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The isospin splitting of the nucleon mean field is derived from the Brueckner theory extended to asymmetric nu-
clear matter. The Argonne V18 has been adopted as bare interaction in combination with a microscopic three-body
force. The isospin splitting of the effective mass is determined from the Brueckner-Hartree-Fock self-energy:
It is linear according to the Lane ansatz, such that m∗

n > m∗
p for neutron-rich matter. The symmetry potential

is also determined, and a comparison is made with the predictions of the Dirac-Brueckner approach and the
phenomenological interactions. The theoretical predictions are also compared with the empirical parametrizations
of neutron and proton optical model potentials based on the experimental nucleon-nucleus scattering and the
phenomenological ones adopted in transport model simulations of heavy-ion collisions. The direct contribution
of the rearrangement term due to three-body forces to the single-particle potential and symmetry potential is
discussed.
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I. INTRODUCTION

The study of the role of isospin degree of freedom is in rapid
progress in both nuclear physics and nuclear astrophysics.
The experimental and theoretical research on isospin physics
have received a strong boost because of the construction
of more advanced detectors (such as Magnex [1]) and new
radioactive ion beam facilities (project RIA [2]). A wide range
of rich phenomenologies from nuclei far from the β-stability
line to strongly asymmetric compound systems formed in
heavy-ion collisions (HIC) requires a deep understanding of
the isospin dependence of the in-medium nuclear effective
interaction in a large range of nucleon density and energy.
Among the interesting new physics, a key point is the interplay
between the isospin T = 0 and T = 1 components of the
effective interaction as a function of the isospin asymmetry.

Because of the lack of enough empirical information, the
most reliable theoretical tools are the microscopic parameter-
free approaches based on realistic nucleon-nucleon (NN )
forces fitting the experimental phase shifts of the in-vacuum
nucleon-nucleon scattering. One of the most advanced ap-
proaches is the nonrelativistic Brueckner theory. Over the
last decade, in fact, it has been improved in two aspects:
its convergence has been verified at the level of three-body
correlations [3], and the empirical saturation point has been
reproduced by including microscopic three-body forces (TBF)
[4]. Extending the Brueckner calculations to spin and isospin
asymmetric nuclear matter, important predictions have been
made on physical quantities, including the symmetry energy,
and the spin and spin-isospin Landau parameters [5,6].

Intimately related to the effective interaction is the nucleon
self-energy, which brings important information on the mo-
mentum dependence of the nuclear mean field, effective mass,
and optical potential. In the Brueckner-Hartree-Fock (BHF)
approximation, the self-energy takes into account not only the

interaction of a nucleon with inert core (pure BHF mean field)
but also with core excitations [7,8]. The latter is crucial for the
comparison with the experimental nuclear potential and the
optical model potential at low energy.

The isospin splitting of the nucleon self-energy is the main
topic of the present investigation. It has been calculated in
wide ranges of isospin asymmetry, density, and energy for the
sake of application in transport simulations of HIC as well as
for structure calculations close to the neutron and proton drip
lines. Despite some results existing in the literature for a long
time, the present work has been stimulated not only by the new
opportunity that we can now study the effects of three-body
forces in the Brueckner theory, but also by the appearance
of relativistic Dirac-Brueckner-Hartree-Fock (DBHF) calcula-
tions [9,10]. Consistent microscopic predictions could provide
strong constraints for phenomenological approaches, which
are still affected by large uncertainties. These constraints may
lead to the need of new parametrizations of the Skyrme-like
interactions for the calculations far from the β-stability line.

The isovector part of the neutron and proton single-particle
(s.p.) potentials, i.e., the symmetry potential, is one of the basic
inputs of the transport models for the collisions of radioactive
nuclei. In general, the shape of the symmetry energy as a
function of density is determined simultaneously by both the
momentum and density dependence of the symmetry potential
[11]; therefore, the determination of the momentum depen-
dence of the symmetry potential is crucial for constraining
the high-density behavior of symmetry energy. In the earlier
dynamical simulations of HIC, the momentum dependence of
the symmetry potential was seldom taken into account. Only
recently, Das et al. [12] proposed some simple phenomeno-
logical parametrizations for the momentum dependence of the
symmetry potential which have been adopted in the dynamical
simulations of HIC by Li et al. [13–15] where it is shown
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that the experimental observables such as the neutron-proton
differential flow, the isospin fractionation, and the π−/π+
ratio, etc., are quite sensitive to the momentum dependence
of the symmetry potential. Microscopically, the proton and
neutron s.p. potentials and their isospin dependence have been
studied in Refs. [5,8] within the BHF approach. However, the
momentum and density dependence of the symmetry potential
was not discussed in our previous investigations [5,8].

In the present paper, we will concentrate on the discussion
of the isospin splitting of the effective mass and the density and
momentum dependence of the symmetry potential, based on
the BHF approximation [8]. Especially we shall compare our
microscopic symmetry potential with the phenomenological
ones of Ref. [12] and the predictions of the Dirac-Brueckner
method [9,10]. The present paper is arranged as follows. In
Sec. II, we present a brief introduction of the Brueckner-Bethe-
Goldstone (BBG) theory for G matrix with a microscopic
TBF, including self-energy and effective mass of protons and
neutrons. The numerical results for the symmetry potential are
reported and discussed in Sec. III in comparison with other
model predictions. Summary and conclusions are drawn in
Sec. IV.

II. SELF-CONSISTENT BHF APPROACH
INCLUDING A THREE-BODY FORCE

A. BBG equation

The Brueckner theory and its extension to include TBFs are
described elsewhere [4]. Here we simply give a brief review
for completeness. The starting point of the BHF approach is
the reaction G matrix, which satisfies the isospin-dependent
Bethe-Goldstone (BG) equation,

G(ρ, β, ω) = υNN + υNN

×
∑
k1k2

|k1k2〉Q(k1, k2)〈k1k2|
ω − ε(k1) − ε(k2)

G(ρ, β, ω), (1)

where ki ≡ (�ki, σ1, τi) denotes the single-particle momentum,
the z component of spin and isospin, respectively. υNN is
the realistic nucleon-nucleon (NN) interaction, and ω is the
starting energy. The asymmetry parameter is defined as β =
(ρn − ρp)/ρ, where ρ, ρn, and ρp denote the total, neutron, and
proton number densities, respectively. For the NN interaction,
we adopt the Argonne V18 two-body interaction [16] plus a
microscopic three-body force [17]. The TBF is constructed
by using the meson-exchange current approach [17], and
the most important mesons, i.e., π, ρ, σ and ω, have been
considered [18]. The parameters of the TBF model have been
self-consistently determined so as to reproduce the Argonne
V18 two-body force using the one-boson-exchange potential
model [4]. Their values can be found in Ref. [4]. The TBF
contains the contributions from different intermediate virtual
processes such as virtual nucleon-antinucleon pair excitations
and nucleon resonances (for details, see Ref. [17]). The TBF
effects on the equation of state (EOS) of nuclear matter and
its connection to the relativistic effects in the DBHF approach
have been reported in Ref. [4].

In solving the BG equation for the G matrix, the continuous
choice [7] for the auxiliary potential is adopted since it provides
a much faster convergence of the hole-line expansion than the
gap choice [3]. One advantage of the continuous choice is that
the auxiliary potential has the physical meaning of the mean
field felt by a nucleon during its propagation between two
successive scatterings in a nuclear medium [19].

The effect of the TBF is included in the self-consistent
Brueckner procedure along the same lines as in Ref. [17],
where an equivalent effective two-body interaction ṽ is
constructed by weighting the third particle in the real TBF
by means of the defect function. In doing so, one avoids the
difficulty of solving the full three-body problem. The effective
two-body interaction ṽ can be expressed in r space as [4]

〈�r1�r2|ṽ|�r ′
1�r ′

2〉 = 1

4
Tr

∑
n

∫
d�r3d�r ′

3φ
∗
n(�r ′

3)[1 − η(r ′
13)]

× [1 − η(r ′
23)]W3(�r ′

1�r ′
2�r ′

3|�r1�r2�r3)φn(r3)

× [1 − η(r13)][1 − η(r23)], (2)

where the trace is taken with respect to the spin and isospin
of the third nucleon. The function η(r) is the defect function.
Since the defect function is directly determined by the solution
of the BG equation [17], it must be calculated self-consistently
with the G matrix and the s.p. potential U (k) [4] at each density
and isospin asymmetry. It is evident from Eq. (2) that the
effective force ṽ rising from the TBF in nuclear medium is
density dependent. A detailed description and justification of
the method can be found in Ref. [17].

B. Self-energy

In the BHF approximation [8] with the TBF, self-energy is
made of three terms:

�(k, ε) = �bhf + �cpol + �tbf (3)

where the first term is the HF potential with the G matrix as
the effective interaction, the second term is due to the core
polarization [7], and the third term stems from the density de-
pendence of the effective force ṽ, i.e., the TBF rearrangement
term [20]. The first two terms in the BHF approximation in
asymmetric nuclear matter have been discussed elsewhere [8].
In general, the TBF effect on the self-energy within the
BHF framework is twofold. First, it affects the self-energy
via the modification of the G matrix. This effect has been
embodied in the BHF self-energy, i.e., the first two terms in
Eq. (3). Second, the density dependence of ṽ will induce an
additional contribution, i.e., a rearrangement contribution to
the self-energy [third term in Eq. (3)]. The main contribution
of the TBF rearrangement can be formally written in the BHF
approximation as

�tbf = 1

2

∑
ij

〈ij | δṽ

δnk

|ij 〉Aninj , (4)

where ni is the Fermi step function. For most results, presented
below, the self-energy is calculated in the BHF approximation,
and the effect of the TBF is only restricted to the G-matrix via
the BBG equation with the two-body force and the effective
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FIG. 1. Neutron and proton BHF mean
fields at different isospin asymmetries for three
different nucleon densities.

TBF. At the end of Sec. III, we will discuss the explicit effect
of the rearrangement term of the effective three-body force on
the self-energy and the symmetry potential.

When calculated on the energy shell, the self-energy gives
rise to the single nucleon potential. The contribution of the
inert core (BHF) for neutrons and protons is reported in
Fig. 1 as a function of momentum k for three densities
and several isospin asymmetries β ≡ (ρn − ρp)/ρ. The core
polarization term mainly influences the potential at k < kF [7],
and it is neglected in the discussion of this subsection. To
explore the isospin effects on the nucleon effective masses
(Sec. II C), we split the neutron and proton s.p. potentials into
the contributions from the isospin T = 0 and T = 1 channels,
i.e.,

Up(k, β) = Up(k, β)T =0 + Up(k, β)T =1, (5)

Un(k, β) = Un(k, β)T =0 + Un(k, β)T =1. (6)

The isospin behavior of the neutron or proton s.p. potential is a
result of the competition between the T = 0 and T = 1 isospin
channels. As discussed in Refs. [8,21], the isospin effect on the
EOS of asymmetric nuclear matter is dominated by the isospin
T = 0 component of the NN interaction. In Fig. 2, we present
the contributions from the isospin T = 0 and T = 1 channels
to the proton and neutron s.p. potentials at k = 0, separately,
as a function of β with respect to their values in symmetric
nuclear matter (β = 0). It is seen that the variations vs β of
the T = 0 components are much larger than the corresponding
T = 1 components, i.e., 3∼5 times larger, implying that the
β dependence of the neutron and proton s.p. potentials is
determined to a large extent by the T = 0 component. This
is what is expected because as the neutron excess increases,
the T = 0 interaction between two unlike nucleons (vanishing
between two like nucleons) becomes stronger for protons and
weaker for neutrons. The relatively small deviations of the
T = 1 components of the Un and Up from their common
values in symmetric matter are associated with the variations
of the Fermi surfaces in neutron-rich matter. It is also seen
from the figure that the net contribution of the T = 0 channels

stems almost completely from the SD tensor channel (squares)
which is strongly attractive at relatively low energies while
the contributions from other T = 0 channels cancel each other
out. This is in agreement with the previous observation for
nuclear symmetry energy [21]. As a consequence, at low
momenta, the proton s.p. potential becomes more attractive
and the neutron one more repulsive, going from symmetric
nuclear matter (β = 0) to pure neutron matter (β = 1), as
shown in Fig. 1. According to the experimental data on
the phase shifts of nucleon-nucleon scattering, the attraction
of the SD channel decreases with energy, so that for a
given energy, the T = 0 channel contribution to the splitting
Un − Up becomes equal to the T = 1 channel contribution. As
a result, the isospin splitting (UT =0 − UT =1)/β vanishes for
a given value of momentum as marked by the crossing point
in Fig. 1. This point is almost independent of both isospin
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FIG. 2. Isospin splitting of the proton and neutron s.p. potentials
at k = 0: isospin T = 0 channels (solid curves), T = 1 channels
(dashed curves), SD tensor channel (squares).
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and density. Therefore, the increase of the proton potential
depth vs asymmetry results in an increase in the slope as a
function of momentum. This behavior controls the proton and
neutron effective mass splitting in neutron-rich matter. From
the above discussion, it may be concluded that the isospin
behavior of the momentum dependence of the proton and
neutron s.p. potentials, which determines the neutron-proton
effective mass splitting, is essentially controlled by the tensor
component of the NN interaction or, say, by the nature of
the NN interaction. The core polarization affects mainly the
s.p. potential in the low momentum range below the Fermi
surface. It gives a repulsive contribution for both the proton and
neutron potentials and weakens the momentum dependence at
low momentum [7,8]. The core polarization contributions to
the proton and neutron potential may cancel each other out,
and thus it modifies only slightly the symmetry potential at low
momentum [8]. Therefore, inclusion of the core polarization
will not alter our above discussion and conclusion.

C. Effective mass

The nucleon effective mass m∗ stems from the nonlocal
nature of the s.p. potential felt by a nucleon propagating in a
nuclear medium. It is determined by the slope of the real part of
the on-shell self-energy U (k, εk) = Re�(k, εk) in momentum
space, i.e.,

m∗

m
= 1 − dU (k, εk)

dεk

. (7)

The effective mass itself is momentum dependent, but usually
its value at the Fermi momentum is considered (hereafter we
only discuss the latter). The s.p. energy is determined by the
following momentum-energy relation,

εk = k2

2m
+ Re �(k, εk) (8)

for a given approximation of the self-energy. It is clear that
the effective mass arises from both the momentum and energy
dependence of the microscopic s.p. potential. It is a different
physical quantity from the Dirac effective mass associated to
the medium modification of the Dirac spinor, which in fact is
due to the self-consistent requirement in the relativistic Dirac-
Brueckner approach as it has been clarified in Refs. [9,22] and
discussed afterward.

In isospin asymmetric nuclear matter, since the momentum-
dependence of the neutron s.p. potential is different from
that of the proton one, the common value of the neutron
and proton effective mass is expected to split into two
branches as a function of the isospin asymmetry parameter.
The BHF and the EBHF results with the TBF contribution
are displayed in Fig. 3. Two main features are displayed by
the results: the linear dependence on the asymmetry parameter
β extended to the whole asymmetry range, which is a well-
known effect [21], and the isospin splitting with m∗

n > m∗
p

in neutron-rich matter. The latter property is related to the
increasing (decreasing) slope of the proton (neutron) potential
as discussed in the preceding subsection, but this concept
has not yet received a general consensus. In microscopic
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FIG. 3. Isospin splitting of the effective mass from a Brueckner
calculation with three-body force.

theories such as the BHF method and the DBHF approach, the
predicted neutron-proton effective mass splitting is such that
m∗

n > m∗
p at the Fermi surface in neutron-rich matter. However,

within phenomenological models, some parametrizations of
the extended Skyrme-like effective interaction may lead to an
opposite isospin splitting [12,23]. A complete settlement of
such a controversy will be one of the most important goals
of obtaining such isospin observables as the neutron-proton
differential flow and the π−/π+ ratio in HIC induced by
radioactive beams.

To get a deeper theoretical insight into the neutron-to-proton
splitting of the effective mass, we want to see how it comes
out within the Brueckner many-body theory.

The off-shell values of the self-energy �(k, ε) depend sep-
arately on the energy and momentum and, as a consequence,
following Mahaux et al. [7], the effective mass can be split
into a product of the two contributions

m∗

m
= me

m

mk

m
, (9)

where

me(k) = m

[
1 − ∂�(k, ε)

∂ε

]
ε=εk

, (10)

mk(k) = m

[
1 + m

k

∂�(k, ε)

∂k

]−1

ε=εk

. (11)

The k mass mk is related to the nonlocality of the microscopic
mean field in r space. If the self-energy is energy independent
(static limit), then me = m and the k mass is equal to the
effective mass m∗. The E mass describes the nonlocality in
time and is related to the quasiparticle strength by me(k) =
m/Z(k), which gives the discontinuity of the momentum
distribution at the Fermi surface and measures the amount
of correlations included in the considered approximation.
The two components of the effective mass for protons and
neutrons are plotted in Fig. 4. It is seen that the isospin
splitting is opposite for the two effective masses mk and me. In
neutron-rich matter, the neutron k mass becomes larger than
the proton one, while the neutron-proton e-mass splitting is
reversed. Although the absolute strengths of the splitting for
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FIG. 4. Neutron and proton mass vs asymmetry: separate contri-
butions from the e mass and k mass in units of the bare nucleon mass.
The baryonic density is ρ = 0.17 fm−3.

the two masses are about the same, the relative splitting of the
k mass is much more pronounced than that of the e mass
because of the smaller value of the k mass. As a consequence,
the k mass predominates the isospin splitting of the total effec-
tive mass m∗ and leads to the result m∗

n > m∗
p in neutron-rich

nuclear matter. This result indicates that the effective mass
splitting is dominated by the nonlocality of the microscopic
s.p. potentials in spatial space.

The effective mass so far discussed is also named the
Schrödinger mass to distinguish it from the Dirac mass
appearing in the relativistic mean field theory (RMT) and the
relativistic DBHF approach [22,24,25]. The Dirac effective
mass stems from the self-consistency requirement between
the s.p. wave function and the s.p. spectrum of the Dirac
spinor which is dressed in nuclear medium, and it has
no counterpart in the nonrelativistic limit. As discussed in
Ref. [24], the Dirac mass can be traced back to the effect
of the virtual nucleon-antinucleon pair excitations, i.e., the
in-medium positive-energy spinor is an admixture of the free
negative- and positive-energy spinors. In Ref. [22], the origin
of different effective masses defined in the literature has been
discussed in more detail. It is shown that in the relativistic
framework, a nonrelativistic type of effective mass can be
introduced based on the corresponding Schrödinger equivalent
s.p. potential, and it can be compared to the empirical value
extracted from analyses in the framework of the nonrelativistic
optical and shell models. Investigations for determining
the relativistic effective mass in terms of the momentum
dependence of the s.p. energies in the DBHF framework
have been made for symmetric nuclear matter in Ref. [25].
Very recently, Van Dalen et al. [26] investigated the isospin
splitting of the nonrelativistic-type effective mass obtained
from the Schrödinger equivalent s.p. potential within the
DBHF approach. They found that both the dynamical structure
(i.e., the momentum and density dependence) and the splitting
of the nonrelativistic-type effective mass are satisfactorily
consistent with the predictions of the nonrelativistic BHF
approach. The Dirac mass in neutron-rich matter shows an
opposite isospin splitting of m∗

D,n < m∗
D,p, indicating that the

virtual pair effect on a neutron spinor becomes stronger as
the matter becomes neutron richer. The nonrelativistic type of
effective mass in neutron-rich matter derived from the RMT
displays the same behavior of isospin splitting as the Dirac
mass displays, because the nonlocal structure of the self-energy
is neglected in the RMT, as discussed in Ref. [26].

III. SYMMETRY POTENTIAL AND OPTICAL
MODEL POTENTIAL

The microscopic self-energy in the BHF approach is
nonlocal in space-time coordinates and thus depends on both
momentum and energy. When evaluated on the energy shell,
it corresponds to the empirical optical model potential [22]

Uopt(E) = �[k(E), E], (12)

where E is the incident energy, and �[k(E), E] the on-shell
self-energy. The momentum k = k(E) is determined by the
mass-shell relation

E = h̄2k(E)2

2m
+ �[k(E), E]. (13)

The isovector part of the s.p. potential, which drives the
isospin splitting of the nucleon mean field in asymmetric
nuclear matter, is linearly varying with β, and thus the
symmetry potential can be defined as

Usym = Un − Up

2β
, (14)

where Un and Up are the s.p. potentials felt by a neutron
and proton in a nuclear medium, respectively. In Fig. 5, the
BHF symmetry potential Usym is displayed as a function
of momentum k for three densities and several isospin
asymmetries. The nucleon-nucleus scattering is not influenced
much by the core polarization, so it can be neglected. It
is seen that the symmetry potential depends strongly upon
both density and momentum. Above the Fermi surface, Usym

decreases rapidly as a function of momentum and saturates
at high enough momenta. In the momentum region relevant
to the intermediate energy HIC up to a beam energy of
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FIG. 5. BHF isospin symmetry potential vs momentum k for three
values of density.
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FIG. 6. Comparison of different symmetry potentials: dashed
area is the Lane potential a − bEkin with a = 22–34 MeV and b =
0.1–0.2 (see Ref. [31] for more details), dashed line is the BHF result
for asymmetric nuclear matter with ρ = 0.16 fm−3 and β = 0.2,
and solid curve is from empirical parametrization of nucleon-208Pb
scattering [30].

about 300 MeV per nucleon, Usym is positive, implying that
its effect is repulsive on neutrons and attractive on protons.
At higher densities, the repulsion (attraction) on neutrons
(protons) becomes stronger. In Fig. 5, it is also shown that
Usym is almost independent of the isospin asymmetry β, which
indicates that the linear dependence of the neutron and proton
s.p. potentials on β persists at any energy and thus it provides
a microscopic support of the empirical assumption of the Lane
potential [27].

Experimentally, the strength of the Lane potential and its
momentum dependence can be extracted from the nucleon-
nucleus scattering data and/or (p, n) charge exchange reac-
tions. Earlier optical model analyses of the experimental data
with incident energies between 7 and 100 MeV indicate that
(Un − Up)/2β at normal nuclear matter density has a value
of about 28 ± 6 MeV at k = 0 and decreases as a function of
incident energy with a slope between 0.1 and 0.2 [28,29].

The Lane potential is represented in Fig. 6 by the dashed
area, as results extracted from the experimental data of
nucleon-nucleus scattering based on the optical potential
model [28]. This area is crossed by both the BHF symmetry
potential for β = 0.2 and the bulk contribution of the empirical
one from Ref. [30] discussed later. The predicted strength
of the isospin splitting at k = 0 is about 25 MeV, in good
agreement with the empirical value 22 ∼ 34 MeV extracted
from the experimental data of nucleon-nucleus scattering
based on the optical potential model [28,30].

A recent investigation [30] on a broad range of mass
(24 � A � 209) and incident energy (1 keV � E � 200 MeV)
provides a new parametrization of the optical model potential
in terms of volume, surface, spin-orbit, and Coulomb contri-
butions. Therefore, it should be more suitable than the one in
Fig. 6 for a comparison with the microscopic potential of
nuclear matter, including the density, isospin, and energy
dependence. Since a direct comparison does not take into
account the density variation in the nuclear surface, we have
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FIG. 7. Isospin shift of empirical optical potential at the Fermi
energy (volume term only) for several nuclei (symbols) in comparison
with the theoretical nuclear matter BHF predictions (big triangles
joined by dashed lines). Small symbols are the optical potential fit by
Koning and Delaroche [30].

folded the nuclear-matter mean field with the density profile of
different nuclei obtained from a Thomas-Fermi approximation
[20]. So doing, we can compare the folded mean field
with the optical potential as a function of β = (N − Z)/A.
The results are plotted in Fig. 7 for incident energy equal to the
Fermi energy. The theoretical predictions slightly overestimate
the empirical ones, but the isospin shift turns out to be
nicely reproduced. Actually, the Thomas-Fermi approximation
works better with heavy nuclei, for which the comparison
looks much better. The momentum-dependent optical model
potential of Ref. [30] gets out of the dashed area at low energy,
indicating that some uncertainties still affect the optical model
parametrizations.

At high density and energy, one may have to rely on
the scarce information from HIC induced by high-energy
radioactive beams. In this regard, it is interesting to mention
that isospin diffusion has been found to be rather sensitive to
the momentum-dependence of Usym [14]. Up to now, only
the phenomenological parametrizations of the momentum-
dependent symmetry potential have been adopted in the
dynamical simulations of heavy-ion collisions; therefore, it
is instructive to make a comparison between the present
microscopic symmetry potential with the phenomenological
ones [12]. In Fig. 8 is plotted the symmetry potentials vs
momentum for three values of density, ρ = 0.085, 0.17, and
0.34 fm−3. In the figure, the curves with filled symbols
are the results from the BHF calculations, repeated in the
four panels, while the curves with open symbols are the
phenomenological ones of Ref. [12], and different panels
correspond to different parametrizations. It is clear from the
figure that the microscopic Usym shows a remarkably different
behavior from the phenomenological ones as a function of
density and momentum. All four phenomenological symmetry
potentials drop much faster at high density ρ = 0.34 fm−3 as
the momentum increases as compared to our BHF one. In the
two cases of the GBD(0) and GBD(1) parametrization, the de-
viation from the BHF prediction is especially large in the whole
density and momentum regions considered here. At the normal
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FIG. 8. Comparison of the BHF symmetry
potential with other predictions (see text).

nuclear density, the momentum dependence of the Gogny and
MDI(0) parametrization is closer to our microscopic one, but
the Gogny Usym presents an opposite density dependence and
is dramatically discrepant with the microscopic one at high
densities. For example, at ρ = 0.34 fm−3, the Gogny Usym is
attractive (repulsive) for neutrons (protons), while the BHF
one is repulsive (attractive) for neutrons (protons) up to k �
4 fm−1. Even the MDI(0) parametrization, which is closest to
our microscopic prediction, turns out to become quite different
at high densities.

As our last point, we discuss the effect of the rearrangement
contribution of the TBF. Because of the density dependence
of the effective force ṽ, the TBF provides an extra repulsive
contribution �tbf [see Eq. (3)] to both the proton and neutron
s.p. potentials. At high density, this contribution is expected
to be strongly momentum dependent and may affect consid-
erably the high momentum components of the fragmentation
residues in HIC. We compare our calculated results with the
parametrization of the optical potential used in the transport
model simulations of elliptic flows in central HIC [32], where
high densities are reached. The potentials in symmetric nuclear
matter at ρ = 0.3 fm−3 are shown in Fig. 9, where the line with
full squares is the one of Ref. [32], which has been shown to
describe the observed elliptic flow data fairly well. It is clear
from the figure that the BHF potential without the TBF is
too attractive, especially at high densities, compared to the
one proposed in Ref. [32], and its momentum dependence at
high momenta turns out to be too weak [32] for describing
the experimental elliptic flow data. Inclusion of the TBF
effect only via the G matrix, i.e., inclusion of the TBF effect
in the first two terms of Eq. (3), weakens the dependence
of the s.p potential on momentum [4]. It is seen from
Fig. 9 that the rearrangement contribution of the TBF, i.e.,
the third term �tbf of Eq. (3), provides a strong extra repulsion
to the optical potential and improves remarkably the agreement
between our microscopic potential and the parametrized one
of Ref. [32]. We find that the TBF rearrangement leads also

to a strong momentum dependence at high densities. For
instance at ρ = 0.3 fm−3, the extra term turns out to be
�U = 5.68 + 6.84k2 in units of MeV.

To study the effect of the TBF rearrangement on the
isospin symmetry potential, we report in Fig. 10 the re-
sults in comparison with the recent DBHF predictions from
Refs. [9,10]. Therein is displayed the neutron s.p. potential
(left-upper panel), the proton s.p. potential (left-lower panel),
and the symmetry potential (right panel) in neutron-rich matter
with β = 0.4 for both cases with and without including
the �tbf term. The BHF neutron and proton s.p. potentials
without the �tbf term are much more attractive than the
DBHF ones. Inclusion of the �tbf term leads to a strong
enhancement of the repulsion of both the proton and neutron
s.p. potentials and reduces substantially the disagreement
between the s.p. potentials predicted by the nonrelativistic
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FIG. 9. Optical potential in nuclear matter as a function of
nucleon energy at density ρ = 0.3 fm−3 from the BHF calculation
including all three terms of Eq. (3) with the Argonne V18 interaction
plus TBF (solid line). Squares are from Ref. [32], circles are from the
earlier BHF calculation without three-body force [33].
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FIG. 10. Comparison of the BHF symmetry
potential with and without the �tbf contribution
with Dirac-Brueckner predictions. Curve with
full circles is from Ref. [10], the one with full
squares is from Ref. [9].

BHF and the relativistic DBHF approaches. The right panel
of Fig. 10 shows that the effect of the �tbf term on the
isospin symmetry potential is very weak, indicting that the
contributions of the �tbf term to the neutron and proton
potentials cancel out in a wide momentum range with each
other to a large extent. In both cases with and without
the �tbf term, the isospin symmetry potentials obtained by the
BHF approach display an overall agreement with those by the
DBHF approach. At high momentum, our symmetry potential
is slight lower than the DBHF ones. The difference between
the two DBHF calculations may be attributed to the different
methods adopted to extract the self-energy as discussed in
Ref. [34], where it is shown that the determination of the
nucleon self-energy in the DBHF framework is still affected
by some uncertainties.

IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated the momentum and
density dependence of the symmetry potential and discussed
the origin of the neutron-proton effective mass splitting in
neutron-rich nuclear matter within the framework of the
Brueckner theory.

We have found that the isospin behavior of the momentum-
dependent neutron and proton s.p. potentials can be traced
back to the effect of the SD tensor component of the NN

interaction. Consequently, the neutron-proton effective mass
splitting is essentially determined by the intrinsic properties
of the NN interaction. The obtained neutron-proton effective
mass splitting in neutron-rich matter is m∗

n > m∗
p and in good

agreement with recent predictions by the nonrelativistic limit
of the DBHF approach [26]. The isospin splitting m∗

n > m∗
p is

shown to stem from the splitting of the k mass, i.e., from the
spatial nonlocality of the microscopic neutron and proton s.p.
potentials.

It turns out that the predicted symmetry potential depends
sensitively on density and momentum, but it is almost
independent of the isospin asymmetry (Lane ansatz). In
the energy and density regions most relevant for the
nucleus-nucleus scattering up to an incident energy of about
300 MeV per nucleon, our microscopic symmetry potential
is repulsive for neutrons and attractive for protons, and its
strength becomes smaller as momentum increases for a fixed
density. A satisfactory support to the microscopic predictions
is provided by recent optical model parametrizations of
nucleon-nucleus scattering [30]. In dense nuclear matter,
which can be probed in HIC at intermediate and high energies,
the symmetry potential turns out to become stronger in the
high-momentum region up to about 4 fm−1 as increasing
density. At high-energy, relativistic effects are manifest with
a strong momentum dependence [26,32], which can be
interpreted as an effect of the TBF. At the present time, a
comparison with phenomenological Skyrme-like or Gogny
predictions of the symmetry potential [31] is quite difficult, and
empirical constraints on their parameters are needed to make it
useful.

In the BHF approach, the TBF contribution has been
included by reducing the TBF to an equivalent effective
two-body force. The rearrangement effect due to the density
dependence of the equivalent force has been found to provide
an extra repulsive contribution to the proton and neutron s.p.
potentials, which improves substantially the agreement of our
nonrelativistic s.p. potential with the parametrized potential for
describing the elliptic flow data [32] and those predicted by
the DBHF approach [9,10]. The TBF rearrangement has been
found to affect only slightly the isospin symmetry potential
due to the cancellation between the two contributions to
the proton and neutron potentials. Our calculated symmetry
potential is shown to be in an overall agreement with the
DBHF predictions.

Physical observables that are sensitive to the symmetry po-
tential, including the neutron-to-proton ratio of preequilibrium
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nucleon emission, neutron-to-proton differential flow, and
isospin diffusion, are expected to provide experimental con-
straints on the momentum and density dependence of the
symmetry potential [31].
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