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Nuclear corrections to hyperfine structure in light hydrogenic atoms
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Hyperfine intervals in light hydrogenic atoms and ions are among the most accurately measured quantities in
physics. The theory of QED corrections has recently advanced to the point that uncalculated terms for hydrogenic
atoms and ions are probably smaller than 0.1 parts per million (ppm), and the experiments are even more accurate.
The difference of the experiments and QED theory is interpreted as the effect on the hyperfine interaction of the
(finite) nuclear charge and magnetization distributions, and this difference varies from tens to hundreds of ppm.
We have calculated the dominant component of the 1s hyperfine interval for deuterium, tritium, and singly ionized
helium, using modern second-generation potentials to compute the nuclear component of the hyperfine splitting
for the deuteron and the trinucleon systems. The calculated nuclear corrections are within 3% of the experimental
values for deuterium and tritium, but are about 20% discrepant for singly ionized helium. The nuclear corrections
for the trinucleon systems can be qualitatively understood by the invoking of SU(4) symmetry.
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I. INTRODUCTION

The physics of hyperfine structure (hfs) is driven by
magnetic interactions. This physics has a short-range nature
and is more complicated and challenging than “softer” regimes
in atomic physics. This is especially true of the nuclear
contribution to hfs, because the nuclear current density is
more complicated than the nuclear charge density and less
well understood [1,2].

Until very recently hyperfine splittings in light hydrogenic
atoms were by far the most precisely measured atomic
transitions. Many of these very accurate experiments date
back nearly half a century. Theoretical predictions are far
less accurate, but have improved considerably in recent years.
Nonrecoil and nonnuclear contributions [3,4] are known
through order α3EF , where EF is the Fermi hyperfine energy
(viz., the leading-order contribution) and α is the fine-structure
constant. Because the hadronic scales for recoil and certain
types of nuclear corrections are the same, recoil corrections
are treated on the same footing as nuclear corrections [3],
and we call both types “nuclear corrections.” It is very likely
that the uncalculated QED terms of the order of α4EF in light
atoms contribute less than 0.1 ppm. Although much larger than
the experimental errors, this is still significantly smaller than
the nuclear corrections. We restrict ourselves to hydrogenic
s states in this work, because these states maximize nuclear
effects.

Table I is an updated version of the corresponding table
in Ref. [4]. Because hyperfine splittings are dominated by
short-range physics, we expect the splittings in the nth
s state to be proportional to |φn(0)|2 ∼ 1/n3, where φn(r) is
the nonrelativistic wave function of the electron. Forming the
fractional differences (in ppm) between E

exp
hfs and E

QED
hfs leads

to the tabulated results. These large differences reflect neither
experimental errors nor uncertainties in the QED calculations;
they directly reflect large nuclear contributions.

One complication in performing the nuclear calculation
is obtaining a final result that is tractable for numerical

calculations. A framework fortunately exists for performing
systematic expansions [2] of nuclear matrix elements in
powers of (Q/�), where Q is a typical nuclear momentum
scale that can be taken to be roughly the pion mass (mπ ∼
140 MeV), and � is the large-mass QCD scale (∼1 GeV)
typical of QCD bound states such as the nucleon, heavy
mesons, nucleon resonances, etc. This framework, called
power counting, also extends to nuclei, in which 1/Q specifies
a typical correlation length (and a reasonable nearest-neighbor
distance) in light nuclei (∼1.4 fm). This expansion in powers
of (Q/� ∼ 0.1–0.15) should converge moderately well. For
the purposes of this initial work, we restrict ourselves to
leading-order terms in the nuclear corrections.

This restriction eliminates nuclear corrections of relativistic
order, which we will briefly discuss later. There have been
relatively few relativistic calculations in light nuclei because
of the complexity of the nuclear force. The calculations that
exist are known to generate rather small corrections [5], and
they are especially small in the deuteron case because of its
weak binding [6]. Few calculations exist for the much more
complicated three-nucleon systems [7]. Most nuclear physics
knowledge and lore in light nuclei are nonrelativistic in nature.

In processes that involve virtual excitation of intermediate
nuclear states (each state |N〉 with its own energy, EN , relative
to the ground-state energy, E0), the excitation energy (ωN =
EN − E0) is of the order of Q2/� and typically is a correction
to the leading order [2]. Consistency therefore demands that
we drop such terms. The nuclear recoil energy Q2/2M , where
M is the nuclear mass, has the same scale and can also be
dropped.

Our goal is to evaluate the deuteron contribution in leading
order as carefully as possible and to use the impulse approx-
imation to evaluate the 3He and 3H results. This restriction
should be accurate to within the 10%–15% uncertainty of
our leading-order approximation and adequate for a first
calculation of the trinucleon sector. This level of accuracy does
require the inclusion of the intrinsic hfs of the nucleons. We
will see that the calculated results are good for deuterium and
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TABLE I. Difference between hyperfine experiments and QED
hyperfine calculations for the nth s state of light hydrogenic atoms
times n3, expressed as ppm of the Fermi energy. This difference
is interpreted as nuclear contributions to the hyperfine splitting [4].
A negative entry indicates that the theoretical prediction without
nuclear corrections is too large.

n3(Eexp
hfs − E

QED
hfs )/EF (ppm)

State H 2H 3H 3He+

1s −33 138 −38 −212
2s −33 137 – −211

tritium and fairly good for 3He+. Our goal is to present a simple
and compelling picture of the nuclear hfs in d,3H, and 3He+,
using a unified approach for all. To accomplish this we invoke
a simple and intuitive model of trinucleon structure based on
SU(4) symmetry that is sufficiently accurate to explain the
patterns in Table I.

II. NUCLEAR CONTRIBUTIONS TO HYPERFINE
STRUCTURE

The hyperfine interactions that interest us are simple
(effective) couplings of the electron spin to the nuclear
(ground-state) spin: �σ · �S, where �σ is the electron (Pauli)
spin operator and �S is the nuclear spin (i.e., the total angular
momentum [8]) operator. Other couplings of the electron spin
are possible and either generate no hyperfine splitting, none
in s states, or higher-order (in α) contributions. Coupling of
the electron spin to the electron angular momentum (i.e., the
electron spin-orbit interaction, which vanishes in s states) is
one example.

We begin with a sketch of the Fermi hyperfine splitting
in order to establish our notation and conventions. The
electron charge operator (ψ†ψ) is a space scalar, and by
itself does not generate a term of the desired form because
nuclear-spin information cannot be transmitted by means of the
exchange of the appropriate component of the virtual photon’s
propagator. The leading-order term in the hyperfine energy
shift consequently has the (usual) form of a current-current
interaction:

EF = α

∫
d3r

∫
d3r ′ ψ

†(�r)�αψ(�r) · �J (�r ′)
|�r − �r ′| , (1)

where ψ†�αψ is the current density of the (Dirac) electron
and �J (�r ′) is the nuclear (ground-state) current density. When
higher-order (in α) terms are ignored, this expression can be
manipulated into the form

EF = α

2me

∫
d3r|φn(r)|2

∫
d3r ′ �J (�r ′) · �σ × �∇r

1

|�r − �r ′| , (2)

where me is the electron mass and φn(r) is the usual nonrel-
ativistic atomic nth s-state wave function. The restriction to
atomic s states limits the current to the magnetic-dipole part,
which can be written in terms of the magnetic-dipole operator,

q

(a) (b) (c)

FIG. 1. Nuclear Compton amplitude with (a) direct, (b) crossed,
and (c) seagull contributions illustrated. Single lines represent an
electron, double lines a nucleus, wiggly lines a photon propagator
(with four-momentum qµ), and shaded double lines depict a nuclear
Green’s function containing a sum over nuclear states. The seagull
vertex maintains gauge invariance.

�µ, as

�J (�r) → �JM1(�r) = �∇r × �µ(�r), (3a)

and �µ can be written in terms of the nuclear ground-state
magnetization density ρM (r) as

�µ(�r) = µN
�S

S
ρM (r), (3b)

where
∫

d3r ′ρM (r ′) = 1 and 〈SS|µz|SS〉 ≡ µN defines the
nuclear magnetic moment. We finally obtain the Fermi
hyperfine energy in the limit ρM (r ′) → δ3(�r ′):

EF = 4παµN

3me

�σ · �S
S

∫
d3r|φn(r)|2ρM (r)

= 4παµN |φn(0)|2
3me

�σ · �S
S

, (4)

where the factor of (�σ · �S)/S leads to a hyperfine splitting
of (2S + 1)/S. All additional contributions will be measured
as a fraction of this energy. We note that using the pointlike
ρM and Eq. (3a) in Eq. (1) leads to an atomic matrix element∫ ∞

0 drF (r)G(r) (in the standard Dirac notation) that can be
evaluated analytically for higher-order Coulomb corrections
[3] to the leading contribution of O(Z3α4), where Z is
the nuclear charge. Note that EF is independent of nuclear
structure.

Naively calculating higher-order (in α) corrections from the
first part of Eq. (4) fails because only that part of φn(r) inside
the nucleus (i.e., within the magnetic “size,” RM ) contributes
to the integral, and that is the (only) part of the electron’s
wave function significantly modified by the nuclear charge
distribution, ρch(r), whose radius, Rch, is nearly the same as
RM . In other words, a proper calculation [9,10] must take into
account modifications of φn(r) by ρch, and that necessarily
involves one order in α higher than EF . Thus we need to
perform a consistent second-order (in α) calculation of the
electron-nucleus interaction, depicted in Fig. 1.

These graphs are constructed from the direct, crossed,
and nuclear seagull contributions to the nuclear Compton
amplitude. Only the forward-scattering part of this ampli-
tude is required for the O(α) corrections to EF , and this
generates a short-range atomic operator that samples the
(upper-component) s-state wave functions only near the origin.
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The resulting energy shift is then given by


E = i(4πα)2|φn(0)|2
∫

d4q

(2π )4

tµν(q)T µν(q,−q)

(q2 + iε)2(q2 − 2meq0 + iε)
,

(5)

where tµν is the lepton Compton amplitude and T µν is
the corresponding nuclear Compton tensor, both of which
are required to be gauge invariant. The lepton tensor can
be decomposed into an irreducible spinor basis; we can ignore
odd matrices and spin-independent components, as they do
not contribute to the hfs at O(αEF ). We also ignore (with
one exception, treated later) terms that couple two currents
together. It is easy to show that, because the nuclear current
scales as 1/� (the conventional components of the current
have explicit factors of 1/M), two of them should scale as
1/�2 and generate higher-order (in 1/�) terms. This leaves a
single term representing a charge-current correlation:


E = (4πα)2|φn(0)|2
∫

d4q

(2π )4

× (�σ × �q)m[T m0(q,−q) − T 0m(q,−q)]

(q2 + iε)2(q2 − 2meq0 + iε)
. (6)

The seagull terms B0m(q,−q) and Bm0(q,−q) are of relativis-
tic order [11] (∼1/�2) and can be dropped. Although the term
Bmn(�q,−�q) is of nonrelativistic order, it does not contribute
in conventional approaches because of crossing symmetry.

The explicit form for T m0 (suppressing the nuclear
ground-state expectation value, but including all intermediate
states, N) is

T m0(q,−q) =
∑
N

(
Jm(−�q)|N〉〈N |ρ(�q)

q0 − ωN + iε

+ ρ(�q)|N〉〈N |Jm(−�q)

−q0 − ωN + iε

)
, (7)

which greatly simplifies Eq. (6) in the limit ωN → 0 and me →
0, leading finally in this limit to a very simple form when
closure is used:


E = i(4πα)2|φn(0)|2
∫

d3q

(2π )3

(�σ × �q)m{Jm(−�q), ρ(�q)}
�q6

,

(8)
which is infrared divergent. Using

Jm(−�q) =
∫

d3yJm(�y)e−i �q·�y, (9a)

and

ρ(�q) =
∫

d3xρ(�x)ei �q·�x, (9b)

together with �z ≡ �x − �y, and a lower-limit (infrared) q cutoff,
ε, we find


E = −8α2|φn(0)|2
∫

d3x

∫
d3y{ρ(�x), �σ · �J (�y)}

× �∇z

(
1

3ε3
− z2

6ε
+ πz3

48

)
, (10)

where there is an implied (nuclear) expectation value. The
constant term does not contribute because of the derivative,

the z2 term contributes a term proportional to [−(�x − �y)]/3ε,
and the last term is the term we are seeking.

The remaining singular (second) term must be treated more
carefully. The part proportional to �y leads (because of the
integral over �x) to a contribution proportional to Z, the total nu-
clear charge, and µN , the nuclear magnetic moment. Because
this contribution is already part of EF , keeping this term
would amount to double counting, and we therefore ignore
it. The �x term on the other hand generates (unretarded) dipole
transitions, and the singularity (1/ε) arises from neglecting
1/ωN and me terms. Siegert’s theorem [1] for unretarded
electric dipole transitions [

∫
d3y �J (�y) ∼ iωN

�D] generates an
additional factor of ωN (i.e., ε) so this singular term is actually
of the form (ε/ε) → (0/0) and requires a careful calculation.
A rather tedious evaluation of this term in Eq. (6) leads to

Ea = −2iα2|φn(0)|2 �σ · �D [ln 2(H−E0)

me
+ 3/2] × �D, where

H − E0 ≡ ωN in intermediate states. A similar term arises
in the product of two currents mentioned above Eq. (6) and
leads to 
Eb = −iα2|φn(0)|2 �σ · �D [ln 2(H−E0)

me
− 1/2] × �D.

These contributions are completely unimportant, as we
now demonstrate. The constant terms [including ln(me)] are
proportional to �σ · �D × �D, which vanishes for nonrelativistic
dipole operators because they commute. Replacing ωN with a
constant (viz., the closure approximation) similarly vanishes.
It is straightforward to show that the nuclear matrix element
also vanishes in zero-range approximation, where one neglects
the deuteron d state and the potential in intermediate states
(the structure of the dipole operator weights the tails of
the wave functions, and this minimizes the effect of the
intermediate-state nuclear potential). In perturbation theory
it is possible to show that only the spin-orbit combina-
tion of potentials in intermediate states contributes (i.e.,
central and tensor terms cancel), and this small potential
is of relativistic order (1/�2), which we have previously
agreed to ignore. One can also show that the nonvanishing
deuteron contribution is proportional to η2, the square of the
d- to s-wave asymptotic normalization constant [∼(0.025)2],
which is extremely small. A recent brute-force numerical
calculation confirms these estimates [12]. The terms 
Ea and

Eb are therefore numerically negligible and can be ignored.

Our final result in leading order is a relatively simple
expression originally developed in a limiting case by Low [13]
for the deuteron, as sketched by Bohr [14] for the same
system:


ELow
hfs = πα2|φn(0)|2

2

∫
d3x

∫
d3y

× {ρ(�x), �σ · �z × �J (�y)}z + · · · , (11a)

where both an atomic and nuclear expectation value is implied,
but has been ignored in Eq. (11a) and subsequent equations
for reasons of simplicity.

We obtain a more convenient representation of this result by
dividing both sides by the expression for the Fermi hyperfine
energy given by Eq. (4). Because the Wigner-Eckart theorem
guarantees that the resulting form of Eq. (11a) must be
proportional to �σ · �S/S (which cancels in the ratio), we arrive
at a simple but powerful expression for the leading-order
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contribution:


ELow
hfs = −2meαδLow, (11b)

where

δLow = − 3

16µN

∫
d3x

∫
d3y{ρ(�x), [�z × �J (�y)]z}|�x − �y|,

(11c)

and an expectation value is required of the z (or “3”)
component of the vector �z × �J (�y) in the nuclear state with
maximum azimuthal spin (i.e., Sz = S). The intrinsic size of
the nuclear corrections is given by (−2meαR) = −38 ppm
(R/fm), where (R/fm) is the value of the Low moment in
Eq. (11c) in units of fm. The results of Table I therefore suggest
(correctly) that Low moments are of the order of a few fm in
light nuclei, which is quite sensible.

III. NUCLEAR MATRIX ELEMENTS

We predicate our discussion on the deuteron. Other nuclei
can and will be treated mutatis mutandis. The isospin of the
deuteron (T = 0) makes it a useful first case. We note that the
nuclear physics in Eqs. (11) involves the correlation between
the nuclear charge operator ρ(�x) and the nuclear current
operator �J (�y). If one inserts a complete set of states between
these operators, there will be both elastic contributions (i.e.,
ground-state expectation values) that are called Zemach
corrections [10] and inelastic contributions called nuclear
polarization corrections. Although we calculate (or estimate)
both types, it is much easier to calculate the sum of the two.

The nuclear charge operator contains both isoscalar and
isovector pieces and is nonrelativistic in leading order. We
ignore relativistic corrections, as we discussed earlier. We
therefore write the charge operator in the form

ρ(�x) =
A∑

i=1

êi(|�x − �x ′
i |), (12a)

where

êi(|�x − �x ′
i |) = p̂iρ

p

ch(|�x − �x ′
i |) + n̂iρ

n
ch(|�x − �x ′

i |), (12b)

and

p̂i =
(

1 + τ 3
i

2

)
, (12c)

and

n̂i =
(

1 − τ 3
i

2

)
. (12d)

This decomposes the ith nucleon’s charge operator into proton
plus neutron parts. The densities ρ

p

ch and ρn
ch are the intrinsic

charge densities of the proton and neutron, respectively, and p̂i

and n̂i are the proton and neutron isotopic projection operators,
respectively. The coordinate �x ′

i is the distance of the ith nucleon
from the nuclear center of mass. We expect that the neutron
charge density should play a very minor role, and we will find
(later) that its contribution is only a low percentage of that of
the proton. Rather sophisticated models exist for the Fourier
transform (i.e., the form factor) of ρ

p

ch [15].

The nuclear current operator is more complicated, even
if we ignore relativistic corrections (which we will). The
problem is the mechanism underlying the nuclear force
(viz., the exchange of charged mesons), which can also con-
tribute to the nuclear current in the form of meson-exchange
currents (MECs). These currents largely vanish for isoscalar
transitions (such as the deuteron ground state) because there
is no net flow of charge, but they can be sizable (10–20%)
for isovector transitions. One can show that their contribution
to the deuteron in Eqs. (11) almost entirely vanishes, and we
henceforth ignore these currents below Eq. (13d). We formally
expand the current into convection, spin-magnetization, and
meson-exchange parts:

�J (�y) = �JC(�y) + �∇y × �µ(�y) + �JMEC(�y) + · · · , (13a)

where

�JC(�y) =
A∑

i=1

{ �πi

2M
, êi(|�y − �x ′

i |)
}

(13b)

is the nuclear convection current, �πi is the ith nucleon’s
momentum in the nuclear center-of-mass frame,

�µ(�y) =
A∑

i=1

�σiµ̂i(|�y − �x ′
i |) (13c)

is the impulse-approximation magnetic-moment operator,
�JMEC is the nuclear MEC, and

µ̂i(|�y − �x ′
i |) = p̂iµpρ

p

M (|�y − �x ′
i |) + n̂iµnρ

n
M (|�y − �x ′

i |) (13d)

is the nucleon magnetization density for the ith nucleon
expressed in terms of protons and neutrons separately. The
quantities µp and µn are the (total) proton and neutron
magnetic moments, and ρ

p

M and ρn
M are the intrinsic proton

and neutron magnetization densities (normalized to 1).
By use of Eqs. (12) and (13) the energy shift in Eqs. (11)

can be evaluated. Rather than split Eq. (11c) into Zemach
terms (by inserting intermediate ground states between ρ and
�J ) and polarization terms (by inserting intermediate excited

nuclear states between ρ and �J ), we use the fact that our charge
and current operators are each given by a sum over single-
nucleon operators. Thus their product can be decomposed into
single-nucleon plus two-nucleon operators. These forms are
particularly convenient to evaluate. We first write in an obvious
notation that

δLow = δ(1)
spin + δ

(2)
Low. (14)

Note that the quantity δ(1)
spin was not part of Low’s original

work, nor was there any evidence at that time that such a term
might be significant. We next use Eqs. (13) to manipulate the
magnetization part of the current in Eq. (11c) into the form
(recall that �z = �x − �y)

δ
mag
Low = 1

µN

A∑
i,j

∫
d3x

∫
d3y|�x − �y|êi(|�x − �x ′

i |)µ̂j

× (|�y − �x ′
j |)

[
�σj − 1

8
(3�σj · ẑẑ − �σj )

]
z

, (15)
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and the convection current can be reduced to

δconv
Low = − 3

16µNM

A∑
i,j

∫
d3x

∫
d3y|�x − �y|

× {(�z × �πj )z, êi(|�x − �x ′
i |)êj (|�y − �x ′

j |)}. (16)

The one-body (i = j ) part of the convection-current contribu-
tion vanishes on integration, as does the second (tensor) term
in the magnetization contribution. Shifting the variables �x and
�y by �x ′

i leads to

δ(1)
spin =

A∑
i=1

(
〈r〉pp

(2)

µp

µN

p̂i + 〈r〉nn
(2)

µn

µN

n̂i

)
σ z

i , (17)

where

〈r〉pp

(2) =
∫

d3x

∫
d3yρ

p

ch(x)ρp

M (y)|�x − �y| = 1.086(12) fm

(18a)
and

〈r〉nn
(2) =

∫
d3x

∫
d3yρn

ch(x)ρn
M (y)|�x − �y| (18b)

determine the proton and neutron parts of the one-body current.
Note that the quantities 〈r〉pp

(2) and 〈r〉nn
(2) are the usual proton

and neutron Zemach terms, and we have listed in Eq. (18a)
the value of the proton Zemach moment recently determined
directly from the electron-scattering data for the proton [16]
(the neutron has not been evaluated). In the numerical work
subsequently described we use simple forms for the neutron
and proton form factors: a dipole form for the proton charge
and magnetic form factors and the neutron magnetic form
factor [FD(q2) = 1

(1+q2/β2)2 ] and a modified Galster [17] form

for the neutron charge form factor [FG = λq2

(1+q2/β2)3 ]. To
incorporate into our calculations the numerical value given
by Eq. (18a) we use β = 4.0285 fm−1, which reproduces
this value for the dipole case (see Appendix A for moments
and correlation functions determined by this choice of form
factors). The rms radius determined by this β is 0.86 fm,
which is slightly smaller than the proton charge radius [15] but
slightly larger than its magnetic radius [18] and thus represents
an average value. The much smaller neutron moment, 〈r〉nn

(2)
(see Appendix A), can be adequately represented by this value
of β and λ = 0.0190 fm2, which determines the neutron charge
radius [19]. These numbers lead to 〈r〉nn

(2) = −0.042 fm, which
we will subsequently use. Because this value is such a small
fraction of the proton result, the uncertainty in the neutron
value plays no significant role.

Equation (17) is still a nuclear operator, and its expectation
value depends on the nucleus. We begin with the deuteron
(which has T = 0), and this eliminates the τ3 terms in p̂i

and n̂i . The spin terms then sum to (�σ1 + �σ2)z, which is not
the total angular-momentum (it lacks �L, the orbital angular-
momentum contribution). The expectation value of (�σ1 + �σ2)z
is 2Sz(1 − 3

2PD), where Sz is the z component of the deuteron
total angular momentum operator and PD is the amount of
D wave in the deuteron wave function (typically, slightly in

excess of 5.6%). In the state of maximum Sz this leads to

δ
(1)
d =

(
1 − 3

2
PD

)(
µp

µd

〈r〉pp

(2) + µn

µd

〈r〉nn
(2)

)
, (19)

which is completely dominated by the proton. Note that the
D wave prefers to antialign with the spin, which leads to the
reduction in Eq. (19).

A similar (though more complicated) analysis is possible
for 3He and 3H (see Appendix B). The traditional (and very
useful) decomposition of the trinucleon wave function uses
representations of spin-isospin symmetry [viz., SU(4)]. In ad-
dition to the somewhat larger D-state component (PD ∼ 9%),
the significant S-wave component comes in two distinct
types: the dominant S state (PS ∼ 90%) with a completely
antisymmetric spin-isospin wave function and completely
symmetric space wave function, and the mixed-symmetry
S ′ state (PS ′ ∼ 1%). The representations of SU(4) were
used long ago to decompose contributions to the trinucleon
magnetic moments, and this leads to [20,21]〈

A∑
i=1

(
1 ± τ 3

i

2

)
�σi

〉

= �S
[

(1 − 2PD) ∓ τ3

(
1 − 4

3
PS ′ − 2

3
PD

)]
, (20a)

= 2�S
{[

γ

ξ

] (
1 + τ3

2

)
+

[
ξ

γ

](
1 − τ3

2

)}
, (20b)

where

γ = 2
3 (PS ′ − PD) ∼= −0.06, (21a)

ξ = 1 − 2
3PS ′ − 4

3PD
∼= 0.86, (21b)

specify the two sign cases in Eqs. (20a) and (20b). Note that τ3

is the third component of total isospin and �S is the (total)
nuclear-angular-momentum operator. The first and second
terms in Eq. (20b) determine 3He and 3H, respectively, whereas
upper and lower components refer to ± in Eq. (20a). Finally
we obtain

δ
(1)
3He = µpγ

µ3He
〈r〉pp

(2) + µnξ

µ3He
〈r〉nn

(2) → 0 (22a)

and

δ
(1)
3H = µpξ

µ3H
〈r〉pp

(2) + µnγ

µ3H
〈r〉nn

(2) → 〈r〉pp

(2), (22b)

where the point-neutron, SU(4) symmetry limit (i.e., the
S state only, which is indicated by the arrow) is subsequently
discussed.

This result is very easy to interpret. In the dominant S state
(corresponding to γ = 0 and ξ = 1) the two “like” nucleons
(e.g., the protons in 3He) have opposite and canceling spins,
whereas the “unlike” nucleon (e.g., the neutron in 3He) carries
all of the spin and determines both the magnetic moment and
the single-nucleon contribution to the hfs (if we ignore MECs
and the convection current). Ignoring those currents leads
to µ3He = γµp + ξµn → µn and µ3H = ξµp + γµn → µp,
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where the arrow indicates the SU(4) limit. The 3He single-
nucleon contribution to hfs in this limit comes solely from
the tiny neutron contribution, whereas the corresponding 3H
contribution is simply 〈r〉pp

(2) and becomes identical to the free
proton Zemach moment.

The two-nucleon contributions are more complicated and
are determined by correlation functions. In the deuteron these
correlations must be between a neutron and a proton and are of
the following types: ep − µn, en − µp, and en − ep (convec-
tion current only). In the trinucleons there are additional types:
ep − µp, en − µn, and ep − ep (convection current only). As
we noted earlier the correlations involving en will be very
small, and we have ignored the tiny en − en convection-current
correlation in 3H.

The two-nucleon contributions contained in Eqs. (15) and
(16) can be manipulated into simpler forms by the shifting of
�x by �x ′

i and �y by �x ′
j , which leads to

δ
mag
Low = 1

µN

A∑
i �=j

[
�σjCij (xij )

− 1

8
¯̄Cij (xij )(3�σj · x̂ij x̂ij − �σj )

]
z

, (23a)

δconv
Low = 3

16MµN

A∑
i �=j

C̄ij (xij )Lz
ij , (23b)

where �Lij = �xij × (�πi − �πj ) and the three correlation func-
tions are defined by

Cij (r) =
∫

d3x

∫
d3yêi(x)µ̂j (y)|�x − �y + �r| (24a)

= p̂i(µpp̂j + µnn̂j )CDD(r)

+ n̂i(µpp̂j + µnn̂j )CDG(r), (24b)

C̄ij (r) = 1

3r

d

dr

∫
d3x

∫
d3yêi(x)

× êj (y)|�x − �y + �r|3 (24c)

= p̂i p̂j C̄DD(r) + (p̂i n̂j + n̂i p̂j )C̄DG(r), (24d)

¯̄Cij (r) = 1

3

(
d2

dr2
− 1

r

d

dr

) ∫
d3x

∫
d3y

× êi(x)µ̂j (y)|�x − �y + �r|3 (24e)

= p̂i(µpp̂j + µnn̂j ) ¯̄CDD(r)

+ n̂i(µpp̂j + µnn̂j ) ¯̄CDG(r), (24f)

where in Eqs. (24b), (24d), and (24f ) we have decomposed
the charge and magnetic distributions in terms of isospin
projectors and radial functions CDD(r) and CDG(r). Explicit
forms for these functions are given in Appendix A. Note
that the quantity in parentheses in Eqs. (24b) and (24f) is the
(dominant) spin part of the magnetic-moment operator and that
we ignore the contribution of two-neutron charge distributions
in Eq. (24d). In the limit of no finite size, each of the
three nonvanishing radial functions (CDD, C̄DD, ¯̄CDD) simply
equals r.

The special case of the deuteron is easily dealt with. With
our assumptions about the nucleon form factors there are only
two distinct types of products contained in êi êj and êi µ̂j ; these
are the dipole-dipole form of ep − µn correlation (CDD) and
the dipole-Galster form of en − ep and en − µp correlation
(CDG). The conventional form of the deuteron wave function
(with the spin and isospin wave functions suppressed) is

ψd =
[
u(r) + 1√

8
S12(r̂)w(r)

](
1√
4πr

)
, (25a)

which leads to the useful relations

(4πr2)ψ†
d (�r) 1

2 (�σ1 + �σ2)ψd (�r)

= �SA(r) + B(r)(3r̂ �S · r̂ − �S), (25b)

(4πr2)ψ†
d (�r) �Lψd (�r)

= 3
2
�SD(r) − 3

4D(r)(3r̂ �S · r̂ − �S), (25c)

with �L12 = 2 �L used for the deuteron, and

A(r) = u2(r) − 1
2w2(r), (26a)

B(r) = 1√
2
u(r)w(r) + 1

2w2(r), (26b)

D(r) = w2(r). (26c)

This leads immediately to

δ
(2)
d =

∫ ∞

0
drA(r)

[
µn

µd

CDD(r) + µp

µd

CDG(r)

]

− B(r)

4

[
µn

µd

¯̄CDD(r) + µp

µd

¯̄CDG(r)

]

+ 9

4µd

D(r)C̄DG(r), (27)

where we have removed a factor of 1/2M from the magnetic
moments (i.e., they are now given in units of nuclear magne-
tons). In the limit of vanishing neutron charge distribution and
point protons, this expression becomes

δ
(2)
d → µn

µd

∫ ∞

0
drr

[
A(r) − B(r)

4

]
, (28)

which is Low’s expression [13] for the complete deuteron
finite-size effect (in leading order). In the next section we
refer to the integrals of radial functions such as A(r)CDD(r),
[i.e., including the numerical factors, but without the magnetic
moments in Eq. (27)] as “Low moments.” The two Low
moments for pointlike nucleons are therefore

∫
rA(r) and

− 1
4

∫
rB(r), as given in expression (28).

IV. NUMERICAL EVALUATION

The proton hfs has been discussed in detail recently [4,16],
and we have nothing more to add. The recently evaluated
proton Zemach moment is listed in Table II, and it leads to a
−58.2(6) kHz contribution to the hydrogen hfs, which equals
−41.0(5) ppm. When added to the usual QED and recoil
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TABLE II. Neutron and proton Zemach moments and their single-
nucleon contribution to the deuterium 1s hfs.

Zemach moments (fm) Deuteron nucleon-moment hfs (kHz)

Proton Neutron Proton Neutron Total
1.086(12) −0.042 −40.0 −1.1 −41.1

corrections [3,4,16] there is a 3.2(5) ppm discrepancy with
experiment, which can be attributed to hadronic polarization
and (possible) additional recoil corrections.

We begin our discussion of the deuteron with the single-
nucleon contribution given by Eq. (19). Table II lists the proton
Zemach moment and the neutron moment determined by our
choice of form factors. The neutron result is only 4% of the
proton value in magnitude, and the opposite sign reflects the
fact that the (overall neutral) neutron has negative charge at
large distances that balances positive charge at short distances.
Using the value of PD

∼= 5.67% (corresponding to the AV18
potential model [22]) in Eq. (19) leads to the nucleon-moment
deuterium hfs contributions listed on the right-hand side of
Table II. The proton result differs from that in hydrogen by the
factor of (1 − 3

2PD) and the statistical factors for the deuterium
and hydrogen hfs.

The deuterium Low moments are listed in Table III, and the
resulting hfs is listed in Table IV, both for pointlike nucleons
(only the proton charge contributes) and for nucleons with
finite size. The moments themselves and the resulting hfs
are defined in expression (28) for pointlike nucleons and in
Eq. (27) for finite nucleons. It is obvious that d waves and the
neutron’s charge distribution play a minor role. The proton
charge distribution and the neutron magnetic distribution
have a somewhat larger effect; ADD is larger than Apt by
about 6%.

One can also compute the Zemach moment of the entire
deuteron by constructing the charge (Fch) and magnetic
(Fmag) form factors and using the equivalent momentum-space
version of the Zemach moment formula:

〈r〉(2) = − 4

π

∫ ∞

0

dq

q2
[Fch(q2)Fmag(q2) − 1]. (29)

Various contributions and limits are listed in Table V. Results
for pointlike nucleons are listed on the left and include the
contributions from the s-wave spin-magnetization current, the
d-wave spin-magnetization current, and the orbital (convec-
tion) current, followed by the total contribution. Including

TABLE III. Deuterium Low moments (in fm) from various parts
of the nuclear current. The A terms are the space-scalar contributions
[first term in Eq. (23a)] from the spin-magnetization current, the
B terms are the corresponding space-tensor terms [second term
in Eq. (23a)], and the D term arises from the convection current
[Eq. (23b)].

Apt Bpt ADD ADG BDD BDG DDG

3.081 −0.115 3.271 −0.015 −0.126 0.001 −0.003

TABLE IV. Contributions to the deuterium 1s hfs (in kHz) from
the Low moments compiled in Table III.

Apt Bpt ADD ADG BDD BDG DDG

84.9 −3.2 90.2 0.6 −3.5 0.0 0.0

identical dipole nucleon form factors for the proton’s charge
and the neutron’s magnetization densities [which multiplies
both Fch(q2) and Fmag(q2) by FD(q2) — see Eq. (A3)] leads
to the rightmost result and corresponds to an increase of
about 10%. The experimental result of 2.593(16) fm was
obtained directly from the electron-scattering data [16] and
is approximately 2% smaller (4 standard deviations) than our
nonrelativistic calculation. This difference is the expected size
of relativistic corrections from the MEC.

The one-body (nucleon Zemach) and two-body (Low)
contributions to the total deuterium hfs are listed in
Table VI. Because there is then no point-nucleon contribution
to the one-body part, the Low term is the sole contribution
and leads to a very large result. The finite-nucleon case has
considerable cancellation between the two and totals only
about half the size of the point-nucleon limit. One can also
break the total result down into deuteron Zemach (elastic)
terms plus polarization (inelastic) terms. This is indicated in
Table VII. The polarizability term is more than twice the elastic
(Zemach) term and reflects how easily a weakly bound system
can be excited compared with a system like the nucleon, which
is difficult to excite. In the latter case the polarization term is
only about 10% of the Zemach term.

The physics of the nuclear correction to the deuterium hfs
is straightforward and completely dominated by the proton
Zemach moment and the ep − µn Low contribution. Nuclear
structure plays little role except to fix the size of the (radial)
Low moment. The signs were fixed by the sign of the proton
magnetic moment (for the one-body term) and the neutron
magnetic moment (for the two-body term), and are opposite.
If we incorporate the additional minus sign in Eq. (11b), the
naively expected sign of the one-body terms should be −,
whereas that of the Low contribution should be +, as we
found in the deuterium case. As we will see, however, nuclear
structure can play an exceptional role in the trinucleon, and
these expectations are not fulfilled in two cases.

The required 3H and 3He matrix elements were calculated
with wave functions obtained from a Faddeev calculation
[23]. The (second-generation) AV18 [22] potential was used,
together with an additional TM′ three-nucleon force [24]
whose short-range cutoff parameter had been adjusted for
each case to provide the correct binding energies. Individual

TABLE V. Deuterium Zemach moments (in fm) from various
parts of the nuclear current.

Point nucleon Finite nucleon Experiment

L = 0 L = 2 Orb Zemach Zemach Zemach
2.324 −0.035 0.094 2.383 2.656 2.593(16)
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TABLE VI. Contributions to the deuterium hfs from one-nucleon
and two-nucleon operators and their total (in kHz).

Deuteron hfs − nucleon + low moments

Point nucleon Finite nucleon

Nucleon Low Total Nucleon Low Total
0.0 81.8 81.8 −41.1 87.3 46.2

one-body (labeled “nucleon”) and two-body (labeled “Low”)
terms are tabulated together with their total in Table VIII.
Note that the 3He case (which has proton number Z = 2) is
uniformly enhanced (compared with the H cases) by a factor of
Z3 = 8 contained in |φn(0)|2 in Eq. (11a). For the same reason
the two protons in 3He effectively double that Low moment.
When those factors are taken into account the 3He Low term
becomes comparable in size with that of the deuteron.

The (approximate) SU(4) symmetry that dominates light
nuclei [25] provides an explanation for the relative sizes of the
entries in this table, as well as the unexpected signs (see above)
of the 3H one-body term and the 3He two-body term. The
two protons in 3He have their spins antialigned in the SU(4)
limit, and this cancellation leads to the small net result and
unexpected sign for the one-body part, which is determined
by small components of the wave function. The protons in
1H and 3H make comparable one-body contributions, as the
proton in 3H carries the entire spin in the SU(4) limit. For the
same reason the Low term in 3H is very small because the two
neutron ep − µn terms largely cancel, as the proton carries all
of the spin in the SU(4) limit.

The neutron Zemach moment plays only a very small role
in the one-body terms (as we found for the deuteron) except
for 3He, which has a greatly suppressed proton contribution.
The tensor term also is quite small. The convection current
terms are negligible for 3H, but the ep − ep contribution in
3He is approximately 5% of the total.

Our final results are listed in Table IX. The first line
of the table is the same as that in Table I, showing the
fractional difference of experiment and QED theory in ppm.
That fractional difference is recomputed in the second line
when the nuclear corrections are added to the theoretical
result. In the proton case the Zemach and recoil corrections
slightly overcorrect, but the overall result is consistent with
the expectation that the polarization corrections are positive
and must be less than 4 ppm [26,27]. For the nuclear cases
the quality of our results must be considered quite good, given
the size of our hadronic expansion parameter. The deuterium
case is particularly close to experiment, and this is likely due to

TABLE VII. Contributions to the deuterium hfs from elastic
(Zemach) and inelastic (polarization) intermediate states (in kHz).

Deuteron hfs − Zemach + polarization

Point nucleon Finite nucleon

Zemach Polar Total Zemach Polar Total
−29.5 111.2 81.8 −32.8 79.1 46.2

TABLE VIII. Contributions to the trinucleon hfs from one-
nucleon and two-nucleon operators (in kHz).

3H 3He

Nucleon Low Total Nucleon Low Total
−50.6 −9.6 −60.1 14 1428 1442

the small binding energy, which tends to minimize relativistic
corrections [6]. The quality of our trinucleon results range
from very good in the 3H case (∼3% residue) to adequate in
the 3He case (∼20% residue). The large disparity in the two
cases is undoubtedly due to missing MECs, particularly the
isovector ones. Even this amount of missing strength is only
slightly larger than our expansion parameter.

Previous work on this topic is quite old [13,14,28–31],
except for the deuterium [32] case. The older work relied
on the Breit approximation for the electron physics, which
is sufficient only for the leading-order corrections. It used
an adiabatic treatment of the nuclear physics based on the
Bohr picture of the nuclear hyperfine anomaly, which is far
more complex than the treatment that we have presented.
Uncalculated QED corrections and poorly known fundamental
constants (such as α) led to estimates of nuclear effects
that were many tens of ppm in error. Although the nuclear
physics at that time was not adequate to perform more than
qualitative treatments of the trinucleons, the SU(4) mechanism
was known, and this allowed a qualitative understanding. The
only previous attempt to treat the three nuclei simultaneously
was in Ref. [31]. They found nuclear corrections of about
200 ppm for deuterium, 20 ppm for 3H, and −175 ppm
for 3He+. Except for the deuterium case (which involves
significant cancellations) this has to be regarded as quite
successful, given the knowledge available at that time.

V. CONCLUSIONS

We have performed a calculation of the nuclear part
of the hfs for 2H, 3H, and 3He+, based on an expansion
parameter adopted from χPT, a unified nuclear model, and
modern second-generation nuclear forces. This is the first
such calculation, and the results are quite good. Details of the

TABLE IX. Difference between hyperfine experiments and
hyperfine calculations for the 1s state of light hydrogenic atoms,
expressed as ppm of the Fermi energy. The first line is the difference
with respect to the QED calculations only, whereas the second line
incorporates the hadronic corrections (Zemach moment for the proton
and nuclear corrections for the nuclei) calculated above.

(Eexp
hfs − ETh

hfs)/EF (ppm)

Theory H 2H 3H 3He+

QED only −33 138 −38 −212
QED + 3.2(5) −3.1 1.2 −46
hadronic
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results can be understood in terms of the approximate SU(4)
symmetry that dominates the structure of light nuclei.
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APPENDIX A

The correlation functions that we require are built from the
charge and magnetic form factors for protons and neutrons.
The generic correlation function has the form

ρ(2)(z) =
∫

d3xρch(x)ρmag(|�x + �z|), (A1)

where the charge density ρch(x) and magnetization density
ρmag(y) are normalized to 1. Although a variety of functional
forms have been proposed for these densities, few published
forms have high accuracy over the low-momentum-transfer
region that is important for Zemach moments. Fortunately
the proton’s Zemach moment was recently determined to
high accuracy, and the neutron’s is sufficiently small that any
credible model should suffice. For the neutron charge form
factor we assume a modified Galster form [17]:

FG(q2) = λq2(
1 + q2

β2

)3 , (A2)

with β = 4.0285 fm−1 (determined below) and λ =
0.0190 fm2. This is accurate enough [19] for our purposes,
both at low values of q2 and at moderate values of q2. For the
proton charge form factor and the proton and neutron magnetic
form factors we choose the tractable and venerable dipole form

FD(q2) = 1(
1 + q2

β2

)2 , (A3)

which is a reasonable (but only moderately accurate) approx-
imation.

These two forms inserted into Eq. (A1) generate the two
correlation functions that we require; ρDD(z) and ρDG(z):

4πρDD(z) = β3

48
exp (−βz)[3 + 3(βz) + (βz)2], (A4)

and

4πρDG(z) = λβ5

384
exp (−βz)[9 + 9(βz) + 2(βz)2 − (βz)3].

(A5)
The first moment of these functions is the linear Zemach
moment,

〈r〉DD
(2) =

∫
d3rrρDD(r)

=
∫

d3x

∫
d3yρD(x)ρD(y)|�x − �y| = 35

8β
, (A6)

which we identify with the recently determined proton mo-
ment: 1.086(12) fm. This restricts β to be 4.029(45) fm−1,
which we also use for the neutron. The rms radius for a dipole
with this value of β is 0.86 fm, slightly smaller than the proton’s
charge radius, but slightly larger than the magnetic radius by a
few percent, and this represents our level of accuracy (except
for the measured proton Zemach moment).

We can use these functions to determine the appropriate
correlation functions:

CDD(r) =
∫

d3xρDD(x)|�x + �r|

= r + 8

(β2r)
− exp (−βr)

β

×
[

8

(βr)
+ 29

8
+ 5(βr)

8
+ (βr)2

24

]

→ 35

8β
+ · · · , (A7)

where the limiting form holds only for small (βr), and similarly

CDG(r) =
∫

d3xρDG(x)|�x + �r|

= λβ

{
− 2

(βr)
+ exp (−βr)

192

×
[

384

(βr)
+ 279 + 87(βr) + 14(βr)2 + (βr)3

]}

→ −35λβ

64
+ · · · . (A8)

The remaining functions that we require are determined by

C ′
DD(r) =

∫
d3xρDD(x)|�x + �r|3

= r3 + 1

β3

{
240

(βr)
+ 48(βr) − exp (−βr)

×
[

240

(βr)
+ 165

2
+ 21(βr)

2
+ (βr)2

2

]}

→ 315

2β3
+ 35r2

4β
+ · · · , (A9)

and

C ′
DG(r) =

∫
d3xρDG(x)|�x + �r|3

= λ

β

{
−12(βr) − 120

(βr)
+ exp (−βr)

16

×
[

1920

(βr)
+ 975 + 207(βr) + 22(βr)2 + (βr)3

]}

→ −945λ

16β
− 35λβr2

32
+ · · · . (A10)
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From the former we obtain

C̄DD(r) = 1

3r

d

dr
C ′

DD(r)

= r + 16

(β2r)
− 80

β4r3
+ exp (−βr)

β4r3

×
[

80 + 80(βr) + 24(βr)2 + 19(βr)3

6
+ (βr)4

6

]

→ 35

6β
+ · · · , (A11)

and

¯̄CDD(r) = 1

3

(
d2

dr2
− 1

r

d

dr

)
C ′

DD(r)

= r − 16

(β2r)
+ 240

β4r3
− exp (−βr)

β4r3

[
240 + 240(βr)

+ 104(βr)2 + 24(βr)3 + 3(βr)4 + (βr)5

6

]

→ βr2

6
+ · · · , (A12)

and from the latter

C̄DG(r) = 1

3r

d

dr
C ′

DG(r)

= λβ

{
− 4

(βr)
+ 40

(βr)3
− exp (−βr)

(βr)3

[
40 + 40(βr)

+ 16(βr)2 + 163(βr)3

48
+ 19(βr)4

48
+ (βr)5

48

]}

→ λβ

(
−35

48
+ · · ·

)
, (A13)

and

¯̄CDG(r) = 1

3

(
d2

dr2
− 1

r

d

dr

)
C ′

DG(r)

= λβ

{
4

(βr)
− 120

(βr)3
+ exp (−βr)

(βr)3

×
[

120 + 120(βr) + 56(βr)2 + 16(βr)3

+ 3(βr)4 + 17(βr)5

48
+ (βr)6

48

]}

→ λβ

(
(βr)2

48
+ · · ·

)
. (A14)

Note that these functions have been normalized so that
CDD, C̄DD, and ¯̄CDD become r in the limit of large β.

We resort to the simple zero-range approximation to make
a rough estimate of the effect of nucleon finite size on the
dominant Low moment of the deuteron. This approximation is
most accurate for asymptotic (long-range) quantities, but will
substantially overestimate short-range effects. We ignore the
d state and assume everywhere the asymptotic s-wave function
(Ne−κr/

√
4πr , where κ  0.235 fm−1). This leads to an

expansion parameter x = 2κ/β  0.115. The matrix element
of CDD (relative to the point-nucleon value) is approximately

[1 − x2( 13
3 + 8 ln (x)) + . . .], which produces an increase of

∼18% from nucleon finite size. This is too large by a factor
of 2 compared with detailed calculations, but shows that the
finite-size effect is enhanced by the large numerical coefficient
of the logarithmic term beyond what is expected from an
O(x2) ∼ 1/β2 correction term.

APPENDIX B

Many features of the trinucleon systems, 3He and 3H, can
be determined in a semiquantitative fashion (accurate at the
∼10% level) by simplification of the wave functions to the
dominant component alone. Wave-function components have
traditionally been classified according to their combined spin-
isospin symmetry, determined by the generators of SU(4). In
this scheme the SU(4) generators for a system of A nucleons are
determined by the intrinsic spins and isospins of the individual
nucleons:

σ k =
A∑

i=1

σ k
i , (B1)

τα =
A∑

i=1

τα
i , (B2)

and

Y kα =
A∑

i=1

τα
i σ k

i . (B3)

All wave-function components are labeled by the (combined)
intrinsic spin of the three nucleons (S = 1/2 or 3/2) and
the total isospin (T = 1/2 or 3/2). Wave-function spin and
isospin components are then determined by (1) the [ 4 ] or
antisymmetric state (S = 1/2, T = 1/2), which combines
with a completely symmetric space wave function to form the
dominant S state; and (2) the mixed-symmetry state, which can
be separated into (S = 1/2, T = 1/2), (S = 3/2, T = 1/2), and
(S = 1/2, T = 3/2) components. The first term contributes to
the small S ′ state, whereas the second generates the D state(s),
and the third contributes only to tiny isospin impurities. The
remaining spin-isospin representation has a tiny (S = 1/2, T =
1/2) symmetric component (called the S ′′ state, with a totally
antisymmetric space wave function), and a (S = 3/2 , T =
3/2) D-wave isospin impurity. The number of components in
the order discussed is (4) + (4 + 8 + 8) + (4 + 16) = 64,
as expected. Ignoring the tiny S ′′ state, very small isospin
impurities, and the negligible P states, we can therefore write
in an obvious but schematic notation for the trinucleon wave
functions

�tri = S ⊕ S ′ ⊕ D. (B4)

It was shown many years ago [20] that expectation values
of the SU(4) generators for the trinucleons have very simple
forms: 〈

A∑
i=1

�σi

〉
= 2�S(1 − 2PD) (B5)
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and 〈
A∑

i=1

�σiτ
3
i

〉
= −2�Sτ3

(
1 − 4

3
P ′

S − 2

3
PD

)
, (B6)

where a spin-isospin expectation value of the nuclear-spin and
isospin operators is still required.

As expected, symmetric S state dominates the trinucleon
ground states (PS ∼ 90%) because it minimizes the kinetic
energy. The mixed-symmetry S ′ state is much smaller (PS ′ ∼
1%), whereas the very strong nuclear tensor force generates a

relatively large D-state component (PD ∼ 9%). If one ignores
the S ′-, S ′′-, P -, and D-state components, the remaining S-
state wave function factorizes into a completely symmetric
space wave function and a completely antisymmetric spin-
isospin wave function, which greatly facilitates calculating
matrix elements. The mixed spin-isospin generator Y kα has
the very useful and simple property for the S state,

Y kα|S〉 = −2Skτα|S〉, (B7)

which follows [except for the factor of (−1)] from the Wigner-
Eckart theorem and the properties of the [4] state.
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