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Improved (e, e′) response functions at intermediate momentum transfers: The 3He case
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A possibility of extending the applicability range of nonrelativistic calculations of electronuclear response
functions in the quasielasic peak region is studied. We show that adopting a particular model for determining
the kinematic inputs of the nonrelativistic calculations can extend this range considerably, almost eliminating the
reference frame dependence of the results. We also show that there exists one reference frame where essentially
the same result can be obtained with no need of adopting the particular kinematic model. The calculation is
carried out with the Argonne V18 potential and the Urbana IX three-nucleon interaction. A comparison of these
improved calculations with experimental data shows a very good agreement for the quasielastic peak positions
at q = 500, 600, 700 MeV/c and for the peak heights at the two lower q values, while for the peak height at
q = 700 MeV/c, one finds differences of about 20%.
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In Ref. [1], we studied the longitudinal response functions
for electron scattering from three-nucleon systems in the
momentum transfer range between 250 and 500 MeV/c. A
nonrelativistic (n.r.) formulation of the nuclear three-body
problem was adopted, and the full dynamics was taken into
account in both the initial and final states. A related study
was recently presented in Ref. [2]. To check the validity of
our n.r. calculation, we checked in [1], among other issues,
the reference frame dependence and found that it is not
negligible for momentum transfers q � 400 MeV/c. A frame
dependence of a similar type had already been observed in
deuteron electrodisintegration [3–5]. In Ref. [1], the hadronic
current was evaluated in the Breit frame and the results were
compared with experimental data. In the present work, we
reconsider the frame dependence and present results up to
q = 700 MeV/c.

It is clear that as q increases, the results of purely n.r.
calculations must become increasingly questionable. One
manifestation of the importance of relativity is the frame
dependence that occurs in such n.r. calculations at high q.
Of course, use of any frame in a genuine relativistic calculation
must lead to the same laboratory (LAB) frame result. We will
show that certain frames in a n.r. calculation may tend to
minimize the error because of the lack of a proper relativistic
calculation. We also suggest a procedure to reduce the frame
dependence in the quasielastic peak region.

In the one-photon exchange approximation, the inclusive
electron scattering cross section in the LAB frame is given by
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where RL and RT are the LAB longitudinal and transverse
response functions, respectively. The LAB frame electron
variables are denoted by ω (energy transfer), q (momentum
transfer), and θ (scattering angle).

In addition to RL, one may define related responses
Rfr

L expressed in terms of quantities pertaining to refer-
ence frames obtained via boosting the LAB frame along
q. In general, nuclear states are products of internal and
center-of-mass momentum substates. In the n.r. approxima-
tion after integrating over the center-of-mass momentum,
one has

Rfr
L =

∑∫
df

∣∣∣∣∣〈ψi |
∑

j

ρj (qfr, ωfr)|ψf 〉
∣∣∣∣∣
2

δ
(
Efr

f − Efr
i − ωfr

)
.

(2)

Here qfr and ωfr are the momentum and energy transfer in
a new reference frame, the internal substates are indicated
with ψi and ψf , and ρj (qfr, ωfr) are the internal single-
nucleon charge operators as defined in Ref. [1] (the energy
dependence is due to the inclusion of the nucleon form
factors).

The summation-integration symbol denotes the usual sum-
mation or integration over final state variables in addition to
averaging over the initial state magnetic quantum numbers.
In the relativistic case, we have the same formula, but with
the substates ψi and ψf depending, respectively, on the total
momenta Pfr

i and Pfr
f = Pfr

i + qfr of the initial and final states in
a given reference frame. Thus ψi and ψf are frame dependent
in the relativistic case. We disregard this frame dependence of
the states in our calculations, and we do not consider the boost
corrections of the states.

Energy conservation is explicit in the argument of the
δ function where Efr

f and Efr
i denote the total initial and

final energies and can be expressed with relativistic or n.r.
kinematics (both cases will be considered in the following). In
the n.r. case, the center of mass and internal energies can be
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separated such that

δ
(
Efr

f − Efr
i − ωfr

) ≈ δ
[
efr
f + (

P fr
f

)2/
(2MT )

− efr
i − (

P fr
i

)2/
(2MT ) − ωfr

]
(3)

≡ δ
[
efr
f − enr

f (qfr, ωfr)
]
, (4)

where efr
f , efr

i are intrinsic energies of the final and initial states.
The response RL can be expressed in terms of Rfr

L with the
help of the relationship

RL(q, ω) = q2

(qfr)2

Efr
i

MT

Rfr
L(qfr, ωfr) . (5)

The origin of the factor q2/(qfr)2 is shown in
Ref. [3], Eqs. (2.13), (2.14) (see also, e.g., Refs. [4,6,7]). The
factor Efr

i /MT arises because we adopt the usual normalization
of the target state to unity instead of its covariant normalization.
(In [1] this factor was not included).

We will use relation (5) to get the LAB response from
calculations referring to frames different from the LAB frame
and study the frame dependence of n.r. calculations.

In addition to the LAB frame we consider three other
frames. One is the so-called antilab (AL) frame, where the total
momentum in the final state is zero. Thus the target nucleus
has a momentum −qAL. If one neglects the internal motion of
the nucleons inside the nucleus, then one could say that the
nucleon momenta in the inital state are about −qAL/A in this
reference frame. Absorption of a virtual photon of momentum
qAL by a ground state nucleon (the quasielastic process) would
result in a final state, where one nucleon has a momentum of
about qAL(A − 1)/A and A − 1 slower nucleons each have a
momentum of about −qAL/A.

If one chooses to minimize the sum of the center-of-mass
kinetic energies of initial and final states, one is led to the Breit
(B) frame. In the Breit frame, the target nucleus moves with
−qB /2 and the nucleon momenta are thus about −qB/(2A).
According to the above picture, the final state in the vicinity
of the quasielastic peak corresponds roughly to one nucleon
with momentum qB(2A − 1)/(2A) and A − 1 nucleons with
momenta of about −qB/(2A). At fixed q and ω values, the
antilab and Breit responses tend to the LAB response with
increasing A.

As a fourth reference frame, we introduce what we call the
active nucleon Breit frame (ANB). In this frame, the target nu-
cleus consisting of A nucleons has a momentum of −AqANB/2
so that the nucleons have momenta about −qANB/2 in the
initial state. The final state in the vicinity of the q.e. peak would
correspond to an active nucleon with momentum of about
qANB/2, while the other nucleons continue moving with the
momenta about −qANB/2. Thus within these approximations,
the maximum nucleon momentum is limited by qANB/2 � q/2
in the ANB frame, whereas in other reference frames nucleons
with momenta up to q are present. The momentum of the active
nucleon is largest in the LAB frame, so one may expect that
this reference frame is the least suitable within a n.r. approach.
In particular, the relativistic correction related to the kinetic
energy is 4 times larger in the LAB frame than in the ANB
frame. In the following, we will calculate RB

L ,RAL
L , and RANB

L

and then use (5) to give the predicted RL from each of these.
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FIG. 1. (Color online) Frame dependence of the 3He longitudinal
response function at three different momentum transfers q (notation
of curves in upper panel); experimental data are from Refs. [12]
(squares), [13] (triangles), [14] (circles).

These indirectly calculated RL are then compared with RL

as computed directly in the LAB frame at q = 500, 600, and
700 MeV/c. By comparing our results to experimental data,
it should become apparent if the ANB frame, for example, is
superior to the LAB frame.

The present calculation proceeds in the manner described
in [1]. There we found only a weak potential model depen-
dence, so in the present calculation we choose the Argonne
V18 (AV18) NN [8] plus Urbana IX (UrbIX) NNN [9]
potentials. As in [1], the n.r. charge operator is supplemented
with the first-order relativistic corrections (Darwin-Foldy and
spin-orbit terms). However, while in [1] we considered q
values up to 500 MeV/c, in the present work we calculate
the responses at q = 500, 600, and 700 MeV/c. The inclusion
of these higher q values requires a larger set of basis states
for convergence. For example, whereas the total angular
momentum of the final states was limited to J = 21/2 in [1],
here we include states up to J = 31/2. As in [1], we use
the simple dipole fit for the proton electric form factor, but
consider also the proton form factor fit from [10]. For the
neutron electric form factor, we take the fit from [11].

Figure 1 shows the RL results for the various frames
together with experimental data at qLAB = 500, 600, and
700 MeV/c. It is readily seen that one obtains rather frame-
dependent results. One finds the following differences in
peak positions and peak heights between the two extreme
cases (ANB and LAB frame results): 6 MeV and 13%
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(500 MeV/c), 11 MeV and 19% (600 MeV/c), 20 MeV and
24% (700 MeV/c). As anticipated of all four frames, the
LAB frame calculation leads to the worst result in comparison
with experimental data. Let us recall that these LAB results
represent just the conventional n.r. calculation. On the other
hand, the ANB frame leads to a good description of the data
at q = 500 and 600 MeV/c. This may be related to the fact
that nucleons with only moderate momenta are present in this
reference frame. Description of the data with the ANB frame is
even better if a contemporary proton form factor in place of the
dipole form factor is used. This will be demonstrated below.
The above considerations demonstrate the frame dependence
inherent in a n.r. calculation of the longitudinal response at
high q. Clearly a proper relativistic calculation would remove
this frame dependence, but one can still ask whether there is
a way to modify the n.r. calculation such that the degree of
frame dependence would be reduced.

A clue is evident in the work of Arenhövel and collaborators
(see, e.g. [15]) in deuteron electrodisintegration, where the
relative momentum of outgoing nucleons is determined in a
relativistically correct way, and the energy that is used as input
to the n.r. calculation is obtained from that momentum by the
usual n.r. relation. In general, in a two-body problem, one
may either determine the kinetic energy in a relativistically
correct way and solve the n.r. Schrödinger equation with it
or determine the relative momentum p12 in a relativistically
correct way and solve the Schrödinger equation for the “fake”
kinetic energy E12 = p2

12/2µ12, where µ12 is the reduced mass
of the two particles. The reason why the latter procedure is
chosen in the case of deuteron electrodisintegration is because
the construction of NN potential models proceeds that way.

If one is mainly interested in the region of the quasielastic
peak, then one can adopt an analogous procedure based on a
two-body model for the quasielastic process. That is, the final
state is assumed to consist of a knocked-out nucleon and an
(A − 1) particle residual system remaining in its lower energy
state. We stress here that the two-body model is adopted only
for determining the kinematic input of a calculation where the
full three-body dynamics is properly taken into account.

The momenta of the knocked-out nucleon and that of the
residual nucleus are denoted by pfr

N and pfr
X, respectively. Then

the relative and center-of-mass momenta will be given by pfr =
µ(pfr

N/M − pfr
X/MX) and Pfr

f = pfr
N + pfr

X, where MX is the
mass of the residual nucleus and µ is the N − X reduced
mass. (Note that pfr depends on the reference frame in the
relativistic case). The value of pfr can be obtained from the
following relativistically correct kinematical relation

ωfr = Efr
f − Efr

i , (6)

where

Efr
f =

√
M2 + [

pfr + (µ/MX)Pfr
f

]2

+
√

M2
X + [

pfr − (µ/M)Pfr
f

]2
. (7)

Then, in accordance with the preceding discussion on the
two-body system, the final state relative energy to use in the
n.r. calculation is taken to be

efr
f = (pfr)2/(2µ) . (8)

Here one has to notice that in order to solve Eq. (6) for pfr one
needs to know its direction. For the class of reference frames
we consider the momentum Pfr

f is directed along q. Again,
since we are mainly interested in the region of the quasielastic
peak we can safely assume that pfr is also directed along q.
[Indeed, e.g., pLAB � (µ/M)q.]

Proceeding in the way described above is formally equiva-
lent to replacing (Efr

f − Efr
i ) in the δ function of Eq. (2) by a

function F (efr
f ) = [Efr

f (efr
f ) − Efr

i ]. Therefore,

δ
(
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f − Efr
i − ωfr)=

(
∂F fr

∂efr
f

)−1

δ
[
efr
f − erel

f (qfr, ωfr)
]
, (9)

with (
∂F fr

∂efr
f

)−1

= pfr

µ

(
∂Ef
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)−1

. (10)

This leads to

Rfr
L(qfr, ωfr) = p

µ

(
∂Ef

∂p

)−1

×
∑∫

df

∣∣∣∣∣∣〈ψi |
∑

j

ρj (qfr, ωfr)|ψf 〉
∣∣∣∣∣∣
2

× δ
[
efr
f − erel

f (qfr, ωfr)
]

. (11)

To calculate this quantity, a new calculation is not required.
We have obtained it via interpolation with respect to the
momentum transfer of the n.r. response.

This procedure should reduce the frame dependence of
RL(q, ω) considerably. This is evident in the free case, i.e.,
when there is no interaction between the fast nucleon and
the residual system. In this case, the n.r. and relativistic
final states would contain the relative motion plane wave
with the same momentum p, resulting in no frame depen-
dence of the matrix elements due to a difference in relative
motion.

In Fig. 2, we show the various RL results in comparison with
experimental data, and in fact we find an enormous reduction of
the frame dependence. For the peak positions, we even have an
essentially frame-independent result and also the differences
of the peak heights are much reduced, namely to maximally
4, 6, and 9% at q = 500, 600, and 700 MeV/c, respectively.
It is evident that there is good agreement between theory and
experiment for the position of the quasielastic peak at all three-
momentum transfers. Concerning the peak heights, one finds
a relatively good agreement at q = 500 and 600 MeV/c, while
at 700 MeV/c the theoretical peak height overestimates the
experimental one between about 20% and 30%.

It is interesting to check which of the frame-dependent
results of Fig. 1 reproduces best the frame-independent peak
positions of Fig. 2. It turns out that this is the ANB frame. Also
the peak heights of the ANB curves in Figs. 1 and 2 are not
much different: 4% (q = 500 MeV/c), 5% (q = 600), 6% (q =
700). This is not surprising since the ANB frame is the only
frame where the nucleon has equal initial and final energies
(in fact, the initial nucleon momentum is about −qANB/2 and
its final momentum is qANB/2). Thus the quasielastic peak
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FIG. 2. As in Fig. 1, but considering two-body relativistic
kinematics for the final state energy as discussed in the text.

occurs at ωANB = 0, independent of whether relativistic or n.r.
kinematics are employed. Note that in the A = 2 case, the
ANB frame coincides with the antilab frame, which is often
chosen for the deuteron electrodisintegration.

A comparison of Figs. 1 and 2 shows that the n.r. ANB frame
calculations agree with the relativistic two-body kinematics
calculations not only at the peak but also in the tails. This is
illustrated in another way in Fig. 3 where the n.r. ANB frame
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FIG. 3. RL of ANB frame calculations without consideration of
two-body relativistic kinematics (long dashed curves) in comparison
to RL of B frame calculations with consideration of two-body
kinematics (full curves).

50 100 150 200 250 300 350
ωlab (MeV)

0

1

2

0

1

2

3

4

R
L 

(1
0−3

 M
eV

−1
)

0

2

4

6

8

dipole
MMD

q=600 MeV/c

q=500 MeV/c

q=700 MeV/c

FIG. 4. RL of B frame calculations with consideration of two-
body relativistic kinematics using different proton electric form
factors: dipole fit (full curves), fit from [10] (long dashed curves).
Notation of experimental data as in Fig. 1.

results are shown together with the relativistic kinematics Breit
frame results. The choice of the Breit frame was motivated by
the deuteron electrodisintegration work of [5], where it was
shown that boost corrections are minimal for this frame.

Apart from theoretical uncertainties of the quasielastic
RL response due to frame dependence, probably the greatest
remaining theoretical uncertainty is due to the proton electric
form factor. As an illustration, we show in Fig. 4 the Breit
frame results with relativistic two-body kinematics using the
two above-mentioned different proton electric form factors
(dipole fit, and fit from [10]). In comparison to the dipole
fit the fit of [10] reduces the peak height by about 4, 6, and
7% at q = 500, 600, and 700 MeV/c leading to an improved
agreement with experiment at the lower two q values and
reducing the discrepancy at q = 700 MeV/c to about 15%.
On the other hand, the rather large experimental uncertainties
preclude making definitive conclusions.

We summarize our results as follows. We have shown
that the usual n.r. calculation of the longitudinal inclusive
(e, e′) response leads to rather frame-dependent results at
intermediate momentum transfers of q = 500−700 MeV/c.
The frame dependence is drastically reduced if one assumes
a two-body breakup model with relativistic kinematics to
determine the input to the n.r. dynamics calculation. One
obtains a nearly frame-independent peak position and much
smaller deviations for the peak heights. Within n.r. kinematics,
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of the considered reference frames, the ANB frame turns out to
be the best, leading to results almost identical to those obtained
with the suggested two-body breakup model. In comparison
with experimental data, we find good agreement for the
positions of the quasielastic peak and also good agreement
of the peak heights at q = 500 and 600 MeV/c, while at
q = 700 MeV there is a discrepancy between about 15% and
25%.
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