [26], we
can convert Eq. (52) into an equation that is linear in v,

〈EP|
{

1

2

(
1 + H0

EP

)
[R,H0]v + 1

2
v[R,H0]

(
1 + H0

EP

)

+ 1

2
EP[R, v] + 1

2
[R, v]EP + p · P

EP
rv

− vr
p · P
EP

+ [Kσ , v]

}
|EP〉 = 0. (53)

This equation is solved in momentum space to deter-
mine the form of v. Momentum-space matrix elements
involve∫

d3p′

(2π )3

d3p

(2π )3
〈EP|p′; P〉EP

×{[A(p′; P) + A(p; P) + Bop]〈p′; P|v|p; P〉
− i[KP,σ , 〈p′; P|v|p; P〉] − ik′

σ 〈p′; P|v|p; P〉
+ i〈p′; P|v|p; P〉kσ }〈p; P|EP〉 = 0, (54)

where

A(p; P) = 1

2EP

[
1 + d(p; P)

EP

]
∂d(p; P)

∂P
, (55)

where d ≡ ε1(p; P) + ε2(p; P) is the value of H0 and A(p′; P)
is the same as A(p; P), except with p → p′. Meanwhile,

Bop ≡ ∂

∂P
+ p′ · P

E2
P

∂

∂p′ + p · P

E2
P

∂

∂p
, (56)

KP,σ = −1

2

(σ1 + σ2) × P
EP(EP + M)

, (57)

and

kσ = −1

2

σ1 × q1

EP(ε1 + m)
+ (1 → 2), (58)

014006-7



D. R. PHILLIPS, S. J. WALLACE, AND N. K. DEVINE PHYSICAL REVIEW C 72, 014006 (2005)

with

q1 = p −
(

1

2
− ε1 + m

EP + M

)
P. (59)

Derivatives in Bop act on only the interaction.
With spin effects omitted, a solution of Eq. (54) was

obtained such that

〈p′; P|v|p; P〉 = f (p; P)ṽ(p′, p; P)f (p′; P). (60)

Here,

[A(p; P) + Bop]f (p; P) = 0. (61)

The form of ṽ is deduced from the condition Bopṽ = 0 and
the boundary condition that, for P = 0, the interaction must be
the c.m. frame one. Now, by constructing the rotational scalars

p2
c = p2 − (p · P)2

E2
P

,

p′2
c = p′2 − (p′ · P)2

E2
P

, (62)

pc · p′
c = p · p − (p · P)(p′ · P)

E2
P

,

one can check that

Bopp2
c = 0,

Bopp′2
c = 0, (63)

Boppc · p′
c = 0.

Therefore it follows that if ṽ = vc(p′
c, pc) is an arbitrary

function of p2
c, p′2

c and pc · p′
c, then

Bopvc(p′
c, pc) = 0, (64)

and the condition Bopṽ = 0 is satisfied. Thus, in the absence
of spin,

ṽ(p′, p; P) = vc(p′
c, pc), (65)

where

pc ≡ p − (p · P)P
EP(EP + M)

, (66)

and

p′
c ≡ p′ − (p′ · P)P

EP(EP + M)
. (67)

In the c.m. frame, pc and p′
c are the standard relative momenta.

When the total momentum is in the z direction, the z

component of relative momentum pc is contracted according
to pcz = pz/γ , where γ = EP/M . The components of relative
momenta perpendicular to the total momentum are unaffected:
pc⊥ = p⊥. The same rule applies to p′

c.
Solving Eq. (61) for f (p; P) subject to the boundary

condition that f (p, 0) = 1 we find

f 2(p; P) = M

EP

[
EP − ε1(p; P) − ε2(p; P)

M − 2ε(pc; 0)

]
. (68)

This completes the proof that the commutator relation
[K,H ] = iP is satisfied exactly in the subspace of eigenvalue
EP when spin effects are omitted.

When spin effects are included, we find that if the c.m. frame
interaction is expressed in terms of a matrix element involving
Dirac spinors depending on pc and p′

c, then the commutator
term involving KP,σ and the spin terms generated by Bop acting
on the Dirac spinors in Eq. (54) cancel. That is, let

vc(p′
c, pc) = ū1(p′

c)ū2(p′
c)v̂(p′

c, pc)u1(pc)u2(pc) (69)

where v̂(p′
c, pc) is a rotationally invariant function of its

arguments that may involve local Dirac matrix structures, for
example the Fermi covariants. The Dirac spinors u1, u2, etc., in
Eq. (69) omit the usual Pauli spinor factors, i.e., they are boost
operators for Dirac spinors similar in form to approximation
(83) below. It follows that the spinor matrix element in
Eq. (69) involves products of terms like σ1 · pc and σ2 · pc from
the spinors and v̂. Now consider the Dirac matrix structure

1
2 that arises from these products. The cancellation we
want will occur, provided that

Bop
1
2 − i[KPσ , 
1
2] = 0. (70)

However, the Dirac structures 
1
2 either involve σ1 · σ2

or—as in the case of πNN coupling—factors of σn · pc. A
straightforward calculation then shows that

Bopσ1 · pc − i[KP,σ , σ1 · pc] = 0 (71)

and that a similar identity holds also for argument p′
c and spin

operator σ2. Because KP,σ commutes with σ1 · σ2, it follows
that

Bopvc(p′
c, pc) − i[KP,σ , vc(p′

c, pc)] = 0. (72)

The remainder of the boost operator can be understood as
requiring a rotation of spins when P �= 0:

Ri(p) ≈ 1 + iP · σi × p
2(εc + m)2

+ · · · , (73)

where i = 1 or 2 and omitted terms are of the order of 1/m4

[42]; that is, the interaction in a frame with nonzero total
momentum should have the final form

〈p′; P|v|p; P〉 = f (p′; P)R′
1R

′
2ū1(p′

c)ū2(p′
c)v̂(p′

c, pc)

× u1(pc)u2(pc)R1R2f (p; P). (74)

Factors R′
i and Ri allow 1/m2 parts of the terms involving k′

σ

and kσ to be canceled by new terms generated when Bop acts
on the spin rotation factors in Eq. (54). However, there are
order 1/m4 errors that cannot be canceled: We accept these
as error terms of the boost related to the fact that our boost
generator is not exact.

In summary, we find that if an arbitrary c.m. frame
interaction that is rotationally and translationally invariant is
constructed in other frames according to Eq. (74), then a bound
state of mass M defined by solution of the c.m. frame equation,

[M − 2ε(p′; 0)]�c(p′) =
∫

d3p

(2π )3
vc(p′, p)�c(p), (75)

corresponds in another frame to a state of energy EP, given by
the solution of the eigenvalue equation:

[EP − ε1(p′; P) − ε2(p′; P)]�(p′; P)

=
∫

d3p

(2π )3
〈p′, P|v|p; P〉�(p; P). (76)
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FIG. 2. On the left-hand side of the upper row we depict
the positive-energy-state impulse-approximation mechanism for
electron-deuteron scattering. On the right-hand side of that row is
the PV-contact MEC. In the bottom row we show the ρπγ MEC,
with the ρ meson represented by the wavy line. In each case the blobs
are the deuteron vertex functions 
.

Wave functions for the initial and final states are now
obtained from Eq. (76) by use of the interaction defined as
in Eq. (74). This provides wave functions of energy EP that
correspond to a mass M in the c.m. frame of the two-nucleons
and that can be inserted into expression (36). The spin rota-
tion factors are given approximately by approximation (73),
within errors of the order of 1/m4. We have omitted spin
rotation effects in our calculations but we find the correct
relation between energy and mass with high accuracy. The
boost rule just stated is approximate because we have omitted
terms that would be required for achieving an exact solution
of the Poincaré algebra. It is designed to be consistent with the
currents derived with the ET reduction.

VI. PSEUDOVECTOR-PION CONTRIBUTION TO THE
ISOSCALAR TWO-BODY FOUR-CURRENT

The derivation presented in Sec. IV involves a straight-
forward reduction of conserved 4D matrix elements of the
electromagnetic current. It neglects retardation effects (known
to be small) but also neglects the dependence on the relative
energy p0 of meson-nucleon vertex functions.

As we show here, keeping the p0 dependence of the
πNN vertex results in an additional contribution to the 3D
current that can be interpreted as a “MEC” contribution to
the current operator. As stressed by Friar [30] and Adam and
Arenhövel [43], it is critical that these MEC contributions be
evaluated in a manner consistent with that used to evaluate
the NN interaction. Here we implement this consistency by
recalling that we derive the instant NN potential KET by
computing the ET matrix elements by using a 4D kernel and
then taking the static limit |E − ε − ε′| 	 ω in the denomina-
tor. Thus, to obtain a consistent Aµ for PV-pion coupling, we
should implement Eq. (29) with the 4D K given by Eq. (22)
and also take the static limit there. This leads to a pion-range
contribution to the isoscalar four-current, one first identified
by Riska a number of years ago. This contribution was not
included in calculations of Ref. [18], and its omission is part
of the reason that the data for A are underpredicted there.
It is depicted on the right-hand side of the upper line of
Fig. 2. For PV πN coupling, we derive the extra current from

Eq. (28) by evaluating the expressions using the positive-
energy part of each Dirac propagator and the π -exchange
kernel of Eq. (22). From the procedure outlined above,
Eq. (24) leads to an expression very similar to Eq. (29), as
follows:

Aµ = 
̄′
ET

{〈G′
0JµG0〉KA,π

ET 〈G0〉 + 〈G′
0〉KB,π

ET 〈G′
0JµG0〉

− 〈G′
0JµG0〉

}

ET. (77)

where

K
A,π
ET = K

B,π
ET

= −g2
πτ1 · τ2

q2 + m2
π

ū′
1ū

′
2

{
γ 5

1 + −rA − ε1 + ε′
1

2m
γ 5

1 γ 0
1

}

×
{
γ 5

2 + rA − ε2 + ε′
2

2m
γ 5

2 γ 0
2

}
u1u2, (78)

with rA = 1
2 (EP − 2ε2 + ε′

2 − ε′
1). The factors in curly braces

in Eq. (78) are similar to those in Eq. (24). The replacement
of p0

1 − p′
1

0 by −rA occurs as the result of performing the
integrations over time-components of momenta as dictated by
the reduction to three dimensions. Conversely p0

2 − p′
2

0 gets
replaced by +rA.

The extra terms that arise because of the retention of p′
0 −

p0 pieces in the numerator of the pion exchange can now be
determined by a comparison of Eq. (77) with Eq. (29). This
leads to the following expression, which is what we calculate
below to include the PV-contact MEC:

AMEC,µ = 
̄′
ET

{〈G′
0JµG0〉 + 〈G′

0JµG0〉
(
K

A,π
ET − Kπ

ET

)〈G0〉
+ 〈G′

0〉
(
K

B,π
ET − Kπ

ET

)〈G′
0JµG0〉

}

ET. (79)

In fact, the dominant contribution here is due to J0.
Contributions to �J are suppressed by p/M and are numerically
small, but they are included automatically in our formalism.
The resultant expression for the two-body piece of J0 agrees
with that of Adam, Goller, and Arenhövel [31] at leading
order in p/m. We have also checked that expression (79) for
this PV-coupling current agrees numerically with the more
conventional expression as a two-body operator—again, to
leading order in p/m.

VII. THE ρπγ EXCHANGE CURRENT

Because of the quantum numbers of the deuteron, the ρπγ

MEC is generally thought to be the lowest-mass mesonic
excitation that makes a contribution to the electromagnetic
deuteron current. The ρπγ exchange current can be used
to provide a resonance-saturation model of the two-body
contribution to �J . This meson-exchange piece of GM is of
O(eP4) and has an unknown coupling from L(3)

πN . We can
model the value of this unknown coupling by assuming it is
dominated by the ρ excitation; see, e.g., Ref. [44].

The Lagrangian governing the ρπγ vertex is

L = −e
gρπγ

2mρ

εαβγ δF
αβ �ργ · ∂δ �π, (80)

014006-9



D. R. PHILLIPS, S. J. WALLACE, AND N. K. DEVINE PHYSICAL REVIEW C 72, 014006 (2005)

whereas the ρNN vertex has the form

LρNN = N̄gρ

(
γ µ + i

fρ

gρ

σµνqν

2m

)
N. (81)

This yields the two-body current depicted on the lower row
of Fig. 2. Note that this current is automatically conserved.
In calculating it we use the same vertex functions and form
factors we employed at the πN and ρN vertices in calculating
the NN potential. The coupling gρπγ = 0.563 is extracted from
the decay ρ → πγ . This value was used by Hummel and Tjon
[19]; however, Truhlı́k, Smejkal, and Khanna [45] recently
calculated somewhat higher values, namely, 0.585 (based on
ρ± decay) and 0.610 (based on ρ0 decay). Although the overall
sign of gρπγ is not determined by the experimental data, a
recent lattice QCD calculation gives a positive value [46].
Quark models such as the one of Ref. [47] also provide a
positive value for gρπγ . We have used gρπγ = 0.563 in our
calculations. For consistency with the Bonn-B potential, the
ratio fρ/gρ was initially chosen to be 6.1. However, fρ/gρ is
not well determined by fitting the NN data, and recent work
has suggested that a smaller value fρ/gρ ≈ 4.5 is acceptable
[48]. This would be closer to the fρ/gρ ≈ 3.7 value obtained
when vector-meson dominance is used to explain the isovector
anomalous magnetic moment of the nucleon [49]. We note that
in nonrelativistic calculations the fρ/gρ term often is neglected
altogether on the grounds that it is higher order in 1/m [8]. In
contrast, Hummel and Tjon performed relativistic calculations
of deuteron form factors using fρ/gρ = 6.8. They found that
the contribution of the tensor ρN coupling to GM cancels
with the contribution of the vector ρN coupling when |q| is
∼1 GeV. This throws into question the validity of neglecting
the tensor piece of the ρNN coupling if fρ/gρ is as large as
this.

Even were fρ/gρ known precisely there is still another
significant source of uncertainty in evaluating this ex-
change current: Its contribution to electron-deuteron scattering
depends crucially on the behavior of the current operator as a
function of Q2 and hence on the ρπγ form factor. In the work
of Hummel and Tjon, vector-meson dominance was used to
obtain a ρπγ form factor given solely by the ω meson:

Fρπγ (Q2) = 1

Q2 + m2
ω

. (82)

This same ρπγ form factor is also employed in the nonrel-
ativistic calculations of Refs. [8,9]. Other calculations have
used form factors based on quark models [20,47]. Such form
factors tend to reduce the contribution of this MEC, which is
also very sensitive to the cutoff masses in the πN and ρN

vertices.
No experimental data are available to constrain the form

factor that should be used for the ρπγ vertex. Lattice QCD
calculations can determine the form factor for on-shell π and
ρ mesons. Recent lattice calculations of Edwards [46] indicate
that for Q2 up to 0.6 GeV2 the ρπγ for factor agrees with the
vector-meson dominance form of Eq. (82).

VIII. Z-GRAPHS

In the full ET analysis the interactions and propagators
are defined on a complete set of Dirac plane-wave states:
++,+−,−+, and −−. The bound-state equation is solved
with all possible couplings between these states, and the
current matrix elements allow for all possible transitions
between the states. Physically, coupling to negative-energy
states allows positive-energy, plane-wave solutions of the free
Dirac equation to be distorted in the presence of a meson
field. The simplest example of this effect—and one of the
motivations for including it—is the shift of the mass of a Dirac
particle in a uniform external scalar field: m → m∗ = m + S.
Positive-energy solutions of the Dirac equation in this scalar
field have the form

u(p) ≈
(

1
σ ·p
2m∗

)
. (83)

To recapture the effect of the replacement m → m∗ order-
by-order in S, the coupling of positive-energy states of
mass m to negative-energy states must be included in the
calculation. Therefore allowing for couplings between all
positive- and negative-energy components—as we do in the
full ET formalism—is a general way to incorporate this kind
of distortion of the Dirac spinors in the theory.

It is interesting to explore the extent to which these effects
of coupling to negative-energy states are captured if we include
them only by means of first-order perturbation theory in the
nucleon-nucleon potential. Thus, instead of solving Eq. (15)
in all ρ-spin sectors, ρ1, ρ2 = ++,+−,−+,−−, we solve
it in ++ states alone to obtain 
++

ET and then generate the
couplings to negative-energy states by treating the difference
between the full interaction and the ++ states-only interaction
in first-order perturbation theory. This leads to the following
expression for the current matrix element:

AZ,µ = 
̄′++
ET {〈G′

0JµG0〉 + 〈G′
0JµG0〉(KET − K

++,++
ET )〈G0〉

+ 〈G′
0〉(KET − K

++,++
ET )〈G′

0JµG0〉}
++
ET . (84)

The second and third terms in Eq. (84) provide the leading-
order corrections that are due to negative-energy components
in the initial and final states, respectively. The leading-order
Z-graph calculations we present below are performed in this
way.

IX. RESULTS

With all the theoretical pieces of the puzzle assembled, we
now calculate electron-deuteron scattering observables. The
vertex functions employed are the ones calculated with all
positive- and negative-energy states included, as described
in Ref. [18]. If the negative-energy states are dropped the
interaction is exactly the Bonn-B potential for the Thomp-
son equation, as derived and fitted to NN phase shifts in
Ref. [25]. This model gives a reasonable fit to the NN data
and good deuteron static properties, although it is not as
good a fit as some more recent NN potentials [8,50,51].
When negative-energy states are included the deuteron binding
energy changes slightly. To compensate for this we adjust
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FIG. 3. The deuteron structure functions A and B. The experi-
mental data for A of Refs. [54,55] are denoted by the open circles,
and those of Refs. [2–4] are represented by triangles and squares.
The experimental data for B of Refs. [55,56] are shown by open
circles, and those of Ref. [57] are shown by squares. The dotted
and short-dashed curves labeled ET(++) and ET(neg) are based on
the ET calculation without the dynamical boost. The long-dashed and
solid curves labeled Boost(++) and Boost(neg) include the dynamical
boost.

the σ -meson coupling from the value of the fit in Ref. [25],
(g2

σ /4π ) = 8.08, to (g2
σ /4π ) = 8.55.

The single-nucleon form factors are taken from the recent
work of Kelly [52] that includes data from Jefferson Lab-
oratory on the ratio GEp

/GMp
and GEn

. However, we find
that the results are very close to those obtained by using the
nucleon form factors of Mergell, Meissner, and Drechsel [53].
Both parametrizations incorporate constraints on the asymp-
totic shape of F1 and F2 by use of arguments from perturbative
QCD.
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FIG. 4. The tensor-polarization observable t20. The older experi-
mental data [58] and the NIKHEF data of Bouwhuis et al. [59] are
shown by circles, the JLab data of Abbott et al. [1] by squares and
the Novosibirsk data of Nikolenko et al. [60] by triangles. The curves
have the same meaning as in Fig. 3.
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FIG. 5. The deuteron structure functions A and B with and without
the PV-coupling MEC. Experimental data points are as described in
the caption to Fig. 3.

We see clearly in Fig. 3 that the baseline ETIA calculation
underpredicts the A data for Q2 = 25–75 fm−2, i.e., Q2 =
1–3 GeV2. This is true for both the curve labeled ET(++)—
which includes only ++ states—and the one labeled
ET(neg)—which includes the effects of all positive- and
negative-energy states to all orders in KET. Data from the two
JLab experiments that have measured A [3,4] are denoted by
triangles and squares. Note that these experiments confirm the
trend of the SLAC data of Arnold et al. The extant experimental
data for B [55–57] (which, as yet, include no JLab data) are
even less well described. Already at Q2 <∼ 25 fm−2 ≈ 1 GeV2

there is significant disagreement between our ETIA calculation
and the data.

In Fig. 3 we also present results for observables A and
B showing the effects of the approximate dynamical boost.
The curves are labeled Boost(++) and Boost(neg). The net
effect of the dynamical boost is significant but not large. For
either the ++ calculation or the one including all states, the
boost shifts the minimum in the calculated B observable to
somewhat higher Q2. As seen in Fig. 3, the A observable is not
much altered by the boost. These results suggest that further
refinement of the approximate boost developed here, although
theoretically interesting, would have little phenomenological
impact on these observables.

A similar result is seen for observable t20 in Fig. 4.
Although effects on observables are not large, inclusion of
the approximate dynamical boost in our calculations is an
important step forward because it ensures that the deuteron
mass is independent of frame, whereas an ad hoc factor λ(P2)
in KET was needed for this purpose in prior work.

Calculations with and without the PV-coupling MEC are
shown in Fig. 5 for A and B and in Fig. 6 for t20. This MEC,
which must be included because we chose to employ PV πN

coupling, provides a significant increase in the A observable,
small changes in B, and a significant shift of t20 toward smaller
Q. The increase in A helps to move the result into better
agreement with the experimental data. However, our results
for B still decrease too fast with Q and the minimum occurs at
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FIG. 6. The tensor-polarization observable t20 with and without
the PV-coupling MEC. Both calculations include all positive- and
negative-energy sectors. Experimental data points are as described in
the caption of Fig. 4.

too low a value of Q. The shift of t20 aligns our results quite
well with the JLab data of Abbott et al. [1,2].

In Fig. 7 we present our results for A and B when the ρπγ

MEC is included, using vector-meson-dominance form factor
(82), as in the work of Hummel and Tjon. Results are shown
for three values of the tensor coupling ratio fρ/gρ = 0, 3, and
6.1, and all calculations include the full set of positive- and
negative-energy states and the PV-coupling MEC. At larger
values of Q, the calculated values of A are increased by the ρπγ

MEC. For the ratio f/g = 0, the ρπγ contribution provides
good agreement with the data for observable A.

Meanwhile, Fig. 8 shows results for the tensor observable
t20, which is rather insensitive to the ρπγ contribution. In
contrast, this exchange current has a significant impact on the
observable B. In particular, different choices for the tensor
ρN coupling change the results markedly, as is evident in the
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FIG. 7. The deuteron structure functions A and B. Each curve is
based on including all positive- and negative-energy states, the boost,
the PV-coupling MEC and the ρπγ MEC. Curves differ only by the
value of tensor ρN coupling fρ/gρ used in the ρπγ graph.

0.0 25.0 50.0 75.0 100.0

Q
2
 (fm

−2
)

−1.5

−1.0

−0.5

0.0

0.5

1.0

t 20

Boost(neg) + PV + RPG(f/g=0)
Boost(neg) + PV + RPG(f/g=3)
Boost(neg) + PV + RPG(f/g=6.1)

FIG. 8. The tensor-polarization observable t20. Each curve is
based on including all positive- and negative-energy states, the boost,
the PV-coupling MEC, and the ρπγ MEC. Curves differ only by the
value of tensor ρN coupling f/g used in the ρπγ graph.

lower curves of Fig. 7. It is clear from these results that the
minimum of B is especially sensitive to the value of fρ/gρ

and that experimental data are described best with zero tensor
coupling. However, a softer ρπγ form factor than that of
Eq. (82) would reduce the impact of the ρπγ MEC on all
observables. Also, Hummel and Tjon [19] estimated the effects
of a possible ωσγ MEC and found that it can have a significant
effect on the minimum of the B observable when a vector-
meson-dominance ωσγ form factor is used. Clearly a better
understanding of the effects of meson-exchange corrections on
the electron-deuteron B structure function is needed. Lattice
QCD calculations along the lines of Ref. [46] are needed for
the ρπγ form factor with Q2 values up to 2 GeV2.

Negative-energy states have significant effects on A and
(particularly) B. See, e.g., the curves labeled Boost(++) and
Boost(neg) in Fig. 3. We do not, however, find as large an effect
from negative-energy states as was obtained in the work of
van Orden, Devine, and Gross [20]. There the inclusion of such
effects produced an acceptable description of the B data. This
is likely due in part to the fact that we use a PV πN coupling,
whereas in Ref. [20] an admixture of about 25% pseudoscalar
πN coupling was employed. Pseudoscalar πN coupling is
known to produce larger effects from negative-energy states.

To clarify the significance of including all positive- and
negative-energy states in our analysis, we also calculate the
leading-order Z-graphs. Figures 9 and 10 compare results we
obtained by using ++ states only, adding the leading-order
Z-graphs as in Eq. (84), and including all positive- and
negative-energy states. MECs are omitted. In the case of
observable B the leading-order Z-graphs do not accurately
reproduce the results of a calculation that includes all positive-
and negative-energy states to all orders in perturbation theory.
First-order perturbation theory for Z-graphs is adequate
for observables A and t20, but not for B. Solving for the
deuteron vertex functions nonperturbatively in all positive-
and negative-energy sectors, one finds smaller effects on the B
observable that are due to couplings to negative-energy states
than are predicted by leading-order Z-graphs.
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FIG. 9. The deuteron structure functions A and B. In all cases the
boost is included and the meson-exchange corrections are omitted.
Dotted curves are based on including ++ states only, solid curves
are based on including all positive- and negative-energy states, and
dashed curves are based on including ++ states and adding the
Z-graphs in first-order perturbation theory as in Eq. (84).

Our results suggest that the existing data for the deuteron’s
A and t20 observables are described reasonably well when rel-
ativistic dynamics, boost effects, and the PV-coupling current
are implemented in a consistent formalism and calculation.
However, the data for the B observable are not explained
unless there is some nonstandard contribution, such as the
ρπγ MEC with fρ = 0. Other analyses have suggested that
various relativistic effects, effects of negative-energy states or
effects of the PV-coupling current, might be larger than we
find, but we believe our examination of each of these effects
to be reliable within the ET formalism.

If a vector-meson-dominance ρπγ form factor is correct,
then the ρπγ MEC can help to explain the B data, provided
that a very small tensor ρN coupling is used. The ratio
fρ/gρ should be substantially less than the 6.1 used in
one-boson-exchange models of the NN interaction, or even a
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FIG. 10. The tensor-polarization observable t20. Curves have the
same meaning as in Fig 9.

value that would explain the isovector magnetic moment of the
nucleon. Figure 8 shows that the t20 data of Refs. [1,58–60]
are well described by our approach to Q2 ≈ 2GeV2. This
observable is fairly insensitive to some of the dynamics that
plays a role in A and B (single-nucleon form factors, the ρπγ

MEC). However, it is quite sensitive to relativistic effects (see,
for instance [8,23]), so it is gratifying that our approach repro-
duces the data, especially that of Ref. [1] at large Q2, so well.
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