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The analytical solution of the confined β-soft (CBS) rotor model is systematically compared to the energies of
the ground-state rotational bands of strongly deformed heavy even-even nuclei. The model reproduces with one
structural parameter the yrast band energies for all sufficiently well known rare-earth nuclei and actinides with
a structural signature of R4/2 = E(4+

1 )/E(2+
1 ) > 3.30 up to the 12+ state with an accuracy of the order of 10−3.

This systematic study of the CBS model demonstrates the regularity of the ground-state bands without exception.
Comparison to the Davydov Chaban model suggests that the agreement between data and collective models with
soft potentials is insensitive to the details of the potential.
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Many nuclei, particularly those close to midshell in the
rare-earth and actinide regions, exhibit rotational character
in the ground-state band [1,2]. However, deviations from
the rigid rotor model’s predictions for the level energies of
the ground-state band increase for larger values of spin. The
accuracy of the analytical rigid-rotor-model description is
typically of the order of 1–10% for the members of the ground-
state band (up to the 10+

1 level). Numerous works [1–8] have
analyzed these deviations from the rigid rotor model and they
are usually attributed to collective effects such as centrifugal
stretching or band-mixing and nonregularities resulting from
the impact of noncollective microscopic degrees of freedom
such as rotational alignment [3] or Coriolis antipairing [4–6].
There have also been many empirical models [7–9] that
have added to our understanding of these irregularities. We
are concerned here with a collective, purely geometrical
approach in which microscopic degrees of freedom are not
considered.

Much effort has recently been directed to understanding and
predicting the characteristics of nuclei in regions of the nuclear
chart where shape changes occur. Accurate spectroscopic data
on transitional nuclei (e.g. [10,11]) and analytical solutions
[12–14] of the Bohr Hamiltonian capable of describing
nuclei near the critical points of the quadrupole-shape phase
transitions have initiated a tremendous interest in the structure
of transitional nuclei (e.g. [15–20] and references therein) and
in the applicability of schematic square-well potentials in the
deformation variable.

Iachello’s analytical X(5) solution [13] of the Bohr Hamil-
tonian describes the situation close to the critical point of
the transition from the spherical vibrator to the rigid rotor. The
X(5) solution has been shown to satisfactorily predict the main
features of the structure of nuclides with a structural signature
R4/2 ≡ E(4+

1 )/E(2+
1 ) ≈ 2.9 at or near the phase transitional

point [11,21–24].
More recently the X(5) solution has been generalized to

an analytical solution of the Bohr Hamiltonian for the full
transition region between the critical point (R4/2 = 2.90)
and the rigid rotor limit (R4/2 = 10/3 ≈ 3.333) in terms
of the confined β-soft (CBS) rotor model [20]. The latter
parametrizes the width of an infinite-square-well potential

in the deformation variable β by allowing the boundaries of
the square well to vary in the range 0 � βm � β � βM . The
ratio rβ = βm/βM ∈ [0, 1] serves as the structural parameter
between X(5) (rβ = 0) and the rigid rotor limit (rβ → 1).
The CBS rotor model has already been shown to successfully
describe the evolution of the β excitation from transitional
nuclei at the critical point to moderately deformed rotors [20]
as a function of the R4/2 value. β vibrations of strongly
deformed nuclei have not yet been clearly identified [25] and
are believed to exist at higher energies then the observed lowest
lying K = 0 state. In addition to the energy of the β excitation,
the level energies within the yrast band itself depend sensitively
on the softness of the nuclear quadrupole deformation, which
can be modeled analytically with the CBS rotor model.

It is the purpose of this Rapid Communication to report on
the description of the ground-state bands of strongly deformed
nuclei systematically with the CBS model. The analytical
energy expression of the CBS rotor model reproduces the
yrast energy levels for all sufficiently deformed rare-earth
nuclides and actinides with R4/2 ratios > 3.3 up to the 12+

1
level with an accuracy of about 10−3 (i.e., all these ground
bands follow the same energy formula with that accuracy).
This excellent description demonstrates a regularity in the
ground-state bands. Moreover, the ground-state band energies
within the CBS model are compared to the model of Davydov
Chaban (DC). Both models agree within 0.2% for the strongly
deformed nuclei, showing that the description of ground-state-
band energies is independent of the specific details of the
potential in the deformation variable β as long as a sufficiently
soft potential for β > 0 has been chosen.

The CBS model [20] is an approximate analytical solution
to the Bohr Hamiltonian in the quadrupole shape parameters
β and γ with a separable potential of the form V (β, γ ) =
v(β) + u(γ ). For sufficiently axially symmetric prolate nuclei
one might consider a steep harmonic oscillator in γ with
γ ≈ 0◦. By assuming a decoupling of the β and γ degrees
of freedom the solution to the wave equation is of the
form �(β, γ, θi) = ξL(β)ηK (γ )DL

M,K (θi), where D denotes
the Wigner functions with θi being the Euler angles for the
orientation of the intrinsic system, and ηK (γ ) is the appropriate
wave function in γ (e.g., a harmonic oscillator as considered in
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Refs. [13,18]). The “radial” differential equation as a function
of the shape parameter β,

− h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
− 1

3β2
L(L + 1) + u(β)

]
ξL(β)

= E ξL(β), (1)

contains the angular momentum dependence through the
centrifugal term. The CBS rotor model assumes for prolate
axially symmetric nuclides an infinite-square-well potential,
u(β), with boundaries at βM > βm � 0. For this potential
the wave equation is analytically solvable [20]. The ratio
rβ = βm/βM parametrizes the width of this potential (i.e., the
stiffness of the nucleus in the β degree of freedom). For rβ = 0
the X(5) limit is obtained with large fluctuations in β. The rigid
rotor limit without fluctuations in β corresponds to rβ → 1.

The quantization condition of the CBS rotor model is

Q
rβ

ν(L)(z) = Jν(L)(z)Yν(L)(rβz) − Jν(L)(rβz)Yν(L)(z) = 0 (2)

with Jν and Yν being Bessel functions of first and second
kind of irrational order ν(L) = √

L(L + 1)/3 + 9/4 (for states
with K = 0 on which we focus here). For a given structural
parameter rβ and any spin value L the sth zero of Eq. (2)
is denoted by z

rβ

L,s . The full solution of Eq. (1) with the
aforementioned choice of CBS square-well potentials is then
given as
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with normalization

1
/
c2
L,s =

∫ βM

βm

β4[ξL,s(β)]2dβ (4)

and with the eigenvalues

EL,s = h̄2

2Bβ2
M

(
z
rβ

L,s

)2
. (5)

The relative excitation energies thus depend on the structural
parameter rβ , only. For the yrast band we have

RL/2 = Ex(L+
1 )

Ex(2+
1 )

=
(
z
rβ

L,1

)2 − (
z
rβ

0,1

)2

(
z
rβ

2,1

)2 − (
z
rβ

0,1

)2 . (6)

Figure 1 shows the wave functions for the 0+
1 and the

10+
1 states for a realistic structural parameter rβ = 0.45.

The average deformation 〈β〉L increases with angular mo-
mentum within the potential well owing to the presence of
the centrifugal term in Eq. (1). As usual we refer to this
phenomenon as centrifugal stretching. We stress that inclusion
of the centrifugal term and the consistent quantum mechanical
treatment of the chosen confined square-well potential are
the only physics mechanisms in the model that cause the
increase of the relative average deformation of the model’s
wave functions with angular momentum.
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FIG. 1. (Color online) Wave function densities ξ 2
L,s β4 from

Eqs. (3) and (4) as a function of the deformation variable β and
average deformation values 〈ξ |β|ξ〉 for the Lπ

s = 0+
1 ground state

(dashed curve) and the 10+
1 state (solid curve) for rβ = 0.45. The areas

under the curves are normalized to one. The average deformation
increases by about 5% from the 0+

1 to the 10+
1 state for this value

of rβ .

We have carried out least-squares two-parameter fits of
Eq. (5) to the data on yrast band energies [26] up to the 12+

1
state for all sufficiently well known even-even nuclei with
R4/2 values >2.9 from the cerium to the tungsten isotopic
sequences. We have restricted the fit to this spin region to have a
similar set of data for each nuclide considered and to safely stay
below the back-bending region in all the nuclei. The essential
structural parameter, rβ , defines the width of the square-well
potential in β and, thus, the amount of centrifugal stretching in
the ground-state band. The second parameter, h̄2/2Bβ2

M , sets
the energy scale. The fits were constrained to keep the fitted
R4/2 value within 0.3% of the experimentally known value,
that is, keep to deviations from the experimental value at 0.01
or less, because our analysis shows that R4/2 is significant
at this level of accuracy. Figure 2 shows the experimental
R12/2 (ratio of the energies of the first 12+ to 2+ levels of
the ground-state band) as a function of rβ for rare-earth and
actinide deformed nuclei (R4/2 > 2.9). The solid curve shows
the prediction of the CBS rotor model. Good agreement is seen
between the ground-state band energy levels and the CBS rotor
model for all transitional nuclei. Moreover, it is seen that the
CBS rotor model can reproduce the ground-state band energies
with sub-keV precision in nuclei with R4/2 > 3.30 (dashed line
in figure).

Table I shows the analytical results for the CBS model
for the deformed Nd isotopes as examples. For reference we
present also the prediction by the rigid rotor model using one
parameter only [the energy scale fitted to E(2+

1 )] instead of two
(structural parameter rβ and scale). Similar results have been
obtained for the Ce, Nd, Sm, Gd, Er, Yb, Hf, and W isotopic
chains.

It is obvious from Table I that the CBS model describes the
data much better than the rigid rotor. This is not surprising
because the CBS has one parameter more than the rigid
rotor, namely, the structural parameter rβ beside the energy
scale. Thus it can account for deviations of the ground-state
band energies from the rigid rotor predictions. Whereas the
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FIG. 2. (Color online) Correlation between R12/2 with rβ for
deformed rare-earth and actinide nuclei with R4/2 > 2.9 [26]. The
solid curve shows the prediction of the CBS rotor model using the
values of rβ determined in the procedure described earlier. Good
agreement (
E/E � 1–3%) is seen in the ground-state band for
all transitional nuclei, whereas sub-keV precision is noticed above
rβ > 0.42, corresponding to R4/2 > 3.30 (dashed line).

CBS rotor yields a satisfactory description of the transitional
nucleus 150Nd with deviations of a few parts in a thousand, the
rigid rotor cannot reproduce the data (with typical deviations of
10% for J > 2) because of the effects from the fluctuations in β

caused by this nucleus being close to the spherical-to-deformed
phase transitional point [21]. The accuracies of both the rigid
rotor and CBS models increase when the R4/2 value increases.
This is expected, of course, for the rigid rotor, because it yields
always a fixed R4/2 = 10/3. Nonetheless, the deviations of the
rigid rotor from the data on 156Nd amount to 1–5% for the
4+

1 –10+
1 states.

In addition, the accuracy of the CBS rotor description in-
creases with increasing R4/2, which is interesting in itself given
the schematic character of the CBS square-well potential. This
level of accuracy obtained is remarkable, as is seen in the level
energies in 156Nd which are described with sub-keV precision

TABLE I. Yrast band energies of Nd nuclei with R4/2 > 2.9
compared to the CBS and rigid rotor models.

J CBS Expt. Rigid
rotor

CBS Expt. Rigid
rotor

150Nd R4/2 = 2.929 152Nd R4/2 = 3.263

2+
1 130.3 130.2 130.2 72.7 72.5 72.5

4+
1 382.8 381.5 434.0 237.9 236.6 241.7

6+
1 718.6 720.4 911.5 486.3 484.0 507.6

8+
1 1124.6 1129.7 1562.5 807.0 805.4 870.1

10+
1 1595.8 1599.0 2387.2 1190.3 1195.3 1329.4

12+
1 2129.5 2119.0 3385.5 1629.6 1647.6 1885.3

154Nd R4/2 = 3.294 156Nd R4/2 = 3.315

2+
1 70.8 70.8 70.8 66.9 66.9 66.9

4+
1 233.4 233.2 236.0 221.6 221.8 223.0

6+
1 482.5 481.9 495.6 460.3 460.4 468.3

8+
1 810.7 810.1 849.6 778.3 777.9 802.8

10+
1 1210.2 1210.8 1298.0 1169.6 1168.9 1226.5

12+
1 1674.0 1677.3 1840.8 1628.5 1628.4 1739.4

TABLE II. Yrast band energies of six rare-earth nuclei with
R4/2 > 3.3 compared to the CBS model prediction. R4/2 values of a
given nucleus are given in parenthesis.

J CBS Expt. CBS Expt. CBS Expt.

158Sm (3.301) 160Gd (3.302) 164Dy (3.301)

2+
1 72.7 72.8 75.2 75.3 73.4 73.4

4+
1 240.7 240.3 248.6 248.5 242.3 242.2

6+
1 499.7 498.4 515.2 514.8 501.4 501.3

8+
1 843.9 844.5 868.3 867.9 843.5 843.7

10+
1 1266.6 1266.7 1300.4 1300.7 1260.7 1261.3

12+
1 1761.4 1765.8 1804.2 1806.3 1745.9 1745.9

170Er (3.310) 174Yb (3.310) 180Hf (3.307)

2+
1 78.6 78.6 76.5 76.5 93.3 93.3

4+
1 260.2 260.1 253.2 253.1 308.8 308.6

6+
1 541.0 540.7 526.0 526.0 641.6 640.9

8+
1 915.2 915.0 889.4 889.9 1084.6 1083.9

10+
1 1376.2 1376.6 1336.6 1336. 1629.8 1630.4

12+
1 1917.3 1918.7 1861.0 1861. 2269.0 2272.4

up to the 12+
1 state at 1.6 MeV. Deviations are <10−3, one to

two orders of magnitude smaller than for the rigid rotor.
One might think that this precise description of 156Nd could

be accidental. However, Eq. (6) describes the ground bands of
all well-deformed nuclei with a similar precision. 156Nd has
an R4/2 ratio of 3.315. We analyzed the ground-state bands
up to the 12+

1 state for all rare-earth nuclei with R4/2 > 3.30
for which sufficient data were available and on which the
remaining part of this paper is focused. From a data search in
the National Nuclear Data Center [26] one finds 13 nuclides
that satisfy that condition: 156Nd, 158Sm, 160Gd, 164,166Dy,
168,170,172Er, 172,174,176,178Yb, and 180Hf. These nuclei belong to
seven different isotopic chains and to seven different isotonic
sequences (N = 96, 98, 100, 102, 104, 106, and 108). Table II
shows the data for 6 of these 13 nuclei.

The accuracy of the CBS description is similar to the case
of 156Nd for all 13 rare-earth nuclei with R4/2 > 3.30 with
no exception. Deviations are typically <10−3. The accurate
description of ground-state band energies is not limited to the
strongly deformed rare-earth nuclei. Equation (6) accounts for
the data with an accuracy of better than one part in a thousand
for the 2+

1 –12+
1 energies in strongly deformed actinides.

To further quantify the regularity of the studied ground-state
bands we consider the level energies as sums of collective (reg-
ular) and noncollective (irregular) parts, E(J ) = Ecoll(J ) +
δEncoll(J ). The average irregularity of a ground-state band
may then be defined as

I = 1

n(J )

∑ |δEncoll(J )|
E(J )

. (7)

Making the ansatz Ecoll(J ) ≈ ECBS(J ) we consider

ICBS = 1

n(J ) − 1

∑ |E(J ) − ECBS|
E(J )

(8)
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TABLE III. Experimental and CBS R4/2 values for all well-
known strongly deformed rare-earth and actinide nuclei. Values of
ICBS are also given.

Nuclide R
expt
4/2 RCBS

4/2 rβ ICBS (10−3)

156Nd 3.315 3.310 0.460 0.56
158Sm 3.301 3.308 0.452 1.63
160Gd 3.302 3.305 0.438 0.73
164Dy 3.301 3.301 0.427 0.26
166Dy 3.307 3.311 0.463 0.55
168Er 3.318 3.311 0.462 0.96
170Er 3.310 3.311 0.464 0.45
172Er 3.305 3.312 0.468 1.00
172Yb 3.305 3.308 0.451 0.86
174Yb 3.310 3.310 0.460 0.24
176Yb 3.308 3.308 0.452 0.98
178Yb 3.310 3.316 0.485 2.18
180Hf 3.307 3.310 0.459 0.95
236U 3.304 3.305 0.438 0.24
238U 3.303 3.304 0.437 0.40
238Pu 3.311 3.313 0.470 0.70
240Pu 3.309 3.310 0.458 0.46
242Pu 3.307 3.310 0.460 0.38

as an upper limit for the average irregularity of the studied
part of the band. This takes into account that one structural
parameter (rβ) has been fitted to the relative excitation
energies. Table III shows the experimental and CBS R4/2

values and irregularities for all 18 nuclei. The high accuracy
of the CBS rotor model can be seen from this table; ICBS is on
the order of 10−3 for all 18 strongly deformed nuclei.

An important test for the modeling of centrifugal stretching
is its predictive power for E2 transition rates within the
rotational bands as a function of spin. Centrifugal stretching
of the nucleus causes the average deformation 〈β〉L of the
wave function to tend toward larger values with increasing
spin causing an increase in the transitional quadrupole moment
(Qt ∝ 〈Lf |β|Li〉) along the ground-state band. The CBS
model predicts an increase in Qt by 3.9% from J = 2 to
J = 10 for rβ = 0.45 (note that the increase of Qt differs
slightly from the increase of the average deformation because
the latter corresponds to a diagonal matrix element of β̂

and the former involves two different wave functions for the
initial and final state). Figure 3 shows typical experimental Qt

values, here as an example for 152Sm and 172Yb, with both
the predictions made by the rigid rotor and CBS rotor model.
Centrifugal stretching is clearly observed for the transitional
nucleus 152Sm. The data are in full agreement with the model
prediction using the E2 operator up to second order in β

[20]. Unfortunately, the change in Qt values of more rigidly
deformed nuclei is predicted to be considerably smaller such
that the present data on lifetimes in strongly deformed nuclei
are not accurate enough for testing this model prediction
with sufficient accuracy. The data certainly do not contradict
geometrical models.

Centrifugal stretching has previously been modeled geo-
metrically in many ways (e.g., by Davydov and Chaban). It is
interesting to consider the model of DC [29] for the description
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FIG. 3. (Color online) Qt values as a function of spin determined
by experimental B(E2) values of 152Sm [27,28] and 172Yb [26] that
are representative for the quality of E2 data for the ground-state bands
of rare-earth nuclei. The dashed lines shows the rigid rotor prediction
and the solid curves show predictions by the CBS rotor model where
the E2 operator is considered here in lowest order in β [T (E2) ∝ β]
for simplicity (see Ref. [20] for the definition of the E2 operator up to
second order). An increase of Qt is clearly observed for the less rigidly
deformed nucleus where the effects are larger and easier to measure.
Qt values including a second-order correction (χ = −0.535 [20]) in
the E2 operator are shown by the dashed curves.

of these ground-state band energies, too. We use the limit
of γ = 0 and fit the “nonadiabaticity” parameter µ and the
energy scale to the data in a fashion as was done before.
Similar analysis has been done on other axially symmetric
nuclei in [30]. Table IV shows a comparison of the relative
ground-state band energies from the CBS and the DC models
as calculated by a fit to R4/2. For R4/2 > 3.30 the predictions
of the two models coincide within 0.2% up to J = 12+.

In both the CBS and DC models it is the centrifugal
stretching that causes the change of shape in the nucleus at
higher spins, thus leading to an increase in the moment of
inertia with spin. Since both of these models describe the
nuclei in the rare-earth region so well, it is concluded that
centrifugal stretching is the dominant mechanism causing the
deviations from the rigid rotor. This is achieved without any
fine-tuning of the potentials. The new aspect provided by our
study is the observation that the precision of the description
of data is systematical and does not depend much on the
details of the potential nor on the treatment of the γ degree of
freedom.

We have demonstrated that ground-state bands of strongly
deformed even-even nuclei in the rare-earth and actinide
regions with R4/2 values >3.30 follow the analytical energy
formula of the CBS rotor model or the DC model for γ = 0
systematically within a precision of about 1/1000 (at least up
to the 10+

1 state). We stress that all these nuclei follow the same
energy formula at this level of accuracy. This demonstrates that
the ground-state bands of strongly deformed nuclei exhibit
a regularity at least down to the order of 10−3. Collective
nuclear structure models such as DC and the CBS rotor model
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TABLE IV. Relative ground-state band energies as predicted by both the CBS and DC models.
Agreement between the models is seen to 0.2%.

J R4/2 = 3.20 R4/2 = 3.30 R4/2 = 3.32

CBS DC CBS DC CBS DC

rβ = 0.274 µ = 0.268 rβ = 0.425 µ = 0.188 rβ = 0.510 µ = 0.151

2+
1 1 1 1 1 1 1

4+
1 3.200 3.200 3.300 3.300 3.320 3.320

6+
1 6.370 6.382 6.828 6.830 6.929 6.930

8+
1 10.316 10.341 11.483 11.495 11.782 11.785

10+
1 14.930 14.920 17.157 17.190 17.819 17.830

12+
1 20.166 20.005 23.753 23.816 24.976 25.004

describe these data equally well, despite the fact that the
treatment of the centrifugal term and the form of the potentials
differ. They have in common a description of the centrifugal
stretching of the rotating nucleus as a function of spin. This
strongly supports the conclusion that centrifugal stretching is
the dominant mechanism for the deviation of the ground-state
band energies from the rigid rotor prediction for the strongly
deformed nuclei with R4/2 > 3.30. We stress that the accurate
predictions of relative excitation energies for the levels in the

ground-state band of strongly deformed nuclei are typically
better than one part in a thousand, belonging to the most
precise predictions in nuclear physics. New types of highly
accurate B(E2) measurements are very desirable for testing
these conclusions that are based on energies.
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