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Chiral dynamics of � hyperons in the nuclear medium
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Using SU(3) chiral perturbation theory, we calculate the density-dependent complex mean field U�(kf ) +
i W�(kf ) of a � hyperon in isospin-symmetric nuclear matter. The leading long-range �N interaction arises
from one-kaon exchange and from two-pion exchange with a � or a � hyperon in the intermediate state. We
find from the �N → �N conversion process at nuclear matter saturation density ρ0 = 0.16 fm−3 an imaginary
single-particle potential of W�(kf 0) = −21.5 MeV, in fair agreement with existing empirical determinations. The
genuine long-range contributions from iterated (second order) one-pion exchange with an intermediate � or �

hyperon sum to a moderately repulsive real single-particle potential of U�(kf 0) = 59 MeV. Recently measured
(π−,K+) inclusive spectra related to �− formation in heavy nuclei give evidence for a �-nucleus repulsion of
similar size. Our results suggest that the net effect of the short-range �N interaction on the � nuclear mean field
could be small.
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The �-nucleus optical potential describes the behavior
of a � hyperon in the nuclear medium. The quantitative
determination of this (complex) potential is a subject of
current interest. Whereas an earlier analysis of the shifts
and widths of x-ray transitions in �− atoms came up with
an attractive (real) �-nucleus potential of about −27 MeV
[1] (i.e., almost equal to the well established attractive
�-nucleus potential of depth −28 MeV [2]), there is currently
good experimental and phenomenological evidence for a
substantial �-nucleus repulsion. A reanalysis of the �−-atom
data by Batty, Friedman, and Gal [3], including the then
available precise measurements of W and Pb atoms and
employing phenomenological density-dependent fits, has lead
to a �-nucleus potential with a strongly repulsive core (of
height ∼95 MeV) and a shallow attractive tail outside the
nucleus. However, because of the poor penetration of the
�− hyperon into the nucleus, such fitted potentials are not
well defined by the �−-atom data in the nuclear interior.
The inclusive (π−,K+) spectra on medium-to-heavy nuclear
targets measured at KEK [4,5] give more direct evidence for
a strongly repulsive �-nucleus potential. In the framework of
the distorted-wave impulse approximation, a best fit of the
measured (π−,K+) inclusive spectra on Si, Ni, In, and Bi
targets is obtained with a �-nucleus repulsion of about 90 MeV
[5]. In addition, a nonzero value of the imaginary �-nucleus
potential (with a best fit value of about −40 MeV [5]) is also
required in order to reproduce the observed spectra of the
double differential cross section d2σ/d�dE. Very recently,
Kohno et al. [6] have calculated the (π−,K+) inclusive spectra
on Si within a semiclassical distorted wave model, and they
found that the KEK data can also be well reproduced with
a complex �-nucleus potential of strength (30 − 20 i) MeV.
The different result from Ref. [5] may be due to avoiding
the factorization approximation by using an average cross
section [6]. For an up-to-date and comprehensive overview
of hypernuclear physics, see Ref. [7].

In the standard one-boson exchange models for hyperon-
nucleon interaction, there are appreciable uncertainties in

various meson-baryon coupling constants, although SU(3)
relations are imposed. Most of these models give an attractive
(real) �-nucleus potential [8–10], but the Nijmegen model
F [11] leads to repulsion, estimated to be about (4−8 i) MeV in
nuclear matter [12]. A nonrelativistic SU(6) quark model for
the unifying description of octet baryon-baryon interactions
has been developed by the Kyoto-Niigata group [13]. G-matrix
calculations in lowest order Brueckner theory [14] with this
hyperon-nucleon interaction showed that the real part of the
� nuclear mean field is repulsive of the order of 20 MeV due
to a strong repulsion in the total �N -isospin 3/2 channel
which originates from Pauli blocking effects at the quark
level. The same calculation [14] has found an imaginary
part of the � single-particle potential in nuclear matter of
−20 MeV, comparable to the value −16 MeV extracted in the
earlier analysis of the �−-atom data [1]. The basic physical
mechanism behind this sizeable (negative) imaginary part is, of
course, the strong conversion process �N → �N in nuclear
matter.

More recently, chiral effective field theory approaches
have opened new perspectives for dealing with binding and
saturation of nuclear matter as well as single-particle properties
of nucleons [15] and � hyperons [16] in the nuclear medium.
A key element in these approaches is the separation of
long- and short-distance dynamics and an ordering scheme
in powers of small momenta. At nuclear matter saturation
density ρ0 = 0.16 fm−3, the Fermi momentum kf 0 and the pion
mass mπ are comparable scales (kf 0 � 2mπ ), and therefore
pions must be included as explicit degrees of freedom in the
description of the nuclear many-body dynamics. In this work,
we extend such a field-theoretical approach to the complex
single-particle potential of a � hyperon in isospin-symmetric
nuclear matter.

Our calculation is based on the leading order chiral meson-
baryon Lagrangian in flavor SU(3) [17],

LφB = D

2fπ

tr(B̄ �σ · { �∇φ,B}) + F

2fπ

tr(B̄ �σ · [ �∇φ,B])+ . . . ,

(1)
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FIG. 1. One-kaon exchange Fock diagram and iterated one-pion
exchange Hartree diagrams with � or � hyperons in the intermediate
state. The horizontal double line symbolizes the filled Fermi sea of
nucleons, i.e., the medium insertion −θ (kf − | �p |) in the in-medium
nucleon propagator [15]. Effectively, the medium insertion sums up
hole propagation and the absence of particle propagation below the
Fermi surface | �p | < kf .

where the traceless hermitian 3 × 3 matrices B and φ

collect the octet baryon fields (N,�,�,	) and the pseu-
doscalar Goldstone bosons fields (π,K, K̄, η), respectively.
The parameter fπ = 92.4 MeV is the weak pion decay con-
stant, and D and F denote the SU(3) axial-vector coupling
constants of the octet baryons. We choose as their values
D = 0.84 and F = 0.46. This leads to a KN� coupling con-
stant of gKN� = (D − F )(MN + M�)/(2fπ ) = 4.4, a π��

coupling constant of gπ�� = D(M� + M�)/(
√

3fπ ) = 12.1,
and a π�� coupling constant of gπ�� = 2FM�/fπ = 11.9,
consistent with the empirical values summarized in Tables 6.3
and 6.4 of Ref. [18]. The π�� coupling constant used in the
present work is also consistent with the value gπ�� = 12.9 ±
0.9 extracted recently from hyperonic atom data in Ref. [19].
Furthermore, the pion-nucleon coupling constant has the value
gπN = gAMN/fπ = 13.2 [20], with gA = D + F = 1.3. The
ellipsis in Eq. (1) stands for the chiral-invariant interaction
terms with two or more Goldstone boson fields, which do not
come into play in the present calculation.

Consider the density-dependent complex self-energy
U�(kf ) + i W�(kf ) of a zero-momentum � hyperon ( �p� = �0)
placed as a test particle into isospin-symmetric nuclear matter.
The value U�(kf 0) + i W�(kf 0) at nuclear matter saturation
density ρ0 = 0.16 fm−3 fixes the strength of the �-nucleus
optical potential. We calculate the long-range contributions
to the � nuclear mean field U�(kf ) + i W�(kf ) generated
by the exchange of light Goldstone bosons between the
� hyperon and the nucleons in the filled Fermi sea. The only
nonvanishing one-meson exchange contribution comes from
the kaon-exchange Fock diagram in Fig. 1, from which we
obtain the (small and) repulsive contribution to the real part of
the � nuclear mean field,

U�(kf )(K) = (D − F )2

(2πfπ )2

{
k3
f

3
− m2

Kkf + m3
K arctan

kf

mK

}
,

(2)

with mK = 496 MeV the average kaon mass. At densities at
and below nuclear matter saturation density ρ � 0.16 fm−3

(corresponding to Fermi momenta kf � 263 MeV), the kaon
exchange can already be regarded as short range. The ratio
kf /mK � 0.53 is small, and the expression in curly brackets

in Eq. (2) is dominated by its leading term k5
f /5m2

K in the kf

expansion.
The truly long-range interaction between the � hyperon

and the nucleons arises therefore from two-pion exchange. The
corresponding two-loop diagrams with a � or a � hyperon in
the intermediate state are shown in Fig. 1. Their relative isospin
factor (for the �- and �-intermediate state) is 6(F/D)2 � 1.8.
We find from the second diagram in Fig. 1, with one medium
insertion [15] and a � hyperon in the intermediate state, the
following long-range contribution to the real part of the �

nuclear mean field,1

U�(kf )(2π�) = F 2g2
AMB m2

π

8π3f 4
π

×
[
−3mπkf + (

2k2
f + 3m2

π

)
arctan

kf

mπ

]
, (3)

with mπ = 138 MeV the average pion mass. The mean baryon
mass MB = (2MN + M� + M�)/4 = 1047 MeV serves the
purpose of averaging out small differences in the kinetic
energies of the various baryons involved. Note the large scale
enhancement factor MB in Eq. (3) which stems from the
energy denominator of the 2π -exchange diagram. Because
of this characteristic property, the notion of iterated (second
order) one-pion exchange is actually more appropriate (see
also Sec. 4 in Ref. [21] for the analogous classification of the
2π -exchange NN interaction). The third diagram in Fig. 1 with
two medium insertions represents a Pauli blocking correction.
With an intermediate � hyperon, the contribution to the real
part of the � nuclear mean field can be expressed as

U�(kf )(2π�)
Pauli = F 2g2

AMB

(2πfπ )4

{
2k4

f − m4
π

∫ u

0
dx

× −
∫ 1

−1

dz

z

[
1

S
+ 2 ln S

]}
, (4)

with the auxiliary function S = 1 + u − x + 2xz2 +
2z

√
x(u − x + xz2) and the abbreviation u = k2

f /m2
π . The

symbol −∫ 1
−1 dz in Eq. (4) denotes a principal value integral.

We also note that the total imaginary part W�(kf )(2π�) +
W�(kf )(2π�)

Pauli vanishes identically.
Next, we come to the iterated one-pion exchange diagrams

with an intermediate � hyperon. The small ��-mass splitting
M� − M� = 77.5 MeV, which comes into play here, is
comparable in magnitude to the typical kinetic energies of the
nucleons. Therefore, it has to be counted accordingly in the
energy denominator. By the relation M� − M� = �2/MB ,
we introduce another small mass scale �, whose magnitude
� � 285 MeV is close to the Fermi momentum
kf 0 � 263 MeV at nuclear matter saturation density.
Putting all the pieces together, we find from the second

1We have used dimensional regularization (where a linear diver-
gence

∫ ∞
0 dl 1 is set to zero) to evaluate the loop integral. In cutoff

regularization, one would get in addition a term linear in the cutoff
and the density ρ. Since such a term is indistinguishable from the
effect of a zero-range contact interaction, it does not belong to the
genuine long-range contributions.
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diagram in Fig. 1 with an intermediate � hyperon the
following long-range contribution to the complex � nuclear
mean field

U�(kf )(2π�) + i W�(kf )(2π�) = D2g2
AMBm4

π

48π3f 4
π

�

(
k2
f

m2
π

,
�2

m2
π

)
,

(5)
where the complex function

�(u, δ) = −(δ + 3)
√

u − i

4
(u + 2δ + 6)

√
u(4δ + u)

+ (2u + δ2 + 4δ + 3)

{
arctan

√
u

1 + δ

+ i ln
2 + 2δ + u + √

u(4δ + u)

2[(1 + δ)2 + u]1/2

}
(6)

emerges from the combined loop and Fermi sphere integration
with the abbreviation δ = �2/m2

π . The corresponding Pauli
blocking correction to the real part of the � nuclear mean field
can be expressed as a numerically easily manageable double
integral of the form

U�(kf )(2π�)
Pauli = D2g2

AMBm4
π

6(2πfπ )4

∫ u

0
dx

∫ u

0
dy

1

(2δ + 1 + x − y)2

×
[

4(y − x − 2δ − 1)
√

xy

(1 + x + y)2 − 4xy

+ (2x − 2y + 4δ + 1) ln
1 + x + y + 2

√
xy

1 + x + y − 2
√

xy

+ (2δ + x − y)2 ln
|δ − y − √

xy|
|δ − y + √

xy|

]
. (7)

In the case of the imaginary part of the � nuclear mean field,
the Pauli blocking correction can even be written in closed
analytical form:

W�(kf )(2π�)
Pauli = D2g2

AMBm4
π

96π3f 4
π

θ (
√

2kf − �)

×
[

u2

4
+ 3

2
(u − δ2) + (u − 3)δ

+ 1

4
(u + 2δ + 6)

√
u(4δ + u) − (2u + δ2)

× ln
2 + 2δ + u + √

u(4δ + u)

2 + 2u−1δ2
− (3 + 4δ)

× ln
2 + 2δ + u + √

u(4δ + u)

2 + 4δ

]
. (8)

It is interesting to observe that there is a threshold condition
kf > �/

√
2 for Pauli blocking to become active in the imag-

inary part of the � nuclear mean field. This threshold corre-
sponds to the subnuclear density ρth = 0.072 fm−3 = 0.45 ρ0.
Furthermore, as a simple check, one verifies that the total
imaginary � nuclear mean field W�(kf )(2π�) + W�(kf )(2π�)

Pauli
vanishes identically in the limit of ��-mass degeneracy, i.e.,
δ = 0. We have also evaluated the contributions to U�(kf )
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FIG. 2. The complex mean field U�(kf ) + iW�(kf ) of a zero-
momentum � hyperon in isospin-symmetric nuclear matter versus
the nucleon density ρ = 2k3

f /3π 2. The imaginary part W�(kf )
(lower solid line) originates from the conversion process �N → �N

induced by one-pion exchange. The real part U�(kf ) (upper solid line)
includes only genuine long-range contributions.

from irreducible two-pion exchange (which do not carry the
large scale enhancement factor MB ) and found that they sum up
to zero in isospin-symmetric nuclear matter. For comparison,
the same exact cancellation is at work in the isoscalar central
channel of the 2π -exchange NN potential (see Sec. 4.2 in
Ref. [21]). As an aside, we note that the Pauli blocking
corrections Eqs. (4, 7, 8) could also be interpreted as the effects
of the 2π -exchange �NN three-body interaction [22]. This
equivalence becomes immediately clear by opening the two
nucleon lines (with horizontal double lines) of the last diagram
in Fig. 1.

Summing up all calculated terms, we show in Fig. 2 the
resulting complex � nuclear mean field U�(kf ) + iW�(kf )
as a function of the nucleon density ρ = 2k3

f /3π2. The lower
curve for the imaginary part W�(kf ) displays clearly the
onset of the Pauli blocking effects at the threshold density
ρth = 0.072 fm−3. It is very astonishing that the total real �

nuclear mean field U�(kf ) follows to a good approximation
a straight line, whereas individual components possess a
much more nonlinear dependence on the density ρ, driven
by the relevant dimensionless variable

√
u = kf /mπ . At

normal nuclear matter density ρ0 = 0.16 fm−3 (corresponding
to a Fermi momentum of kf 0 = 263 MeV), one finds for
the real and imaginary part, respectively U�(kf 0) = [0.4 +
(40.9 + 16.1) + (8.2 − 6.6)] MeV = 59 MeV and W�(kf 0) =
(−29.0 + 7.5) MeV = −21.5 MeV, where the individual
entries correspond to the respective terms written in
Eqs. (2)–(8), in that order. As could be expected from the small
KN� coupling constant gKN� = 4.4, the kaon-exchange
contribution is completely negligible. The genuine long-range
terms from iterated one-pion exchange with the intermediate
� and � hyperons written in Eqs. (3),(5) build up a sizeable
repulsion of 49 MeV which is furthermore enhanced (by about
20%) by the Pauli blocking corrections of Eqs. (4),(7). Note
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that one is dealing here with six-dimensional principal value
integrals whose signs are not a priori fixed. The imaginary
single-particle potential of W�(kf 0) = −21.5 MeV comes out
surprisingly close to the value −20 MeV obtained in the SU(6)
quark model calculation of Ref. [14] or the value −16 MeV
extracted from �−-atom data [1]. Of course, in order to
account for the uncertainties in the axial-vector coupling
constants D and F, and the choice of a mean baryon mass
MB , one should add to the curves in Fig. 2 an error band of
at least ±20%. Moreover, there are recoil corrections to the
leading order results given in Eqs. (2)–(8). Since these recoil
corrections scale (at least) as 1/MB with the baryon mass
MB , they are expected to be suppressed by the small relative
factor (kf /MB)2 � 0.07 (for moderate densities ρ � 0.2 fm−3).
If one continues the curves in Fig. 2 to even higher densities
ρ � 0.5 fm−3, one finds a stronger than linear rise of the real
part U�(kf ), and an approximate saturation of the imaginary
part U�(kf ) at a value of about −30 MeV. However, this
behavior should not be taken too seriously, since for Fermi
momenta kf > 350 MeV, one presumably exceeds the limits
of validity of the present calculation based on in-medium chiral
perturbation theory (see also the discussion in Ref. [15]).

Altogether, it seems that the leading long-range two-pion
exchange dynamics evaluated in the present field-theoretical
approach is able to reproduce qualitatively the single-particle
properties of � hyperons in the nuclear medium in agree-
ment with existing phenomenology and more sophisticated
model calculations. This raises a question about the role of
the short-range �N interaction (and additional short-range
correlations). QCD sum rule calculations of � hyperons in
nuclear matter [23] indicate that the individually large Lorentz
scalar and vector mean fields (typically of strength ∓0.2M�)
cancel each other to a large extent. In the case of the Lorentz
scalar mean field, the QCD sum rule results are subject to large
uncertainties due to unknown contributions from four-quark
condensates. Conversely, at least some of these contributions
are accounted for by our explicit treatment of the long-range
two-pion exchange processes. A combined QCD sum rule
analysis of nucleons, � hyperons, and � hyperons in nuclear

matter together with input from in-medium chiral perturbation
theory and phenomenology should help to better constrain
the short-distance baryon-nucleon dynamics (whose details
are, however, not resolved at the scale of the nuclear Fermi
momentum kf 0).

In summary, we have calculated in this work the density-
dependent complex mean field U�(kf ) + iW�(kf ) of a �

hyperon in isospin-symmetric nuclear matter in the two-
loop approximation of in-medium chiral perturbation theory.
The leading long-range �N interaction arises from iterated
(second order) one-pion exchange with a � or � hyperon
in the intermediate state. These second order pion-exchange
contributions do not correspond to any mean field Hartree
approximation as evidenced by their intrinsic nonlinear density
dependence. To the order in the small momentum expan-
sion we are working with here, the long-range correlations
between the � hyperon and the nucleons are fully taken
into account. We find from the strong �N → �N con-
version process at nuclear matter saturation density ρ0 =
0.16 fm−3 an imaginary single-particle potential of W�(kf 0) =
−21.5 MeV. The genuine long-range contributions from
iterated pion-exchange sum up to a moderately repulsive real
single-particle potential of U�(kf 0) = 59 MeV. Taking into
account the uncertainties of the involved coupling constants,
such values are already compatible with the �-nucleus optical
potential needed to describe the inclusive (π−,K+) spectra
related to �− formation in heavy nuclei. Our results suggest
that the net effect of the short-range �N interaction on the
� nuclear mean field could be small. A combined QCD sum
rule analysis of nucleons, � hyperons, and � hyperons in
nuclear matter can help to clarify the latter point. Furthermore,
the present calculation can easily be extended to nonzero
�-momentum p, and from the corresponding momentum and
density-dependent mean field U�(p, kf ) + i W�(p, kf ), one
can extract, for example, an effective � mass [22,24]. Work
along these lines is in progress.
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