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Attractive and repulsive contributions of medium fluctuations to nuclear superfluidity
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Oscillations of mainly surface character (S = 0 modes) give rise, in atomic nuclei, to an attractive (induced)
pairing interaction, while spin (S = 1) modes of mainly volume character generate a repulsive interaction, the
net effect being an attraction which accounts for a sizeable fraction of the experimental pairing gap. Suppressing
the particle-vibration coupling mediated by the proton degrees of freedom, i.e., mimicking neutron matter, the
total surface plus spin-induced pairing interaction becomes repulsive.
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A central issue in a quantitative description of supercon-
ductors (metals, doped fullerides, etc.) as well as superfluid
Fermi systems (3He, trapped gases of fermionic atoms, atomic
nuclei, neutron stars, etc.) is related to the interaction between
fermions that gives rise to Cooper pairs. The glue holding
together the fermions of each Cooper pair is the result of
the bare interaction between fermions, strongly renormalized
by medium polarization effects: Coulomb interaction plus
plasmon and phonon exchange in metals [1], Van der Waals
interaction plus spin and density mode exchange in trapped
gases of fermionic atoms [2,3], and strong force plus spin
and density mode exchange in the case of atomic nuclei and
neutron stars [4–6].

While broad consensus exists concerning the mechanism
of electron-electron and electron-phonon interaction leading
to superconductivity in metals, the situation is much less
clear in the case of strongly interacting particles in the
various scenarios found in nature. In particular, it has been
found that medium polarization effects associated with the
exchange of vibrations lead to a quenching of the bare
pairing interaction in the 1S0 channel in the inner crust of
neutron stars [7], and at the same time, account for a sizeable
fraction of the pairing gap in open shell nuclei [8–10]. In
the present paper, we present, for the first time, evidence
which allows us to understand these seemingly contradictory
results.

We address the question at hand within the scenario
provided by the paradigmatic (superfluid) open shell nucleus
120Sn. The starting point corresponds to the calculation of the
mean field potential and associated quasiparticle properties
within the framework of Hartree-Fock (HF) plus BCS theory
[11] using the SkM∗ force [12]. The polarization quanta were
worked out within the framework of the quasiparticle random
phase approximation (QRPA). The particle-hole residual
interaction is derived in a self-consistent way from the Skyrme
energy functional, with the exception of the spin-orbit and the
Coulomb part (cf. [13] for more details). On the other hand,
we neglect the momentum-dependent part of the interaction
in the calculation of the particle-vibration coupling discussed
below [14]. The relevant part of the particle-hole interaction

can then be written

vph(�r, �r ′) = δ(�r − �r ′){[F0 + F ′
0 �τ · �τ ′]

+ [(G0 + G′
0 �τ · �τ ′) �σ · �σ ′]}. (1)

We shall only consider the τz · τz term, in keeping with
the fact that here we are interested in the neutron-neutron
pairing interaction. Off-diagonal terms are associated with
charge-exchange modes. Thus, in lowest order, they do not
contribute to the neutron-neutron interaction but are expected
to be of relevance in the discussion of the proton-neutron
pairing interaction.

The functions F0(r), F ′
0(r),G0(r), and G′

0(r) (generalized
Landau-Migdal [15,16] parameters) controlling the isoscalar
and isovector (spin-independent and spin-dependent) channels
are displayed in Fig. 1.

Strictly speaking, in the case of atomic nuclei, spin is
not a good quantum number with which to identify the
polarization quanta, because of the strong spin-orbit term
present in these systems. We have thus adopted the criterion of
distinguishing between natural (π = (−1)J ) and non-natural
(π = −(−1)J ) parity modes, where J indicates the total
angular momentum of the quanta. Vibrations of multipolarity
and parity Jπ = 1+, 2+, 2−, 3+, 3−, 4+, 4−, 5+, and 5− were
worked out. Those having energy �30 MeV were used in the
calculation of the induced interaction [cf. Fig. 2(a)]. From
the QRPA calculation, one gets [17], along with the energy
of the excited states, their transition densities, which will be
used as a form factor for the particle-vibration coupling vertex
[cf. Fig. 2(b)]:

δρi
Jπ (r) = 1√

2J + 1

∑
ν1,ν2

(
Xν1,ν2 (i, J π ) + Yν1,ν2 (i, J π )

)

× (
uν1vν2 + uν2vν1

) × 〈ν1||iJ YJ ||ν2〉ϕν1 (r)ϕν2 (r).

(2)

δρi
Jπ L(r) = 1√

2J + 1

∑
ν1,ν2

[
Xν1,ν2 (i, J π ) − Yν1,ν2 (i, J π )

]

× (
uν1vν2 + uν2vν1

) × 〈ν1||iL[YL × σ ]J ||ν2〉
×ϕν1 (r)ϕν2 (r). (3)
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FIG. 1. Generalized Landau parameters associated with the in-
teraction SkM∗ defining the strength of the particle-hole interaction
in the isoscalar (F0), isovector (F ′

0), spin isoscalar (G0), and spin
isovector (G′

0) channels. In the inset, the functions F0 + F ′
0 (n-n

interaction), F0 − F ′
0 (n-p), G0 + G′

0 (n-n), and G0 − G′
0 (n-p) are

also shown.

The function (2) is associated with the response to external
fields which induce a density oscillation; it vanishes for
phonons of non-natural parity. The function (3) is instead
associated with the response to magnetic external fields and
hence the coupling to excited states mediated by the part of
the residual interaction which depends on the spin, and it
applies to phonons of both non-natural (when J �= L) and
natural (when J = L) parity. The index i labels the different
vibrational modes of a given spin and parity; X and Y are the

(b)

(a)

FIG. 2. (a) Diagram depicting the pairing interaction induced
by the exchange of phonons; (b) particle-vibration coupling vertex
associated with the particle-hole interaction vph which gives rise to the
QRPA phonons (wavy lines). We also indicate the Landau parameters
giving the dominant contributions to vph, for phonons of natural and
non-natural parity.

forward and backward QRPA amplitudes of the corresponding
modes; and the index ν denotes the quantum numbers n, l, j

of the single-particle states.
By using Eq. (1), one can find the expression of the

vertices produced by the spin-independent part of the residual
interaction:

f ν ′m′
νm;Jπ Mi = 〈ν ′m′|[F0(r) + F ′

0(r)�τ · �τ ′]δ(�r − �r ′)|νm; JπMi〉.
(4)

It can be rewritten by using the multipole expansion for the δ

function as

f ν ′m′
νm;Jπ Mi = il−l′ 〈j ′m′|(i)J YJM |jm〉

×
∫

drϕν ′
[
(F0 + F ′

0)δρi
Jπ n + (F0 − F ′

0)δρi
Jπ p

]
ϕν,

(5)

δρi
Jπ n and δρi

Jπ p being the neutron and proton contributions to
the transition densities defined in Eq. (2). In a similar way, the
vertices produced by the spin-dependent part of the residual
interaction are

gν ′m′
νm;Jπ Mi = 〈ν ′m′|[G0(r) + G′

0(r)�τ · �τ ′]

× �σ · �σ ′δ(�r − �r ′)|νm; JπMi〉, (6)

and as before, they can be expanded in the form

gν ′m′
νmJπ Mi =

J+1∑
L=J−1

il−l′ 〈j ′m′|(i)L[YL × σ ]JM |jm〉

×
∫

drϕν ′
[
(G0 + G′

0)δρi
Jπ Ln

+ (G0 − G′
0)δρi

Jπ Lp

]
ϕν, (7)

where δρi
Jπ Ln and δρi

Jπ Lp are, respectively, the neutron and
proton contributions to the transition densities defined in
Eq. (3).

These particle-vibration coupling matrix elements, together
with the energies of the QRPA modes and the HF single-
particle energies, are the basic ingredients needed to calculate
the pairing induced interaction vind [cf. Fig. 2(a)] within
the framework presented in Ref. [10]. The matrix elements
between two pairs of neutrons in time-reversal states are given
by

〈ν ′m′ν ′m̄′|vind|νmνm̄〉=
∑
Jπ Mi

2(f + g)ν
′m′

νm;Jπ Mi(f − g)ν
′m′

νm;Jπ Mi

E0 − Eint
,

(8)

where the sum is over the phonons of multipolarity Jπ ,M

obtained in the QRPA calculation. In the denominator,
Eint = (|εν − εF | + |εν ′ − εF | + hωi) denotes the energy of
the intermediate state given by two particles (whose energy
is calculated with respect to the Fermi energy εF ) and one
vibration, while E0 is the energy of the correlated two-particle
state, which must be obtained self-consistently: the denomi-
nator is therefore always negative. The important conclusion
is that the sign of the matrix element (8) then depends on the
relative magnitudes of the attractive contribution f 2, arising
from the spin-independent term, and the repulsive contribution
−g2, arising from the spin-dependent term.
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The matrix elements (8) are then used to obtain the 1S0

neutron pairing gap, solving the BCS gap equation [18]


ν = − 1

2j + 1

∑
ν ′


ν ′

2Eν ′
vν,ν ′ , (9)

with the corresponding number equation. The matrix elements
vν,ν ′ are given by

vν,ν ′ =
∑
mm′

〈νmνm̄|vind|ν ′m′ν ′m̄′〉

=
√

(2j + 1)(2j ′ + 1)〈jj ; 0|vind|j ′j ′; 0〉. (10)

The two-particle wavefunction |j ′j ′; 0〉, coupled to zero
angular momentum, contains an admixture of singlet and
triplet components, with about equal weight. It is well known
(see, e.g. [19–21]) that in infinite matter, when only a
species is present, as in neutron matter, the matrix elements
associated with the singlet component have a simple character,
depending on the spin S of the exchanged fluctuation: for
density modes, characterized by S = 0, the matrix elements
are negative, while for spin modes (S = 1), they are positive.
The suppression of the pairing gap produced by the bare
neutron-neutron force through medium polarization effects
in neutron matter is associated with the dominance of the
repulsive contribution from the spin modes over the attractive
contribution from the density modes.

In the case of 120Sn, we observe that the diagonal matrix
elements 〈jj ; 0|vind|jj ; 0〉, shown in Fig. 3, are systematically
attractive or repulsive, depending on whether the exchanged
fluctuations are, respectively, of natural or non-natural parity,
in direct correspondence with the case of infinite matter.
On one hand, this is because for unnatural parity modes,
only the spin-dependent vertices (7), which have a S = 1
character, contribute, while for natural parity modes, the
spin-independent matrix elements (5) are the dominant ones,
and one can show that they are the only ones contributing to the
diagonal matrix elements. On the other hand, the contributions

non-natural parity modes

FIG. 3. Diagonal induced pairing matrix elements resulting from
the exchange of phonons with natural parity (filled circles) and those
resulting from the exchange of phonons with non-natural parity
vibrations (empty circles), displayed as a function of the energy of
the single-particle state εν .

of the matrix elements associated with the triplet component of
the two-particle |jj0〉 wavefunction are small and of variable
sign [22].

However, in contrast with neutron matter, the resulting
total matrix elements are predominantly attractive (in any case
around the Fermi energy) [23].

The resulting state-dependent pairing gap obtained by
solving the BCS gap and number equations, making use of
the (total) induced pairing matrix elements, is depicted in
Fig. 4(a). For states close to the Fermi energy, the gap accounts
for a consistent fraction of the experimental value (1.4 MeV).
If one solves the BCS equations considering only the exchange
of density modes [i.e., neglecting the contributions from
Eq. (7)], one obtains values which are, on average, larger [cf.
Fig. 4(b)]. In fact, the exchange of S = 1 modes quenches the
pairing gap arising from the exchange of only S = 0 modes
by roughly 30% [24].

To gain insight into the peculiar features of finite nuclei,
as compared to the case of infinite systems, it is useful to
study the radial dependence of the particle-vibration coupling

(a)

(b)

FIG. 4. (a) The state-dependent pairing gap as a function of
the single-particle energies obtained by solving the BCS equations
associated with the total induced interaction matrix elements;
(b) same as (a) but for the matrix elements associated with the
spin-independent part of the particle-hole interaction.
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(a)

(b)

r

r

FIG. 5. (a) The dashed and dot-dashed curves are, respectively,
the neutron and proton transition densities associated with the 2+

phonon with energy 1.5 MeV; the solid curve is the wave function
of the 1h11/2 state (in arbitrary units). (b) Same as (a) but for the 3+

phonon with energy 4.35 MeV and the 2d3/2 state.

vertices shown in Fig. 2(b). The induced pairing matrix
elements associated with natural parity modes have a clear
surface character (cf. Ref. [25]). In particular, this is the
case for the most attractive pairing matrix element which is
associated with the 1h2

11/2(0) (ε1h11/2 = −8.027 MeV, εF =
−8.50 MeV) configuration (cf. Fig. 3). Because of its large
centrifugal barrier, the wave function of this single-particle
state is mainly concentrated at the nuclear surface. The main
contribution to the corresponding induced pairing matrix
element arises from the exchange of a 2+ phonon (of energy
1.5 MeV) between the two nucleons moving in time-reversal
states in the h11/2 orbital. The associated proton and neutron
transition densities depicted in Fig. 5(a) testify to the fact
that this phonon has the character of a surface vibration.
Concerning the most repulsive matrix elements, we have found
that the corresponding unnatural parity phonons are volume
modes. In particular, one of the largest (positive) matrix
elements is associated with the 2d2

3/2(0) configuration (ε2d3/2 =
−8.52 MeV). Because of the low angular momentum, one finds
that a consistent fraction of the corresponding wave function is
concentrated in the interior of the nucleus. This state can thus

couple efficiently with phonons of volume character. In fact,
the major contribution to the corresponding matrix element
is due to the exchange of the 3+ vibration (with energy at
4.35 MeV), which is a mode with a large volume component
as demonstrated by the corresponding proton and neutron
transition densities shown in Fig. 5(b). One can conclude that
states lying close to the Fermi energy with high j and thus
localized at the surface mainly feel the (attractive) coupling
arising from the exchange of surface vibrations. The situation
is expected to be quite different in the case of infinite neutron
matter. In fact, in going from the finite to the infinite system,
the collectivity of the natural parity modes, mostly surface
modes, will be strongly reduced, while not much is expected
to happen to the volume modes.

Furthermore, in going from nuclear to neutron matter,
many attractive contributions vanish. In fact, if we turn
off the neutron-proton particle-hole interaction contributing
to the basic vertices displayed in Fig. 1, a strongly net
repulsive induced interaction is obtained (cf. Fig. 6), a situation
which much resembles the neutron star case. This result
can be understood by realizing that, quite generally, the
dominant contribution to the spin-independent (and therefore
attractive) induced matrix elements arises precisely from the
neutron-proton part of the particle-hole interaction, which is
proportional to (F0 − F ′

0)δρp [cf. Eq. (5) and Fig. 1]. The
remaining part of the spin-independent interaction depends on
the function F0 + F ′

0 (corresponding to the particle-phonon
coupling mediated by δρi

Jπ n), which is rather weak, and for
the SkM∗ interaction adopted here, even displays a node at the
nuclear surface. The induced interaction is then dominated by
the (repulsive) spin-dependent matrix elements proportional
to G0 + G′

0 (corresponding to the neutron-neutron particle-
phonon coupling mediated by δρi

Jπ Ln [cf. Eq. (7)], which are
large and without nodes.

We have chosen to adopt a force such as SkM∗, which has
been tested by various groups over the years. We are well
aware that our results could change if we adopted a different

non-natural parity modes

FIG. 6. The diagonal matrix elements associated with the ex-
change of phonons of natural (filled circles) and non-natural (open
circles) parity as a function of the energy of the single-particle states.
The proton part of the phonon wave functions was not included in the
calculation.

011302-4



RAPID COMMUNICATIONS

ATTRACTIVE AND REPULSIVE CONTRIBUTIONS OF . . . PHYSICAL REVIEW C 72, 011302(R) (2005)

effective force. It is difficult to fix the spin-dependent part of
the interaction, partly because of the scarcity of experimental
constraints. In fact, different approaches have been adopted in
the literature. In particular, 1+ modes have been calculated
in the framework of the extended theory of finite Fermi
systems, using constant values of the Landau parameters G0

and G′
0 [26,27]. Recently, a new specific parametrization of

the Skyrme type has been introduced, SkO′, which takes into
account the effects of time-odd spin-isospin couplings, and
adopted for the description of the spin-flip transitions such
as the Gamow-Teller resonance [28,29]. This force has not
yet been extensively checked in the non-charge-exchange
channel, and the large and negative value of G0 associated
with this force can lead to too strongly collective or unstable
solutions in the spin isoscalar channel. Even using different
effective forces, however, the main qualitative aspects of our
results are likely to remain true, as they are based on quite
general features—such as the dominance of neutron-proton
over neutron-neutron interaction, and the stronger collectivity

and surface localization of the low-lying density modes with
respect to the spin modes.

We conclude that the exchange of low-lying surface
vibrations (in which neutrons and protons participate on equal
footing) between pairs of nucleons moving in time-reversal
states close to the Fermi energy leads to a sizeable attractive
pairing interaction which accounts for about 70% of the
pairing gap. The inclusion of spin (volume) modes reduces
this contribution by 30% in the case of finite nuclei, bringing
the induced pairing contribution to the pairing gap to a value
of the order of ≈50%, the other half coming from the bare
nucleon-nucleon force. The attractive character of the neutron-
neutron pairing effective interaction in finite nuclei is found to
be associated with the efficient coupling of the single-particle
states lying close to the Fermi energy to collective surface
vibrations, as well as with the contribution of the proton part of
the particle-vibration coupling. Without these two elements,
spin modes dominate, and the effective interaction becomes
repulsive, as in neutron matter.
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