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β-delayed neutron emission in the 78Ni region
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A systematic study of the total β-decay half-lives and β-delayed neutron emission probabilities is performed.
The β-strength function is treated within a self-consistent density-functional + continuum-quasiparticle-random-
phase-approximation framework including the Gamow-Teller and first-forbidden transitions. The experimental
total β-decay half-lives for the Ni isotopes with A� 76 are described satisfactorily. The half-lives predicted
from A = 70 up to A = 86 reveal fairly regular A behavior which results from simultaneous account for the
Gamow-Teller and first-forbidden transitions. For Z ≈ 28 nuclei, a suppression of the delayed neutron emission
probability is found when the N = 50 neutron closed shell is crossed and the neutron excess becomes more than
one major shell. The effect originates from the high-energy first-forbidden transitions to the states outside the
Qβ -Bn window in the daughter nuclei.
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I. INTRODUCTION

Physics of complex nuclear systems with high isospin
asymmetry is a rich and multifaceted field. It involves such
exotic objects as neutron stars and short-lived β-unstable nu-
clei with a large neutron (proton) excess. The ground state and
β-decay properties of these radioactive isotopes give valuable
information on structural evolution in the regions far-off stabil-
ity and provide input for supernova explosion calculations. In
particular, for the modeling of the r-process nucleosynthesis,
the most important objects are the nuclear masses that define
the path of the r process through the neutron-rich domain
of the nuclear chart. The β decays and ν(ν̄) captures are
also essential, as they regulate the flow of the material to
high Z values and set up the r process time scale. The
nuclei near the new doubly magic 78Ni and 132Sn, as well
as the very neutron-rich nuclei “east” of 208Pb are of special
importance to the r process modeling. Some of the key nuclei
in these regions have been reached recently thanks to the
spectacular progress of the Radioactive Nuclear Beams (RNB)
experiments using the Z-selective resonance-ionization laser
ion-source technique (see, e.g. [1]). It has provided a unique
testing ground for theoretical approaches to exotic nuclei and
modeling of explosive stellar events.

In this paper, we perform the microscopic study of the
total β-decay half-lives and β-delayed neutron emission
probabilities of very neutron-rich nuclei. The simultaneous
analysis of these β-decay observables may make it possible
to reconstruct the β-strength function. Specifically, one may
gain insight into the relative contribution of its Gamow-Teller
(GT) and first-forbidden (FF) components. A possibility of
competition between the GT and FF decays in nuclei with
the neutron-excess bigger than one major shell has often been
discussed in the literature (see [2] and references therein).
Experimental evidence of that has been obtained since the
first measurements in the region of 132Sn [3]. However,
microscopic global calculations [4,5] have treated the total
β-decay half-lives and delayed neutron emission probabilities
Pn in allowed transition approximation. Moreover, contrary
to [2], Ref. [4] stated that the influence of forbidden decays

should decrease with increasing distance from the valley of
β stability. Later, the microscopic study of the unique FF
transitions [6] came to the conclusion that even this simplest
forbidden decay channel (which is important in a number of
special cases) should be taken into account.

The single β-decay channel approximation is not adequate
for describing of the isotopic dependence of the β-decay
characteristics, especially for the nuclei crossing the closed
N and Z shells. It has been pointed out recently in [7] that
self-consistent framework of the finite Fermi system theory
that includes the GT and FF decays on the same footing
allows for reasonably sound predictions of the ground state
properties and β-decay characteristics of very neutron-rich
nuclei. An important contribution of the FF nonunique decays
to the total half-lives of neutron-rich nuclei above the closed
proton and neutron shells has been stressed in [7,8]. The aim
of this work is to examine the impact of high-energy FF decays
on the β-delayed neutron emission in a wide region of nuclei
near the closed shells at Z = 28 and N = 50. The structure
of the paper is the following. In Sec. II, we briefly outline the
particulars of a theoretical framework based on the density
functional (DF) approach and the continuum quasiparticle
random phase approximation (CQRPA). New calculations of
the total β-decay half-lives and β-delayed neutron emission
probabilities are presented in Sec. III. Analysis of possible
uncertainties is also given. In conclusion, Sec. IV relates the
results to current experimental studies.

II. THEORETICAL ANALYSIS

A. β-decay characteristics

The β-delayed neutron emission is basically a multistep
process consisting of (a) the β-decay of the precursor (A,Z)
which results in feeding the excited states of the emitter
nucleus (A,Z + 1) followed by the (b) γ deexcitation to
the ground state or (c) neutron emission to an excited state
or to the ground state of the final nucleus (A − 1, Z + 1).
The difference in the characteristic time scales of the β
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decay and subsequent particle emission processes justifies
an assumption of their statistical independence. Within the
β-strength function formalism, the total probability of the
delayed neutron emission accompanying the β decay to the ex-
cited states in the daughter nucleus can be expressed as [9]

Pn = T1/2D
−1(GA/GV )2

∫ Qβ

Bn(Z+1)
dωf0(Z + 1, A, ω)

×
∑

β

〈κJ 〉Sβ (ω, γ )P
(
jπ

i,f , En

)
, (1)

where T1/2 stands for total β-decay half-life

1/T1/2 = D−1(GA/GV )2
∫ Qβ

0
dωf0(Z + 1, A, ω)

×
∑

β

〈κJ 〉Sβ(ω, γ ), (2)

where D = 6163.4 ± 3.8 s, with GV = (1.4130 ± 0.0004) ×
10−49 erg cm3,GA/GV = 1.26, Bn(Z + 1) is a neutron
emission threshold of the emitter, and Qβ is a total β-
decay energy. The β-strength functions Sβ(ω, γ ) describe the
spectral distributions of the matrix elements of the GT and
FF β-decay transitions to the emitter nucleus. The energy of
the β-decay transition between the ground state of the parent
nucleus and excited state of the emitter is ω = W + Eν̄ , where
W,Eν̄ are the emitted electron and antineutrino energies,
respectively (the nuclear recoil energy and the neutrino mass
are neglected); γ = �↓ + �↑ is the total width of the isobaric
excitation, which includes its escape and spreading widths.
The index β in the sum corresponds to the GT term with
L = 0, J = 1 and nonunique FF terms with L = 1, J = 0, 1
treated in the ξ approximation. The unique J = 2 term can
be also retained, but in the ξ approximation it should be
of minor importance. For the GT and nonunique FF decays
〈κJ=0,1〉 = 1, and for the unique FF decays, 〈κJ=2〉 = f1/f0,
with the Fermi integral f1 calculated as in [10]. P (jπ

i,f , En)
is the particle emission probability from the level |jπi

i 〉 of
the emitter to the level |jπf

f 〉 of the final nucleus, En being
the emitted neutron energy. The distorted lepton (e−, ν̄e)
phase-space volume for allowed transitions (at the moment
of the β decay) is given by

f0(Z,A,ω) =
∫ ω

mec2
F (Z,A,W )pW (ω − W )2dW, (3)

where the Fermi function F (Z,A,W ) depending on the charge
number of the emitter nucleus includes the effect of the
electron screening of the nuclear Coulomb field and finite-size
corrections due to the extended nuclear charge distribution [11]
(the electromagnetic corrections are not included).

If the β-decay transition energy relative to the mother nu-
cleus ground state satisfies ω < Qβ − Bn ≡ Qβn, the neutron
decaying state |jπ

i 〉 is located within the so-called Qβn window
in the particle continuum. Neglecting the γ deexcitation, the
energy of the emitted neutron is En = Qβ − Bn − ω. The
particle emission probability from the level |jπi

i 〉 of the emitter
to the level |jπf

f 〉 of the final nucleus, as a function of the

emitted neutron energy En is given by

P
(
jπ

i,f , En

) = �n

(
jπ

i,f , En

)
�n

(
jπ

i,f , En

) + �γ

(
jπ

i,f , Eγ

) , (4)

where �n(jπ
i,f , En) is the neutron escape width and

�γ (jπ
i,f , Eγ ) is the γ -ray width of the emitter. These can be

expressed through the transmission coefficients for the l-wave
neutron emission with the total angular momentum jn and
corresponding γ -transmission coefficients calculated from the
statistical model of Hausser-Feshbach. In what follows, we
will assume that the γ emission from neutron-unbound states
is absent: �γ � �n. The approximation P = 1 simplifies
the calculations but may cause some overestimation of the
resulting Pn values.

The strength functions in Eqs. (1) and (2) are calculated
on the energy mesh; their maxima Sβ(ωi) are related to the
intensities of the β-decay transitions to the states of the emitter
nucleus. Actually, the half-life T1/2 in Eq. (2) depends on the
transition energy ω through Sβ (ω). (A direct dependence on the
Qβ value arises in the special case of the ground state to ground
state transition.) The transition energies for the main GT and
FF decays reveal a smooth A dependence, which simplifies the
analysis substantially. An external variable Qβ is needed to
“derive” the excitation energy in the daughter nuclei Ex , which
has been used sometimes to define a total half-life [4,5]. In
the non-self-consistent approaches with empirical mean-field
potentials, the total β-decay energy is not defined. In this case,
using the relation Ex = Qβ − ω, one introduces an additional
(“outer” [4]) parameter which, for instance, may change the
isotopic behavior of the total half-lives.

B. DF+CQRPA

Below we outline the continuum-QRPA framework based
on the self-consistent ground state description within the local
energy-density functional theory. (For a detailed description
see [7,12].) The ingredients of the approach are the self-
consistent mean-field potential (for the ground state properties)
and universal effective NN interaction (for description of
the excited states); ideally, both originate from the unique
nuclear energy-density functional. So far, some restrictions
exist in applications of the fully self-consistent approach to
nuclear spin excitations. In the Landau limit, the parameter
of the particle-hole interaction g′ derived from the available
Skyrme density functionals turns out to be much lower than
its empirical value. The satisfactory spin-dependent DFs have
not been developed yet for spin-unsaturated nuclei [13].

In practice, the ground state properties are rather insensitive
to the spin and spin-isospin dependent components of the
DF (except for the spin-orbit term). Thus, the scalar and
spin-isospin components of the DF can be decoupled, and
the effective NN interactions in the scalar and spin-isospin
channels can be introduced independently [12]. Thus, the
DF+QRPA approach developed in such an approximation may
gain an advantage of using in the ph channel the well-founded
spin-isospin effective NN interaction of the finite Fermi system
theory (FFS) [14] consisting of the Landau-Migdal contact
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term augmented by the π and ρ exchange terms renormalized
by nuclear medium. An important feature of the FFS is that
the effective NN interactions in the particle-hole (ph) and
particle-particle (pp) channels are not interconnected, as in
the standard QRPA, but introduced independently. The ph
interaction is assumed to be universal (A independent), which
is of prime importance for the large-scale applications. In the
DF+CQRPA approach, the Landau-Migdal constant of g′ is
very close to the empirical value, thereby ensuring a reliable
description of the GT strength function in the whole energy
scale including the continuum. The pp interaction of the FFS
allows for a good description of the spin-isospin excitations in
the region far from the QRPA instability point.

1. Ground state characteristics

To describe the ground state characteristics of the nuclei
with pairing, the Fayans phenomenological DF [13] is adopted.
It is characterized by the effective nucleon mass M∗ = 1
and consists of a normal and a pairing part. Using the
bare nucleon effective mass allows one to achieve a good
description of the available single-particle levels both in stable
and unstable nuclei. This description is indispensable to the
correct estimation of the upper limit of the β-decay energy
release. In particular, the DF3 version of the functional [12]
contains also the two-body spin-orbit and velocity-dependent
effective NN interactions important to the full consistency,
as well as the isovector spin-orbit force. The latter ensures a
correct description of the single-particle levels in nuclei near
doubly magic 132Sn [15]. We have also studied the possibility
of using the ground state description given by the Skyrme
MSk7 force [16].

The procedure for finding the quasiparticle energies and
wave functions corresponds to a self-consistent Hartree-Fock
(HF)-BCS scheme. The pairing energy density depends on the
anomalous nucleon density ν, as εpair = 1

2νF ξν. In a general
case, the isotriplet (T = 1) effective NN interaction in the pp

channel describing the pairing in the ground state has a con-
tact density-dependent form: F ξ ( 
r12) = −2C−1

0 f ξ (x)δ( 
r12),
where δ(x) is the Dirac delta function. Here and below, the
normalizing factor 2C0 = 600 MeV fm3 is the inverse half
density of states at the Fermi surface in equilibrium nuclear
matter. The f ξ (x) is a dimensionless strength treated in the
local density approximation as a (local) functional of the
isoscalar density x = (ρp + ρn)/2ρ0, where the ρp,(n) are
the proton (neutron) densities; the f ξ (x) is expressed in a
Skyrme-like form [13]. A local cutoff treatment of the pairing
energy density [13] or regularization procedure [17] helps
avoid the problem of the cutoff energy choice. Assuming
the pairing potential �(r) is a smooth function of the spatial
coordinates, the diagonal approximation �λλ′ = �λδλλ′ is used
(λ is the set of single-particle quantum numbers, δαβ being
the Kroneker symbol). For the pp basis confined by the
εcut-off = 15 MeV, the slightly A-dependent pairing strength
parameter f ξ = 0.40–0.33 is found to reproduce the empirical
matrix elements of the proton (neutron) pairing potentials �τ

in the region of A = 40–220. For odd-A nuclei, the blocking

of pairing by the odd quasiparticle is taken into account, as
well as the rearrangement effects.

Thus, the nuclear binding energy as well as the quasiparticle
level energies and occupancies are calculated within one and
the same self-consistent HF-BCS procedure. The neutron
emission threshold of the emitter Bn(Z + 1) and total β-decay
energy Qβ are found as the atomic mass difference of parent
and daughter nuclei [12]:

Qβ = Bnucl(Z,A) − Bnucl(Z + 1, A) + m(nH ), (5)

Bn = Bnucl(Z + 1, A) − Bnucl(Z + 1, A + 1) + m(n), (6)

where Bnucl(Z,A) is the calculated nuclear binding energy
of the nucleus (Z,A) and m(nH ) = 0.782 MeV, m(n) =
8.071 MeV.

2. β-strength function

To find the β-strength functions, the C-QRPA-like equa-
tions of the FFS are solved. They describe the effective fields
induced in the nuclei by the β-decay driving operators. The
approach is based on exact treatment of the ph continuum
and the pairing and effective NN interactions in the ph and
pp channels [18] . A full system of the continuum-QRPA
equations is thus characterized by the SO(8) symmetry.
Neglecting the effective pp interaction, as was done, e.g.,
in [5], would destroy the symmetry of the QRPA equations
and cause unrealistic odd-even staggering of total β-decay
half-lives. Notice, that for odd-A nuclei, the FFS equations
account properly for the odd-particle transitions [19].

The method to include the ph continuum for the �T = 1
excitations of superfluid nuclei [18,20] is similar to the one
for �T = 0 excitations [21]. It is based on the exact treatment
of the pairing in “valence λ space” (µτ − ξ < ελ < µτ + ξ ),
where µτ are the neutron and proton chemical potentials. Far
from the Fermi surface, the ph propagator is the same as in
the system with no pairing. It is calculated via the Green
functions constructed in the r space which allows the exact
inclusion of the ph continuum. Thus, for the states above the
neutron separation energies Bn(Z + 1) the escape width to
the particle continuum �↓ naturally arises. To simplify the
calculations of the β-decay half-lives, the spreading width
of the isobaric states �↓ can be introduced. It is assumed to
depend linearly on the excitation energy [22]. The cutoff at
�ω = 2.5�↓ is employed for the high-energy wings of the
individual excitations with ω � Qβ .

To find the strength functions of the GT and FF β decays,
the effective fields have to be found as a nuclear response
to the following operators 
σ , γ5, [
σ 
r](0), α, 
r, [
σ 
r](1), [
σ 
r](2)

acting in the isospin space. Here 
σ are the Pauli spin matrices,
and the rank of the tensor operators [
σ 
r](J ) is defined by
the momentum |Ji − Jf | � J � |Ji + Jf | transferred to the
emitter nucleus. Allowed and unique transitions involve only
single β moments, while the β rates of the nonunique decays
are determined by the incoherent contributions of different
β moments. Besides, for J = 0, 1 transitions, the relativistic
vector operator α and axial charge operator γ5 should be
included along with the spacelike operators.
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To calculate the β-decay half-lives, the following external
fields V̂ (0) = 2

√
πV 0

JLSτ
− should be considered:

V 0
1,0,1 = eqs 
σ · 
τ , (7)

for the Gamow-Teller transitions, and

V 0
0,1,1 = eqsi 
σ · 
r − eq5 
σ · 
P/2M,

V 0
1,1,0 = 1√

3
(i
r − 
P/2M),

(8)
V 0

1,1,1 = eqs

√
2[
σ 
r](1),

V 0
2,1,1 = eqs

2√
3

[
σ 
r](2),

for the first-forbidden transitions (α, γ5 are taken in the
nonrelativistic limit). The normalization of the space-
dependent external fields V 0

JLS is the one accepted in [23].

3. Reduction of the velocity-dependent β moments

To avoid using the velocity-dependent fields, an efficient
approximation is to replace α, γ5 by the space-dependent
fields [7]. The exact nonrelativistic relation for the matrix
element of the timelike operator 〈α〉 = ξ/λe · �1 · 〈i
r〉 can be
applied which reflects the conservation of the nuclear vector
current (CVC). In a fully self-consistent approach, a precise
cancellation takes place of all the terms except the averaged
Coulomb potential, thus the translation factor �1 reads ξ�1 =
ωif + ūC where ωif is the transition energy and ūC is the
Coulomb potential averaged over the neutron excess. For the
timelike operator γ5 and its spacelike counterpart 
σ · 
r , no
analogous exact relation exists due to the partial conservation
of the axial-vector current (PCAC). The self-consistent FFS
sum rule approach [24] is used to approximate the operator
γ5 in an analogous way by the spacelike operator 
σ · 
r , taking
into account the medium corrections which are mainly due
to the spin-orbit and velocity-dependent interactions [7]. With
the space-dependent external fields, the GT+FF calculations
of the β rates are feasible.

The universal medium renormalization of the external fields
of a different symmetry (beyond the QRPA-type correlations)
is taken into account via the quasiparticle local charge opera-
tors êqi = eq[V JLS

0 ]. The “quenching factor” Q = eqs[στ ]2 =
(gA/GA)2 suppresses the spin-isospin fields in the nuclear
medium. The smaller the Q, the less strength contained in
the low-energy part (ω < εF ) of the spin-isospin response,
and therefore the shorter the β-decay half-lives. From the
chiral symmetry and soft-pion limit, it follows that 〈γ5〉 vertex
is substantially amplified in the nuclear medium due to the
meson-exchange currents and the effective NN interactions
[25]. Thus, the 
σ · 
P field is renormalized by the FFS axial
local charge eq5 = eq[γ5]; as in [26], we use eq5 = 1.5.

4. Effective NN interaction

In the effective NN interaction for β-decay studies, the
appropriate balance of the short- and finite-range components
should be maintained, as well as the balance of repulsive and
attractive parts. In the ph channel, the effective NN interaction

is chosen in a δ + π + ρ form. The first repulsive term
corresponds to the contact interaction with the Landau-Migdal
constant g′. The attractive terms corresponding to the one-π
exchange (gπ ) and one-ρ exchange (gρ) modified by the
nuclear medium are important in describing the magnetic
properties of nuclei and the nuclear spin-isospin responses.
The competition of repulsion and attraction determines a
degree of “softness” of the pionic modes in nuclei that
directly affects the β-decay half-lives. The set of the NN
interaction parameters g′ = 0.98, gπ = −1.38, gρ = −1.04
has been used, corresponding to the GT quenching factor of the
spin-isospin response function Q = eq[στ ]2 = 0.81 (see [7]).
It was derived from the description of nuclear magnetic
moments which allows for moderately soft π modes [27]. The
recent analysis of (p, n) reaction spectra at Ep = 295 MeV
[28] and excitation energies up to Ex < 50 MeV also gives
the evidence for Q = 0.93 ± 0.05, but the uncertainty of the
(p, n) experiments still remains high.

The isosinglet (T = 0) effective NN interaction in the pp
channel is assumed to have a form similar to a like-particle
pairing and is characterized by the constant g′

ξ . The CQRPA
equations of the FFS allow a reasonable description of nuclear
spin-isospin modes for g′

ξ = 0.2–0.3, which is relatively far
from the instability point in the pp channel [18].

III. RESULTS

A. β-decay half-lives

Calculations of the total β-decay half-lives have been
performed for several isotopic chains with Z � 28. For the
Ni isotopic chain, the results are displayed at Fig. 1(a) and
compared with the RPA calculation based on the finite-range
droplet model (FRDM) [5] and experimental data [29–32]. The
FRDM+RPA calculations overestimate the experimental data
and predict a strong odd-even effect in the total β-decay half-
lives because of the omission of the effective pn interaction
in the particle-particle channel. The calculation performed in
the present work is in better agreement with the preliminary
experimental data for Ni isotopes [29] than the one from [7]. A
slight underestimate of the experimental half-lives [30–32] is
observed for A = 74–76. It can be seen that the total half-lives
in a rather long isotopic chain of A = 71–86 reveal a fairly
regular behavior. Importantly, such a regular A dependence of
the total β-decay half-lives can be described only by taking
into account the forbidden decays. [When calculated in the
pure GT approximation, it has a kink at A > 79 as shown
at Fig. 1(a)]. To stress this point, we also show in Fig. 2
the isotopic dependence of the energies for the main GT and
FF transitions within the Qβ window. Evidently, FF decays
play a minor role for nuclei with A � 78 because of the low
transition energies (small available phase space). In contrast,
after crossing the N = 50 shell, the high-energy FF transitions
give nonnegligible contributions to the total half-life for nuclei
with A � 79.

The total β-decay half-lives for Cu isotopes with A < 76
[Fig. 3(a)] agree with the FRDM+RPA [5] calculations. For
76−79Cu, our calculation describes better the experimental data
[33–39]. The forbidden decays give a dominant contribution

065801-4



β-DELAYED NEUTRON EMISSION IN THE 78Ni REGION PHYSICAL REVIEW C 71, 065801 (2005)

70 72 74 76 78 80 82 84 86 88
1E-3

0,01

0,1

1

10

70 72 74 76 78 80 82 84 86 88

0

20

40

60

80

100

Ni isotopes

T
1/

2 
(s

)

A

 FF+GT
 GT, Moeller 97
 Exp.data a)
 Exp.data b)
 GT

P
n 
[%

]

A

 GT+FF
 GT
 GT, Moeller 97

(b)

(a)

FIG. 1. (Color online) (a) Total β-decay half-lives and
(b) delayed neutron emission probabilities for Ni isotopes predicted
from DF3+CQRPA including the allowed (GT) plus first-forbidden
(FF) transitions, and the allowed transitions, in comparison with the
FRDM+RPA calculation for allowed transitions (Möller [5]) and
experimental data a) [29] and b) [30–32].

to the the total half-lives for A � 80. For 76−79Cu for which the
spherical shape is predicted, the calculation by [5] gives much
shorter half-lives than the present calculation.

As for the other even-Z isotopes considered in this paper,
Zn [Fig. 4(a)] and Ge [Fig. 5(a)], the calculation overestimates
the experimental data available from the compilations [38,39]
by about a factor of 2. Even though the deviations could be re-
moved by using a slightly higher strength of the pp interaction,
the NN interaction parameters were kept unchanged.

For the Ga isotopes with A � 84 [Fig. 6(a)], both our and
FRDM+RPA calculations give practically a similar agreement
with the experimental data [37,39]. As seen in Fig. 6(a), the
FRDM+RPA calculations [5] underestimate the experimental
data for A = 84, while our calculations overestimate them.
This disagreement is related to the onset of the ground state
deformation in Ga isotopes with A � 84. Apparently it could
not be removed within the spherical approach used in our
calculations.

For 84−86As [Fig. 7(a)], an underestimation of the experi-
mental data [39] (up to a factor of 1.5) is observed. For 87As,
our calculation overestimates the experimental data by a factor

of 2; while for 88−89As, the results are close to those estimated
in [38].

B. β-delayed neutron emission

Within the allowed transitions approximation used in the
global calculations [4,5], the isotopic dependence of the Pn

value is rather schematic. It is mainly defined by the decay to
the back spin-flip and core-polarized states often referred to as
the GT pigmy resonance. Their matrix elements increase with
N -Z, as well as the phase space Qβn available for the delayed
neutron emission. Thus, after the GT pigmy resonance turns to
be located within the Qβn window, the Pn value simply tends
to the maximum. On the other hand, in the model including
the different β-decay channels, an isotopic dependence of the
Pn value is defined by the relative energies of the GT and
FF transitions, which behave differently with increasing A.
Importantly, for the neutron excess bigger than one major shell,
the additional high-energy FF transitions appear.

The calculations of the β-delayed emission probabilities
have been performed for several isotopic chains with Z � 28
[Figs. 1(b) to 6(b)]. First, let us discuss in detail the A
dependence of the Pn values for Ni isotopes. It is seen in Fig. 2
that for the Ni isotopes with A � 79, no neutrons can be emitted
following the decay to the GT pygmy resonance in the emitter
nuclei. According to the present DF+CQRPA calculations,
the latter is located outside the Qβn window (Fig. 2). For
this reason, the increase of total delayed neutron emission
probability in Ni isotopes with A � 79 [Fig. 1(b)] is entirely
due to relatively low-energy GT and FF β decays.

Starting from A = 79, the GT pigmy resonance is located
within the Qβn window (Fig. 2); and for a pure GT decay,
the Pn values for A � 79 would tend to 100%. However,
for the isotopes with A � 79 crossing the N = 50 shell, the
relevant shell configuration space changes drastically. From
Fig. 2, which also shows the energies of the different FF
transitions with the total transferred momentum J = 0, we
see that with filling of the ν2d5/2 orbital in the A � 79
isotopes, the high-energy FF component of the β-strength
function appears because of the ν2d5/2 → π2f5/2 transition.
As mentioned above, the high-energy FF transitions give a
dominant contribution to the total β-decay half-lives in the
Ni isotopes with A � 79. At the same time, their calculated
energies are higher than the Qβn threshold. Hence, the
high-energy part of the β-strength function does not affect
the delayed neutron emission; this feature translates into a
“gap”-like pattern in the Pn(A) curve [Fig. 1(b)]. Notice that
the Qβn value grows with A more rapidly than the GT pigmy
resonance energy, and finally it becomes bigger than the FF
transition energies. In such a way, for A � 86, the main J = 0
transitions are located in the Qβn window (Fig. 2), and the
corresponding Pn values tend to the maximum (Fig. 4). It
would be important to check our prediction for the Ni isotopic
chain; though for A � 80 for which the difference with the GT
approximation is observed, it may be difficult at the moment.
The calculated Pn values for Cu isotopes are in agreement with
available experimental data [36–38] [Fig. 3(b)]; the character
of the isotopic dependence of the Pn values is similar to the
one in Ni isotopes.
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FIG. 2. (Color online) The calculated posi-
tion of the Qβn window for the delayed neutron
emission compared to the energies of the GT
pygmy-resonance (ωGT) and main J π = 0− tran-
sitions (ω1,2) in Ni isotopes. For convenience,
the transition energies and neutron emission
windows are plotted with the opposite sign. A
zero energy corresponds to the precursors ground
states. For the lowest energy branch of the 0−

transitions (ω1), only the points for A = 77–81
are shown.
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FIG. 3. (Color online) (a) Total β-decay half-lives for Cu isotopes
calculated from DF3+CQRPA including the allowed and first-
forbidden transitions, in comparison with the FRDM+RPA for
allowed transitions [5] and experimental data [33–39]. (b) Delayed
neutron emission probabilities for Cu isotopes calculated from
DF3+CQRPA including the 1) allowed and first-forbidden transi-
tions, 2) allowed transitions in comparison with the experimental
data [36–39].
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FIG. 4. (Color online) (a) Total β-decay half-lives and (b) delayed
neutron emission probabilities for Zn isotopes calculated from the
DF3+CQRPA including the allowed and first-forbidden transitions
in comparison with the experimental data [38–39].
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FIG. 5. (Color online) (a) Total β-decay half-lives and (b) delayed
neutron emission probabilities for Ge isotopes calculated from the
DF3+CQRPA including the allowed and first-forbidden transitions.
The experimental data are from [39].

In the context of the possible experimental measurements,
the isotopes with higher Z are of special interest. Calculations
show that with filling the 2f7/2, 2p3/2 shells, the energies of
the main J = 0,1 forbidden transitions become higher. Even
though the corresponding matrix elements reduce because of
the blocking of the 2f7/2, 2p3/2 levels, the overall contribution
of the forbidden transitions to the total half-lives gradually
increases. For even-Z isotopes of Zn and Ge, the half-lives
calculated in the allowed GT approximation are on average
longer by factors of 1.2–6 and 1.3–3 than the ones from
the GT+FF calculations. For odd-Z Ga and As isotopes, the
reduction factors are 4–8 and 4–25 respectively. Accordingly,
in Zn-As isotopes [Figs. 4(b)–7(b)] the suppression of the
calculated Pn values relative to the ones obtained in the GT
approximation is stronger than in Ni and Cu isotopes. In Zn
isotopes, an odd-even staggering of the Pn values is more
prominent (it mainly reflects odd-even effects in the energies
of forbidden transitions).

In Ga, Ge, and As isotopes characterized by substantial
suppression of the Pn values, our calculations can be compared
with existing experimental data. For 80−81Ga, the FF transitions
are of minor importance, but with increasing A their contribu-
tion becomes very significant. It follows from Fig. 6(b) that in
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FIG. 6. (Color online) (a) Total β-decay half-lives for Ga isotopes
calculated from the 1) DF3+CQRPA including the allowed and
first-forbidden transitions, 2) FRDM+RPA for the allowed transitions
[5] in comparison with the experimental data [39]. (b) Delayed
neutron emission probabilities for Ga isotopes calculated from DF3+
CQRPA: 1) including allowed and first-forbidden transitions, 2) for
allowed transitions. The experimental data are taken from a) [39],
b) [40], c) [41].

contrast with Ni and Cu isotopes, the Pn values calculated for
82−87Ga isotopes are suppressed by a factor of 4–5 compared to
the ones corresponding to the GT approximation. Notice that
for 82−84Ga, the evaluated Pn values [39] obtained by averaging
the existing experimental data [40,41] can be described within
the GT approximation alone. However, it has to be realized
that the discrepancy of the experimental data is very high.
Interestingly enough, in 83Ga, the data from [41] agree with
the GT+FF calculations. Comparison with the experimental
data for Ge isotopes shows that our GT+FF calculations even
overestimate the Pn value for 85Ge [38,39]. For As isotopes,
the calculations are in qualitative agreement with existing
experimental data [39]. Assuming that the reliability of the
experimental data for Ga-As isotopes has been questioned
in [39], it would be of great importance to perform the new
measurements for these isotopic chains.

C. Discussion

One has to mention that in the Z = 28 region, the delayed
neutron emitter nuclei have relatively high Qβ values. For that
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FIG. 7. (Color online) (a) Total β-decay half-lives for As isotopes
calculated from the DF3+CQRPA including the allowed and first-
forbidden transitions in comparison with the experimental data
[39] and with estimated data for A = 88–89 [38]. (b) Delayed
neutron emission probabilities for As isotopes calculated from (1)
DF3+CQRPA including the allowed and first-forbidden transitions
and (2) DF3+CQRPA including the allowed transitions. The experi-
mental data are from [38–39].

reason, the accuracy of the calculated T1/2 and Pn values is
generally higher than for the nuclei with lower Qβ values.
However, as the delayed neutron emission is typically a
threshold phenomenon, it is of interest to analyze the different
factors that may influence its probability. First, nuclear pairing
changes the one-quasiparticle level energies and calculated Bn

values. As discussed in [42], however, the only calculation was
performed for 137I with a very low Qβn = 1.6 MeV, in which
case a sensitivity to the pairing strength is extremely high. It
would be important to study in detail how the predicted effect
might be influenced by the different prescriptions of nuclear
pairing. To roughly estimate the possible sensitivity, we varied
the Bn values within ±1 MeV. It turns out that for the nuclei
with high Qβn values, the resulting impact factor is not that
strong; e.g., for 83Ni, the Pn value varies within the margins of
70.8% to 65.3% instead of 62.7% as shown at Fig. 1(b).

Second, the gap-like behavior of the Pn values is fairly
robust against the allowed choice of the effective NN inter-
action parameters. (For instance, using the set of parameters

corresponding to the quenching factor of eq = 0.8 instead of
0.9 [7] leads to the Pn value of 71% for 80Ni.)

Third, it is worth estimating the impact of the deformation
and/or the specific np-nh correlations which may change
the balance between the β-strengths outside and inside the
Qβn-window. Such an effect may be of importance if the
energies of both the GT “pygmy”-resonance and FF transitions
turn to lie close to the neutron emission threshold. For the
nuclei of interest in Z ≈ 28 region this is mostly not the
case. In particular, for 80−85Ni for which the “gap”-effect is
predicted (Fig. 2), the FF transition energy lies far from the
Qβn-window. Thus, an appreciable shift of the β-strength into
the emission window is unlikely. Only for the nuclei near
the neutron drip-line, the energies of the FF transitions are
close to the Qβ−Bn

-window but in this case the QRPA can
not be applied. As for the possible impact of the deformation,
the calculation [16] predicts the quasispherical shape (β2 �
0.1) for most of the isotopes considered in the present
calculations: Ni isotopes with A = 74–94, Cu isotopes with
A = 79–83, Zn isotopes with A = 86–89, Ga isotopes with
A = 79–83, Ge isotopes with A = 81–83, and As isotopes
with A = 83–86.

Finally, as a proper account for the particle emission
channels within the Hausser-Feshbach framework has not been
performed, the predicted Pn values may be considered as an
upper limit estimate. Moreover, for very neutron-rich nuclei
the Bn values become low, as well as the density of the neutron
unbound levels in the near-threshold region. In such a case, a
more detailed study of the β-delayed neutron emission may be
needed considering the contribution of direct neutron decay of
the isobaric states.

IV. SUMMARY

The DF+CQRPA model of the delayed neutron emission
is elaborated with the Gamow-Teller and first-forbidden
β-decay modes taken into account. The systematic calculation
of the total β-decay half-lives and delayed neutron emission
probabilities has been performed for nuclei near the closed
shells at Z = 28 and N = 50. Within the extended model, an
agreement with the experimental data on the total half-lives
is better than in our previous calculations [7]. At the same
time, the available experimental data on the Pn values (see the
compilations [38,39]) are described reasonably well.

For nuclei crossing the neutron shell at N = 50 having
the neutron excess more than one major shell, a suppression
is predicted of total β-delayed neutron emission probability
compared to the one estimated in the GT approximation. A
threshold character of the delayed neutron emission makes
it sensitive to the high-energy forbidden β-decay transitions
which are found to give a significant contribution to the total
half-lives. Going beyond the allowed transitions approxima-
tion reduces the total delayed neutron emission probability,
as the calculated energies of the main FF transitions in
Z ≈ 28, N > 50 nuclei are systematically higher than the Qβn

values.
A typical signature of the high-energy first-forbidden

decays are the gap-like patterns in the A dependence of the
total delayed neutron emission probability, like the ones seen
for Ni and Cu nuclei above the N = 50 shell. However, in these
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isotopes, the scale of predicted reduction of the Pn values is
at the edge of the experimental precision currently achievable
with isotope-separated beams. A stronger suppression of the
Pn values predicted for Zn-As isotopic chains provides a
certain challenge, as these isotopes are more accessible for
experimental measurements in the short term at the ALTO
(IPN, Orsay) and ISOLDE (CERN) facilities [43]. Similar
reduction and staggering of the Pn values exist in nuclei above
the Z = 50, N = 82 shells. In this region, the effect is even
stronger, as the blocking of the π1g9/2 orbital suppresses
the competing high-energy GT transitions [12] (detailed
calculations for the nuclei near the neutron closed shells at
N = 82 and 126 can be found in our recent paper [44]).

Note added in proof: Very recently the final experimen-
tal half-lives have been published for 75–78Ni isotopes by

P. T. Hosmer et al. [45]. These experimental data and
the corresponding results of our GT+FF calculation are as
follows [see also Fig. 1(a)]: 344+20

−24 ms and 340 ms for 75Ni;
238+15

−18 ms and 255 ms 76Ni; 128+27
−33 ms and 166 ms 77Ni;

110+100
−60 ms and 133 ms 78Ni.
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