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Deuteron dipole polarizabilities and sum rules
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The scalar, vector, and tensor components of the (generalized) deuteron electric dipole polarizability are
calculated, as well as their logarithmic modifications. Several of these quantities arise in the treatment of the
nuclear corrections to the deuterium Lamb shift and the deuterium hyperfine structure. A variety of second-
generation potential models are used, and a (subjective) error is assigned to the calculations. The zero-range
approximation is used to analyze a subset of the results, and a simple relativistic version of this approximation is
developed.
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I. INTRODUCTION

The spectra of hydrogenic atoms and ions have been
measured to such high precision that nuclear properties play
a significant role [1]. This is especially true of the deuterium
atom, which has large nuclear contributions to both the Lamb
shift [2,3] and the S-state hyperfine structure [4]. These large
nuclear contributions result from the weak binding of the
deuteron and from the concomitant large size of this simplest
of all nuclei.

The Lamb shift can be defined as the difference between
calculated energy level values and those from predefined
reference values, which is typically a Dirac spectrum modified
by reduced-mass effects. This shift results after removing
hyperfine splittings, which is equivalent to having a spinless
nucleus. Hyperfine structure results from the electron’s inter-
action with the nuclear spin, and it can be linear in that spin
(the usual type) or quadratic (quadrupole hyperfine structure).
This typically means that the effective nuclear interaction with
the electron can be scalar, vector, or tensor in character.

The dominant electron-nucleus interactions (beyond the
point-nucleus Coulomb potential) occur in first Born ap-
proximation in their electromagnetic coupling. Examples are
the scalar (or L = 0) nuclear finite-size modification of the
Coulomb potential, which dominates nuclear effects in the
Lamb shift, and the tensor (or L = 2) modification that
dominates the quadrupole hyperfine structure. The leading-
order (vector) hyperfine structure results from the electron’s
interaction with the nuclear magnetic moment.

Subleading nuclear effects are generated by two-photon
processes, which necessarily involve a loop integral over a
virtual photon momentum. The Lamb shift integral has a
weaker dependence on that momentum (i.e., the process is
“softer”) than the corresponding hyperfine process (which is
therefore “harder”). Because the most important parts of the
two-photon nuclear amplitudes involve sequential electron-
nucleus electromagnetic interactions, numerically important
contributions arise from inelastic intermediate nuclear states
and thus are non-static or polarization phenomena. These
mechanisms can also be scalar, vector, or tensor in type, and our

task in this work is to set up a tractable calculation scheme that
facilitates this separation, and then to calculate these quantities
using modern second-generation potentials. Several of these
quantities play a role in the deuterium hyperfine structure [4].

An additional motivation is that recent advances in de-
veloping effective field theory (EFT) techniques for nuclear
physics have led to the calculation of many quantities that
are part of deuteron observables. An example is the (scalar)
electric polarizability that was calculated in Ref. [5] (see also
references therein), which is part of the deuteron Compton
amplitude at low photon energies. An important ingredient
in determining the quality of these calculations is comparing
the results to the best available potential-model calculations.
When EFT calculations of (the more difficult to calculate)
tensor polarizabilities become available [6], our results below
will be very useful in ascertaining their quality.

II. TENSOR POLARIZABILITIES

The leading-order nuclear contribution to the Lamb shift is
proportional to the mean-square nuclear charge radius, while
the subleading order is proportional to the nuclear electric
polarizability and its logarithmic modification, both of which
are scalar quantities. The polarizability is defined in terms of
the nuclear electric-dipole operator �D and the fine-structure
constant α as

αE = 2α

3

∑
N �=0

|〈N | �D|0〉|2
EN − E0

, (1)

and its logarithmic mean-excitation energy [2] Ē by

log(2Ē/me)αE ≡ 2α

3

∑
N �=0

|〈N | �D|0〉|2
EN − E0

log[2(EN − E0)/me].

(2)

Both are purely non-static and involve the (virtual) excitation
of negative-parity intermediate states with energy EN from the
deuteron ground state with energy E0. The precise form of the
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argument of the logarithm has been motivated by conventional
atomic physics usage.

The dominant part of the leading-order nuclear vector
hyperfine structure is determined by “Low” moments [4],
while smaller subleading-order contributions involve ordinary
dipole excitations of a different type. Adopting a uniform
convention for constant factors that will be apparent later, we
define

�σ = −i
2α

3

∑
N �=0

〈0| �D|N〉 × 〈N | �D|0〉 ≡ −i
2α

3
〈0| �D × �D|0〉,

(3)

and

log(2Ē/me)�σ = −i
2α

3

∑
N �=0

〈0| �D|N〉

× 〈N | �D|0〉 log [2(EN − E0)/me]. (4)

The factor of i is necessary to make the appropriate part of �σ
real. We also note that in the non-relativistic approximation,
�D × �D vanishes because all components of �D commute with

each other. This is not true when relativity is incorporated in the
calculation (see Eq. (34) of [7], which demonstrates that �D ×
�D is imaginary). In that event, the commutator contributes an

essential part of the derivation of the Drell-Hearn-Gerasimov
sum rule [8] and the low-energy theorem [9]. The quantity �σ
is more appropriately described as a sum rule, rather than as a
polarizability.

The leading-order contribution to the quadrupole (i.e.,
tensor) hyperfine structure is driven by the quadrupole part
of the ordinary Coulomb interaction, whose scale is set by the
nuclear quadrupole moment Q. A subleading contribution is
determined by the tensor (L = 2) component of the nuclear
electric polarizability tensor

α
βα

E = 2α

3

∑
N �=0

〈0|Dβ |N〉〈N |Dα|0〉
EN − E0

, (5a)

which has been calculated only once long ago using separable
potentials and the Reid soft core (RSC) potential model [10].
Those calculations were used in a purely nuclear (as opposed
to molecular) determination [11] of the deuteron’s quadrupole
moment. There can also be a logarithmic modification of
this tensor polarizability, which is obtained by inserting
log [2(EN − E0)/me] in the sum over intermediate states. No
estimate of the polarizability effect on the determination of
the deuteron’s quadrupole moment from the HD molecular
hyperfine structure has ever been made (but should be),
although it is certain that the tensor polarizability and/or its
logarithmic modification will be involved.

A system with spin 1 can in general have scalar, vector,
and tensor polarizabilities, and these can be of the ordinary
type defined in Eq. (5a), or of a type without the factor of
(EN − E0) in the denominator, determined by

Dβα = 2α

3
〈0|DβDα|0〉, (5b)

which was illustrated by Eq. (3) (and more accurately called
a sum rule). Each of these six types can have a logarithmic
modification. Because the deuteron is an important nucleus

and deuterium an important atom, we will calculate all 12
of these polarizabilities (or sum rules) using modern second-
generation potentials. Only three of the polarizabilities have
been calculated before, and only two with modern potentials.
None of the logarithmic modifications of the sum rule in
Eq. (5b) have been previously calculated. Our approach will
be non-relativistic in keeping with the potential models we
use. Our calculations will be based upon Podolsky’s method
[12] for computing second-order perturbation-theory matrix
elements and on several integration tricks, one of which has
been used in the past.

In the next section we will sketch Podolsky’s method, which
we will use for calculations of the various polarizabilities. This
method is so efficient and transparent that it is the method of
choice for these calculations. We strongly recommend that this
method be used in the future when the next-generation (i.e.,
third-generation) potential models become available.

III. PODOLSKY’S METHOD

Electric polarizability is most easily calculated using
second-order perturbation theory and the coupling of the
nuclear electric-dipole-moment operator to a uniform electric
field, which leads immediately to Eq. (5a). This equation is
fully equivalent to

α
βα

E = 2α

3
〈0|Dβ |��α〉, (6a)

where [12]

(H − E0)|��α〉 = Dα|0〉 (6b)

is solved subject to finite boundary conditions. Note that �D
does not connect the ground state (the only bound state) of the
deuteron to itself. Resolution of Eqs. (6) into partial waves is
necessary in order to perform a numerical calculation.

Because we wish to compute all tensor components of the
electric polarizability tensor, we present a very brief derivation
of the partial-wave decomposition that updates older work
[2,13]. We begin with Eqs. (5a) and (6) and convert them to
a scalar by contracting the Cartesian index α with a constant
vector Eα and the index β with a constant vector E′ β . The
deuteron initial state �d = |SM〉 (and analogously for the
final state) depends on the azimuthal quantum number M, and
we formally remove it from the problem by defining [14] a
(vector) projection operator (appropriate for S = 1): e∗

1λ(M) ≡
δλ,M . Performing the sum

∑
λ e∗

1λ(M)|Sλ〉 results formally in a
scalar quantity independent of spin projections and amenable
to manipulation. A similar projector

∑
λ′ e

∗
1λ′(M ′)〈Sλ′| is used

for the final (i.e., leftmost) deuteron state.
We define general orthonormal spin-angular wave functions

for the deuteron system

φ	
JM = [Y	(r̂) ⊗ χ1]JM, (7)

which couples the usual angular wave function that depends
on the direction r̂ of the internucleon vector �r to the (unit-)
spin wave function χ . The deuteron’s full wave function is
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then given by

ψd =
∑
	=0,2

a	(r)φ	
1(r̂), (8)

where a0(r) = u(r)/r and a2(r) = w(r)/r expresses a	 in
terms of the conventional radial wave function components
of the deuteron. We have suppressed for now the azimuthal
quantum number M.

We ignore the tiny effect of the n-p mass difference on
the deuteron center of mass (c.m.) and find �D = 1

4 (τ z
1 − τ z

2 )�r
expressed in terms of the isospin operators τ i of nucleon i. The
dipole isospin operator generates T = 1 states when acting on
the deuteron, together with a residual numerical factor of 1

2
that we will ignore until later. If the right-hand-side (RHS) of
Eq. (6b) [contracted with Eα and e∗

1λ(M)] is expanded in terms
of φ	

J functions, one finds

RHS =
∑

L=1,3
J=0,1,2

φL
J · (E1 ⊗ ê1)J (−1)J

gL
J (r)√

3
, (9)

where

g1
0 = u −

√
2w, (10a)

g1
1 = u + w/

√
2, (10b)

g1
2 = u −

√
2 w/10, (10c)

g3
2 = 3

√
3w/5, (10d)

are the relevant radial functions. We manipulate the left-hand-
side of Eq. (6b) (similarly contracted) into the same form as
Eq. (9)

|��α〉Eα = −2µr

r

∑
L=1,3

J=0,1,2

φL
J · (E1 ⊗ ê1)J (−1)J

f L
J (r)√

3
,

(11)

where µ is the n-p reduced mass, and the functions f L
J (r)

satisfy

(HLJ − Ed )
−2µr

3
f L

J (r) = gL
J . (12)

We note that for total angular momentum J = 2 the L = 1 and
L = 3 orbital components are coupled by the tensor force. We
do treat that coupling properly, although it is not reflected in
the simplified notation employed in Eq. (12).

The matrix element in Eq. (6a) [including its factor of
(2α/3), a factor of 1

2 from each of the two dipole operators, the
factors of (−2µ) and 1/

√
3 from Eq. (11), and the 1/

√
3 from

Eq. (9)] then becomes

α
βα

E →
∑

J

(E′
1 ⊗ ê′∗

1 )J · (E1 ⊗ ê1)J (−1)J
∑
L

aL
J , (13a)

where

aL
J = −µα

9

∫ ∞

0
dr r2f L

J (r)gL
J (r) (13b)

now expresses the entire content of the electric polarizability
tensor in terms of projection operators and matrix elements.
Equation (13a) is not a convenient form, and we recouple it

so that the projectors of the same type are coupled together.
We also note that only the J = 2 part of the aL

J terms has two
non-vanishing components. We therefore define

AJ = a1
J + δJ,2a

3
2, (14)

and

λκ = (
E′

1 ⊗ E1
)
κ

· (
ê′∗

1 ⊗ ê1
)
κ
, (15)

which yields

α
βα

E →
∑

κ=0,1,2

λκbκ, (16)

where the (real) quantities

b0 = 1
3 (A0 + 3A1 + 5A2), (17a)

b1 = 1
6 (−2A0 − 3A1 + 5A2), (17b)

b2 = 1
6 (2A0 − 3A1 + A2), (17c)

determine the tensor properties of the nuclear physics.
The structure of the λκ operators corresponds to tensors

of order κ in both the Cartesian indices α and β, and in
the effective (azimuthal) spin dependence. The dependence
on the two spin-projection operators ê1 and ê′∗

1 is indeed
equivalent to using the Wigner-Eckart theorem [14] on the
nuclear matrix elements. This allows us to rewrite the spin
factors λκ as effective operators in the nucleus total-angular-
momentum Hilbert space, determined by powers of the
angular-momentum operator �S of the nucleus:

α
βα

E = αE

δαβ

3
+ iσ εβαγ Sγ

2
+ τ

(
SαSβ + SβSα

2
− 2δαβ

3

)
.

(18)

The three coefficients αE, σ , and τ are, respectively, the
scalar, vector, and tensor components of the polarizability.
Equation (1) (a trace) defines αE , while σ and τ are defined
by

σ = −i
2α

3
ελµ3

∑
N �=0

〈SS|Dλ|N〉〈N |Dµ|SS〉
EN − E0

, (19a)

and

τ = 3α33
E − αE, (19b)

where the deuteron should be in the state M ′ = M = S = 1.
Finally the relationships

αE = b0, (20a)

σ = −b1, (20b)

τ = −b2, (20c)

determine the various polarizabilities in terms of the partial
waves. Note that σ is real, since the Cartesian vector cross
product differs from the spherical one by a factor of −i

√
2

and the Wigner-Eckart theorem guarantees that the spherical
result is overall real.

The sum-rule quantity Dβα is decomposed in strict analogy
to Eq. (18), with coefficients s, v, and t replacing αE, σ ,
and τ . In the non-relativistic approximation that we employ
(or, equivalently in the deuteron, the impulse approximation),
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the former quantities are related to conventional deuteron
moments by s = 2α

3 〈r2〉ch, v = 0, and t = 2α
3 Q, where 〈r2〉ch

is the mean-square charge radius and Q is the quadrupole
moment. Note that in the representation of Eq. (18), the
quantity �σ in Eq. (3) becomes �σ = v �S.

IV. LOGARITHMIC SUM RULES

Calculations of the logarithmic modification of the basic
polarizabilities or sum rules use the trick of adding an arbitrary
energy ξf to the energy denominator in Eq. (5a), where f has
the dimensions of energy and ξ is dimensionless. This defines

α
βα

E (ξ ) = 2α

3

∑
N �=0

〈0|Dβ |N〉〈N |Dα|0〉
ξf + EN − E0

. (21)

We first integrate α
βα

E (ξ ) with respect to ξ from 0 to �, where
� is very large compared to any relevant energies (EN − E0).
This produces

f

∫ �

0
dξ α

βα

E (ξ ) = 2α

3

∑
N �=0

〈0|Dβ |N〉

× 〈N |Dα|0〉 log [�f/(EN − E0)]. (22)

We split the integration region, from [0,�] into [0, 1] plus
[1,�]. In the second region, we change variables from ξ to
1/ξ . We also note that

∫ 1
1/�

dξ/ξ = log �. Putting everything
together, we find that � can be taken to infinity if we use

2α

3

∑
N �=0

〈0|Dβ |N〉〈N |Dα|0〉 log [2(EN − E0)/me]

≡ Dβα log (2Ē/me)

= −
∫ 1

0
dξf α

βα

E (ξ ) −
∫ 1

0

dξ

ξ

[
f

ξ
α

βα

E (1/ξ ) − Dβα

]

+Dβα log (2f/me), (23)

where Dβα is defined in Eq. (5b).
A similar set of manipulations was developed previously in

which the integral∫ ∞

ε

dξ

ξ
α

βα

E (ξ ) = 2α

3

∑
N �=0

〈0|Dβ |N〉〈N |Dα|0〉
EN − E0

× log [(EN − E0)/εf ] (24)

was split into the regions [ε,1] plus [1,∞], and the integration
variable for the second region was also changed to 1/ξ . This
led to a special case of

α
βα

E (0) log(2Ē/me) =
∫ 1

0

dξ

ξ

[
α

βα

E (ξ ) − α
βα

E (0)

+ α
βα

E (1/ξ )
] − α

βα

E (0) log(me/2f ).

(25)

Equations (23) and (25) provide a tractable scheme for cal-
culating logarithmic modifications of our basic polarizability,
α

βα

E (0), and of the sum-rule quantity Dβα . The results are
independent of the scale parameter f. Note also that since the

various polarizabilities are particular linear combinations of
partial waves, the logarithmic modifications are also the same
linear combinations involving those partial waves, and this is
a convenient way to perform the calculations. We will also
see in the next section that the zero-range approximation pro-
vides an excellent starting point for understanding the scalar
polarizabilities (the vector and tensor ones are significantly
smaller and vanish in this approximation). In the Appendix
we develop the zero-range form of Eq. (5a), which allows
the analytic calculation of the logarithmic modifications to αE

and Dαα . We also develop a zero-range model based on the
relativistic Schrödinger equation (RSE).

V. RESULTS AND CONCLUSIONS

We have calculated the scalar, vector, and tensor compo-
nents of both α

βα

E and Dβα , together with their logarithmic
modifications. These calculations were performed with seven
different second-generation potential models, including the
Argonne V18 (AV18) [15], the Reid soft core 1993 (RSC93),
and five Nijmegen models [16,17], including the full model
(no partial-wave expansion) as well as the local and non-local
Reid-like models. The last two types had been fitted to both
relativistic and non-relativistic forms of the deuteron binding
energy.

It has been known for a long time that the deuteron
mean-square radius and the electric polarizability are rather
accurately predicted by the zero-range approximation (see the
Appendix). That approximation overpredicts the polarizability
by approximately 1% and Dαα by less than 2%, and is therefore
an excellent starting point for investigating the uncertainties in
the four scalar quantities. The largest uncertainty in the zero-
range results is due to AS , the asymptotic S-wave normalization
constant, whose value was determined in phase-shift analyses
[18] to be AS = 0.8845(8) fm−1/2. This leads via Eq. (A6) to
the zero-range result, αzr

E = 0.6378(12) fm3, and via Eq. (A2)
to Dαα

zr = 0.01916(4) fm2, where we use the relativistic form
of the deuteron binding energy for both quantities.

The second-generation potentials are sufficiently accurate
that they can be regarded as alternative phase-shift analyses.
We therefore expect that the values of the electric polarizability
and Dαα will scatter around a central value with the variance of
2 parts/thousand associated with A2

S . In order to check whether
the potential-model variation of the remaining 1% of αE and
roughly 2% of Dαα is small, we have scaled each calculated
quantity by (Aexp

S /Amodel
S )2, and have examined the remaining

variations. This procedure verifies that the uncertainty in the
scalar quantities is completely dominated by the uncertainty
associated with AS , rather than obscure differences in the
potential models. The values listed in Table I are the scaled
values with the uncertainty associated with AS .

In exactly the same way the tensor quantities should be
expected to scale like η, the asymptotic D/S (amplitude) ratio
of the deuteron, and the small size of η roughly accounts for
the reduced size of the tensor quantities in Table I relative to
the scalar ones. In order to verify that this conjecture is true,
we have scaled the tensor quantities by ηexp/ηmodel, where
the experimental value of η was determined from phase-shift
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TABLE I. Scalar, vector, and tensor components of Dβα (viz.,
s, v, t) and α

βα

E (viz., αE, σ, τ ), followed by the product with the
appropriate logarithmic factor, log (2Ē/me), for each case. Results
were calculated using a number of different potential models as
discussed in the text, and the “error bar” results from combining
a subjective estimate of the spread in the results after scaling to the
experimental values of A2

S and η, as discussed in the text, with the
variances of those two quantities. All calculations used the impulse
approximation for the dipole operator and assumed equal-mass
nucleons. Note that the first two rows have been multiplied by a
factor of 10 to make the entries more uniform in size.

Type Scalar Vector Tensor

Dβα × 10 0.1882(4) 0.00000 0.01322(10) fm2

Dβα log (2Ē/me) × 10 0.6327(12) 0.0003(1) 0.0503(4) fm2

α
βα

E 0.6330(13) −0.00092(5) 0.0317(3) fm3

α
βα

E log (2Ē/me) 1.8750(36) −0.0023(2) 0.1014(8) fm3

analyses [18] to be ηexp = 0.0253(2). After the scaling, the
remaining variations are small, confirming that the uncertainty
in η dominates the error in the tensor quantities. Thus, the
resulting composite error is essentially that of ηexp, which we
have associated with the scaled values in Table I. We note
that the result for the tensor electric polarizability in Table I is
nearly 10% smaller than the one in Ref. [10], which reflects a
modern value of η [18] that is smaller by approximately 10%
than the one used in Ref. [10].

The vector quantities on the other hand are very suppressed
and sensitive to details of the nuclear force that vary from
model to model. They are sensitive to the forces in the 3PJ

states, and in the absence of those forces can be shown to
be determined by the square of the D-state wave function.
The quoted uncertainties are inferred solely from the model
variations. Note that the vector part of Dβα vanishes identically
in non-relativistic approximation, and this accounts for the
very small sizes of the vector quantities. The vector quantity
in the second row of Table I was shown in Ref. [4] to be
proportional to η2 ∼ (0.025)2, and our numerical result (close
to that factor times the corresponding scalar result in the first
column of that row) verifies that conclusion. This tiny result is
therefore completely unimportant in the deuterium hyperfine
structure [4], although it formally contributes.

VI. SUMMARY

We have calculated a variety of polarizabilities and sum
rules for the deuteron that are generated by (unretarded,
non-relativistic) electric dipole interactions. These quantities
have been divided into scalar, vector, and tensor components
and include logarithmic modifications of each. Our numerical
techniques allow us to generate all such components at no extra
cost. The scalar polarizabilities (important in the deuterium
Lamb shift) were previously calculated [2] and have not
changed significantly. The vector components of the sum
rule play a nominal role in the ordinary deuterium hyperfine
structure [4] but are very small. The tensor components
determine part of the deuterium quadrupole hyperfine structure

[1], although calculations of this effect have not yet been
performed. The sizes and uncertainties of the various quantities
were analyzed using the zero-range approximation and various
scales appropriate to the deuteron.
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APPENDIX

The zero-range approximation is motivated by the asymp-
totic dominance of radial matrix elements that contain
(positive) powers of the distance between the nucleons.
The mean-square radius is an obvious example, as is the
electric polarizability, since each is weighted by two powers
of the inter-nucleon separation. The usual version of this
approximation is to assume that in intermediate states the
nucleons lie outside the range of the nuclear force (i.e., we
set that force to zero) and in the initial and final deuteron
states, we ignore the D-wave and use the asymptotic form of
the S-wave function. The zero-range deuteron wave functions
are therefore given by

uzr(r) = AS exp (−κr), (A1a)

wzr(r) = 0, (A1b)

where AS is the asymptotic S-wave normalization constant,
κ = √

2µEb,µ is the n-p reduced mass, and Eb is the
(positive) deuteron binding energy. Ignoring the tiny difference
in the proton and neutron masses (the neutron lies slightly
closer to the c.m. than does the proton) one finds that
the mean-square charge radius and 〈 �D2〉 are proportional
in impulse approximation (which we have assumed as a
consequence of the non-relativistic approximation), but not
otherwise. Recalling the factor of (2α/3) from Eq. (5b) and
two factors of 1

2 from the two dipole operators, the zero-range
value of Dαα is given by

Dαα
zr = αA2

S

24κ3
→ 0.01916(4) fm2, (A2)

where the numerical result uses the experimental value of AS

and the relativistic value of κ defined below. The calculation
of the remaining quantities requires an analytic expression
for the scalar electric polarizability with the ξf insertion. It
is convenient to choose f to be the deuteron binding energy
(i.e., Eb = −E0), so that in momentum space we have

ξEb + EN − E0 → (1 + ξ )κ2 + �p2

2µ
, (A3)

and the required Green’s function is therefore a simple
modification of the usual zero-range Green’s function for the
deuteron:

G0(ξ ) = 2µ

4πr
exp (−κ̄r), (A4a)

κ̄ =
√

1 + ξκ. (A4b)
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Performing the integrals in Eq. (5a) using Eq. (A1) for the
wave function and Eq. (A4) for the Green’s function leads to
the zero-range result

αzr
E (ξ ) = αµA2

S

12κ3

(κ2 + κ̄2 + 4κκ̄)

(κ + κ̄)4
. (A5)

This gives the well-known result

αzr
E (0) = αµA2

S

32κ5
→ 0.6378(12) fm3, (A6)

where the numerical result uses the experimental value of AS

and the relativistic value of κ defined below. Equations (22) and
(24) can now be used to calculate the logarithmic modifications
of αzr

E and 〈 �D2〉zr. The logarithmic modification of αzr
E is

determined by

log (Ē/Eb) = log 4 − 7
12 , (A7a)

or Ē
Eb

= 2.23214 · · ·, while the modification of 〈 �D2〉zr is
determined by

log (Ē/Eb) = log 4 − 1
6 , (A7b)

or Ē
Eb

= 3.38592 · · ·. Both results are very simple and quite
accurate.

Our final task is to estimate the size of one class of
relativistic corrections to αzr

E . We begin with the so-called
relativistic Schrödinger equation, which we construct for two
non-interacting nucleons with identical masses M by summing
the kinetic energies of each:[

E − (
M2 + �p2

1

) 1
2 − (

M2 + �p2
2

) 1
2

]
� = 0. (A8)

A potential could also be added to the kinetic energy. In the
center-of-mass frame of the two particles (with momenta �p

and − �p, respectively)[
Ec.m. − 2(M2 + �p2)

1
2

]
� = 0, (A9a)

indicating that the energy of a bound deuteron would be given
by

Ed = 2
(
M2 − κ2

r

) 1
2 ≡ 2M − Eb. (A9b)

Since the rightmost (experimental) result holds in all cases, it
clearly makes a difference if the non-relativistic approximation
2M − κ2

nr/M is substituted for the square root in Eq. (A9b).
For this reason we have labeled the relativistic value of κ as κr

and the non-relativistic approximation as κnr. They are related
by κr

∼= κnr(1 − κ2
nr/8M2).

Equation (A9a) also holds if we multiply it by Ec.m. + E′
c.m.,

where E′
c.m. = 2(M2 + �p2)

1
2 . This reduces that equation to

non-relativistic form, but with κr replacing κnr. Equations (A1)
therefore still hold mutatis mutandis. This does not apply to
Green’s function, however. If we invert Eq. (A9a) and multiply
top and bottom by the identical factor Ec.m. + E′

c.m., the
denominator has the desired form −4(κ2

r + �p2), but the numer-
ator now contains the factor (Ec.m. + E′

c.m.), which we rewrite
as 2Ec.m. + (E′

c.m. − Ec.m.) and note that the second part of this
expression cancels a similar factor in the denominator. The
remainder is very short ranged (range ∼1/M) when Fourier
transformed, and in keeping with the zero-range approxima-
tion we ignore this term. Thus the appropriate zero-range
Green’s function for the RSE is simply (1 − κ2

r /M2)1/2G0,
where the form in Eq. (A4a) holds if we replace 2µ by M
and κ by κr . Thus previous results for αE hold if we use κr

everywhere for κ and multiply by the factor of (1 − κ2
r /M2)1/2.

This produces a correction (compared to 1) ∼ −κ2
r /2M2 ∼

−0.0012, which reflects the expected size of relativistic effects
for the deuteron. For a full treatment, see Ref. [5].
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