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Ratio of σL/σT for p(e, e′ K+)� extracted from polarization transfer
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The ratio of longitudinal to transverse structure functions, σL/σT , has been extracted from recent beam-recoil
transferred polarization data for the p(�e, e′K+) �� reaction. Results have been obtained for W = 1.72, 1.84,
and 1.98 GeV at an average Q2 of 0.77, 0.69, and 0.61 GeV2, respectively. Our results indicate a ratio that is
systematically slightly smaller than previously published results using a Rosenbluth separation.
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I. INTRODUCTION

Data taken in Hall B at Jefferson Laboratory have re-
cently been published on polarization transfer in the reaction
p(�e, e′K+) �� [1]. Although these data have been used to shed
light on the ss̄ quark pair creation operator in the associated
strangeness production reaction, they cannot yet provide direct
constraints on the isobar models commonly employed to
describe the reaction mechanism [2]. These phenomenological
models (e.g. [3,4]) rely on fitting the available data to provide
constraints on the contributing intermediate-state resonant and
nonresonant processes in the s, t , and u reaction channels. The
models differ in the set of specific resonant states included,
as well as in their treatment of hadronic form factors and
the restoration of gauge invariance. However, because of the
sparsity of data for this reaction and the large number of
parameters in the models, the contributions to the intermediate
state remain largely unconstrained and, therefore, are highly
uncertain.

The new polarization transfer data are difficult to include in
fitting the isobar model parameters. This is because, by
necessity, these data were averaged over a large range in
momentum transfer Q2 (0.3 to 1.5 GeV2) and a large range
in the invariant energy W (∼200 MeV bins). The data
have also been averaged over all �, the angle between the
electron scattering plane and the K+� hadronic reaction plane
(Fig. 1). One could expect significant variations in the model
parameters over such large kinematic ranges. This means that
including these data, say at their central kinematic values, into
a global refit of the parameters is improper. Therefore these
data have been employed only as a cross-check of the model
parameters based on fits to other measured observables.

The transferred polarization data can, however, provide
useful new direct constraints to the models when they are
used to extract the ratio of longitudinal to transverse struc-
ture functions, Rσ = σL/σT . This ratio has been previously
measured using a Rosenbluth separation [5–7]. The results
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presented here provide a means of extracting Rσ that is less
prone to systematic uncertainties than the Rosenbluth method
and give results that are systematically slightly smaller.

II. FORMALISM

Following the notation of Ref. [8], the most general form for
the virtual photoabsorption cross section in the center-of-mass
(c.m.) frame from an unpolarized target, allowing for both a
polarized electron beam and recoil hyperon, is given by
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The R
βα

i are the transverse, longitudinal, and interference
response functions that relate to the underlying hadronic
current and implicitly contain the � polarization. The sum
over β includes contributions from the hyperon polarization
with respect to the (x ′, y ′, z′) axes. In this system, ẑ′ is along the
outgoing K+ direction, ŷ ′ is normal to the hadronic reaction
plane, and x̂ ′ = ŷ ′ × ẑ′ (Fig. 1). The β = 0 terms account for
the unpolarized response and α = 0 implies an unpolarized
target. The response functions denoted by RLT ′ and RT T ′

depend on the electron beam helicity h. The left superscripts
on the response functions, c or s, indicate whether the term
multiplies a sine or cosine term, respectively.

The kinematic terms are defined by c± = √
2εL(1 ± ε)

and c0 = √
1 − ε2, with the transverse and longitudinal

polarization of the virtual photon defined, respectively, as
ε = [1 + 2(1 + ν2/Q2) tan2 θe/2]−1 and εL = εQ2/(kc.m.

γ )2.
Here θe is the electron scattering angle, Q2 is the negative of
the four-momentum transfer squared, ν is the virtual photon
energy, and kc.m.

γ is the virtual-photon c.m. momentum. The
leading factor K = |�qK |/kc.m.

γ , where �qK is the kaon c.m.
momentum.
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FIG. 1. Kinematics for K+� electroproduction showing angles
and polarization axes in the center-of-mass reference frame.

Using Eq. (1), we obtain the helicity-dependent hyperon
polarization components P ′ in the (x ′, y ′, z′) system [1,9]:

σ0P
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c− cRx ′0

LT ′ cos � + c0R
x ′0
T T ′

)
,
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Here, σ0 represents the unpolarized part of the cross section,
which can be defined in terms of either response functions Ri

or structure functions σi as

σ0 ≡ dσv
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where we note that σT = KR00
T and εσL = KεLR00

L .
The transferred polarization can also be defined in the

(x, y, z) coordinate system, where ẑ is along the virtual photon
direction, ŷ is normal to the electron scattering plane, and
x̂ = ŷ × ẑ (see Fig. 1). The components of P ′ in the (x, y, z)
system are related to those in the (x ′, y ′, z′) system by a simple
rotation and are given by
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where θ∗
K is the K+ c.m. polar angle defined in Fig. 1.

If the transferred polarization components are now inte-
grated over all � (calling these components P ′), Eq. (2)
simplifies to
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and Eq. (4) simplifies to
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The components of P ′ along the ŷ and ŷ ′ axes are identically
zero from the integration of Eqs. (2) and (4) over 0 � � � 2π .
Such an integration was performed on the polarization transfer
data of Ref. [1] in which acceptance corrections were first
applied to raw yields before summing over all � angles.
This had the effect of improving statistical uncertainties
on the measured transferred polarizations. It also provided
a systematics check in that the ŷ and ŷ ′ components of
the polarization were found to be zero to within statistical
uncertainties.

Concentrating now on the z′ and z components in parallel
or antiparallel kinematics (cos θ∗

K = ±1), we reduce Eqs. (5)
and (6) to

P ′
z′ = ±P ′
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z′0
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T + εLR00

L
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z′0
T T ′
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, (7)

where the plus (minus) sign is associated with the parallel
(antiparallel) kinematics case and σu = σT + εσL.

The response functions of Eqs. (5) and (6) can be written
in terms of the Chew, Goldberger, Low, and Nambu (CGLN)
amplitudes [10] as shown in Ref. [8] as
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For the case of θ∗
K = 0, these forms simplify to

Rx ′0
T T ′ = 0, Rz′0

T T ′ = R00
T = |F1 − F2|2, and R00
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(12)

Combining the result of Eq. (12) with Eq. (7) we obtain for
θ∗
K = 0

P ′
z′ = P ′

z = c0R
00
T

R00
T + εLR00

L

. (13)

This expression can then be inverted to determine the ratio
of the longitudinal to transverse response functions [9], or
alternatively, the ratio of Rσ = σL/σT as

Rσ = σL

σT

= 1

ε

(
c0

P ′
z′

− 1

)
. (14)

III. EXTRACTION OF Rσ

Figure 2 reproduces the results from Ref. [1] along with
sample model calculations. The kinematic values and the most
forward-angle data points are given in Table I. The values
of 〈W 〉 and 〈Q2〉 given in the table and the values of cos θ∗

K

shown in the figure are the average values over the kinematic
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FIG. 2. Transferred � polarization pro-
jected along the z′ (top) and z (bottom) axes
versus cos θ∗

K from Ref. [1]. The data were
summed over Q2 and � and are shown for three
average values of W as indicated. The solid and
dashed curves correspond to the hadrodynamic
models of Refs. [3] and [4], respectively. The
upper arrow in each plot indicates the maximum
physically allowable value of the polarization
at cos θ∗

K = 1; the lower arrows indicate the
polarization corresponding to Rσ = 0.45.

bin and were determined by the distribution of the acceptance-
corrected data within the bin. The curves correspond to the
hadrodynamic models of Refs. [3] (solid) and [4] (dashed) and
have been averaged over the kinematical bins. It is clear that
the models badly miss in predicting polarization at nearly all
values of cos θ∗

K and, therefore, must fail to predict Rσ .
Since both R00

L and R00
T must be positive definite, the ratio

Rσ � 0. Thus, Eq. (14) gives a maximum value of P ′
z′ = P ′

z =
c0 at cos θ∗

K = 1. This limiting value is shown by the upper
arrow in each plot of Fig. 2. This arises from the fact that these
response functions can be written in terms of absolute squares
of helicity amplitudes, as shown in Ref. [8], and must therefore
always be greater than zero.

The small-angle data of Ref. [1] cover an angular bin of
0.8 � cos θ∗

K � 1 and therefore do not give direct access to P ′
z′

or P ′
z at cos θ∗

K = 1. However, the values of the polarization
in the smallest angle bins and the trends of the data suggest
some small difference from what is expected given the recent
Rσ results of Mohring et al. [7]. The three Mohring et al.
data points at Q2 = 0.52 , 0.75, and 1.00 GeV2 and W =
1.84 GeV give an approximate average value of Rσ = 0.45.
This would give the polarizations at cos θ∗

K = 1 shown by
the lower arrows in the plots of Fig. 2 and also given in the
last column of Table I. The Mohring et al. results suggest
a somewhat lower value for the polarization at cos θ∗

K = 1
than the trends of the polarization data at both W = 1.72 and
1.98 GeV indicate. One should probably not be too surprised

by the apparent discrepancy between the polarization results
at W = 1.72 GeV and the polarization value suggested by
the Mohring et al. data. This bin covers the threshold region
where the S11(1650), P11(1710), and P13(1720) resonances are
expected to play a significant role in K� electroproduction
[3,4]. These resonances do not overlap significantly with the
data of Mohring et al.

Although the preceding qualitative discussion is useful in
setting the stage, a reliable extrapolation of the P ′ polarization
data to cos θ∗

K = 1 is needed to determine Rσ . By combining
the z′ and z components of Eqs. (5) and (6) and rearranging,
we get

Rsum ≡ (P ′
z′ + P ′

z)σu

c0
= K

[
(1 + cos θ∗

K )Rz′0
T T ′ − Rx ′0

T T ′ sin θ∗
K

]
.

(15)

In this form, both Eqs. (7) and (14) will provide constraints
on Rsum at x ≡ cos θ∗

K = ±1. At x = −1, the sum of the
polarizations must be zero, according to Eq. (7), leading to
Rsum(x = −1) = 0. This is an important useful constraint that
can most easily be imposed on an extrapolation by using
Eq. (15). Again using the fact that Rσ � 0, Eq. (14) leads to
Rsum � 2σu for x = 1. We will discuss the imposition of these
constraints on the extrapolation shortly.

Besides the explicit θ∗
K dependence shown in Eq. (15)

and in the response functions of Eqs. (8)–(11), the CGLN
amplitudes contain additional θ∗

K dependence (as well as Q2

TABLE I. Transferred polarization data at cos θ∗
K = 0.93 from Ref. [1] at the average

kinematic quantities shown. The Q2 range extends from 0.35 to 1.4, 1.2, and 1.0 GeV2 for
the kinematic bins, respectively. The W ranges are 1.60 to 1.78 GeV, 1.78 to 1.90 GeV, and 1.90
to 2.15 GeV. The last column gives the values of P ′

z′ and P ′
z at x ≡ cos θ∗

K = 1 for a ratio of
Rσ = 0.45—the average value from Ref. [7].

〈W 〉 GeV 〈Q2〉 GeV2 〈ε〉 P ′
z′ ± �P ′

z′ P ′
z ± �P ′

z P ′
z′ (x = 1)

1.72 0.77 0.619 0.881 ± 0.086 0.907 ± 0.087 0.62
1.84 0.69 0.518 0.704 ± 0.116 0.728 ± 0.118 0.69
1.98 0.61 0.388 0.868 ± 0.120 0.971 ± 0.114 0.78
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and W dependence). This suggests that Eq. (15) can then be
fit with polynomials in x = cos θ∗

K , provided we have prior
knowledge of the σu term.

We have used the unpublished p(e, e′K+)� cross-section
data from CLAS of Feuerbach [11] to determine σu. In that
work, the polarization-independent cross sections of Eq. (3)
were measured over the complete angular range of cos θ∗

K

and �, and for similar values of W and Q2 as in Ref. [1]. A
simultaneous fit to the cos θ∗

K and � dependence thus enabled
the extraction of the cos θ∗

K -dependent structure functions of
Eq. (3): σu, σLT , and σT T . The cross-section data were fit
(using eight � bins and six cos θ∗

K bins per W and Q2 bin) with
a third-order polynomial in x. The resulting fit values were then
combined with the polarization to calculate the corresponding
values for Rsum at the kinematics for each of the data points in
Fig. 2.

The number of terms one would include in a polynomial fit
to Eq. (15) is ultimately governed by the reaction dynamics.
The explicit θ∗

K dependence alone [see Eqs. (8) and (9)]
suggests at least a third-order polynomial. However, given the
limited number of polarization data points, the number of terms
in any fit leading to a meaningful extrapolation to cos θ∗

K = 1
must also be limited. We begin by considering third-order fits
of the form

Rsum = a0 + a1x + a2x
2 + a3x

3. (16)

We have done a series of fits to the data points representing
Rsum in which we varied the number of terms in the fits while
imposing the aforementioned constraints. The fitting routine
is a variation of the Levenberg-Marquardt method [12] of
minimizing χ2. A penalty was imposed on the χ2 if a fit strayed
too far from the constraints at x = ±1. Specifically, at x = −1,
a penalty proportional to the deviation of Rsum(x = −1) from
zero was added to the χ2. To impose the constraint at x = 1,
the χ2 was multiplied by a penalty factor that was chosen
to be large enough to force non-negative values of Rσ . In
determining the optimal number of parameters in the fit for
each W bin, we simply used the number of parameters that pro-
duced the smallest minimized χ2

ν (χ2 per degree of freedom).
We should point out that the P ′

z′ and P ′
z results of Ref. [1]

were obtained from the same data set. Therefore, these
observables are not independent. They do, however, measure
different quantities [as seen by Eqs. (5) and (6)] since they
are projections onto different axes. In adding these together
to form Rsum, the uncertainties from P ′

z′ and P ′
z were added

together.
For the two lowest W bins we found that a second-order

polynomial in x was best for fitting Rsum and that a third-order
polynomial was necessary for fitting the highest W bin. The
fact that all W bins do not require the same order fit should not
be surprising since the underlying physics (CGLN amplitudes)
will contribute differently at different values of W. The results
of our fits are shown in Fig. 3 (heavy solid lines) along with
an error band (light solid lines). The error bands include
uncertainties from the fitting of Eq. (16) and also contributions
from uncertainties in the fits the cross-section data. The latter
contribution to the uncertainties is about half that the former.
The error band indicates that the extrapolation to x = 1 is
well constrained but that the back-angle fit is not. This is not

FIG. 3. Rsum [defined in Eq. (15)] versus cos θ∗
K along with our

fits (heavy solid lines) and the error band resulting from the fit and
cross section uncertainties (light solid lines).

surprising given the lack of data at back angles. However,
the error bands do encompass the back-angle constraint that
Rsum(x = −1) = 0. Table II shows the resulting χ2

ν and the
polarization extrapolated to x = 1. The χ2

ν was determined
after removing any penalties remaining in χ2.

We found that the resulting extrapolation of the polarization
(and thus Rσ ) at x = 1 is relatively insensitive to the exact form
of the unpolarized cross section. We have done fits in which we
varied the unpolarized cross section used in the fit by 10–20%
(10% being the stated upper limit on systematic uncertainty of
the unpolarized cross sections [11]) and observed negligible
changes in the resulting value of Rσ . The polarization data
are observed to dominate the extrapolation and its associated
uncertainties.

Plugging the extrapolated polarizations into Eq. (14) we
can determine the ratio Rσ . These values are shown in the
last column of Table II along with the combined uncertainties
of the polarization and cross-section fits and an estimated
systematic uncertainty. Carman et al. [1] cite an absolute
systematic error of less than 0.08 for each polarization
point. Assuming a comparable systematic uncertainty for
the extrapolated polarization at x = 1 leads to the estimated
systematic uncertainties on Rσ given in the table.
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TABLE II. Transferred polarization at x = cos θ∗
K = 1.0 extrapolated from the

fits described in the text along with the resulting value of the ratio of transverse to
longitudinal structure functions. Uncertainties onP ′

z′,z are the combined uncertainties
arising from the fits to both the polarization and cross-section data. The first
uncertainty on Rσ is the statistical uncertainty (from the fit); the second represents
an estimated systematic uncertainty.

〈W 〉 GeV 〈Q2〉 GeV2 χ 2
ν P ′

z′,z(x = 1) Rσ

1.72 0.77 1.93 0.783 ± 0.072 0.005 ± 0.160 ± 0.162
1.84 0.69 0.35 0.782 ± 0.091 0.239 ± 0.252 ± 0.232
1.98 0.61 1.34 0.875 ± 0.080 0.088 ± 0.399 ± 0.267

IV. DISCUSSION

The resulting values for Rσ are plotted in Fig. 4. For
comparison, we have also included the previously published
data [5–7]. We see that our results for Rσ using polarization
transfer data are consistently smaller than the previous data
obtained using the more common Rosenbluth separation
method. In this method, the unpolarized cross section at a
given Q2 and W is measured in parallel kinematics as a
function of ε. The cross section reduces to σu = σT + εσL.
In principle, fitting the cross-section data with a straight line
gives σL and σT . However, this technique relies on a very
precise determination of the absolute cross section at all ε

points. To illustrate the inherent difficulties of this technique,
one only needs to compare the results of Niculescu et al. [6]
with those of Mohring et al. [7]. These are two analyses of
the same data set taken in Hall C of Jefferson Laboratory. The
Mohring et al. results were published later and are generally
believed to be more reliable. These data were measured at W =
1.84 GeV—the same as our middle data point. Our own results
are strikingly different than the Niculescu et al. results and
are slightly lower than—although within uncertainties of—the
results of Mohring et al. for points at comparable kinematics

FIG. 4. Ratio of longitudinal to transverse structure functions
vs Q2. The inner error bars on our points represent the statistical
uncertainties arising from the fit and the outer error bars represent the
combination of statistical and estimated systematic uncertainties. The
Niculescu et al. results [6], which were superseded by the Mohring
et al. results [7], are offset in Q2 for clarity.

(lower two Q2 points). We also observe that our highest Q2

point is consistent with zero to within the extracted uncertainty.
Again, comparison of this point to the results of Mohring
et al. is probably inappropriate because of the low average
value of W for our point.

Our result implies a small longitudinal structure function
and hence a small longitudinal coupling of the virtual photon.
In fact, at the highest Q2 point (lowest W ) our result is
consistent with σL = 0. This structure function is expected
to be very sensitive to the kaon form factor [13]. A recently
conducted experiment in Hall A at Jefferson Laboratory [14]
has as one of its main goals a Rosenbluth separation at
several values of momentum transfer t, leading to a Chew-Low
extrapolation [15] of the kaon form factor. However, this
method relies on having small relative uncertainties for σL.
Therefore, if σL is as small as our results indicate, it seems
unlikely that a reliable determination of the kaon form factor
can be performed at these kinematics.

A more significant discrepancy between Rosenbluth and
polarization-transfer results was previously observed in mea-
surements of the ratio of the proton’s electric and magnetic
form factors, µpGE/GM (see Ref. [16] and references
therein). The common wisdom is that the polarization-transfer
method is much less susceptible to systematic errors. If
one believes that the polarization transfer results are correct,
then the slope derived from the Rosenbluth technique is too
large. This is similar to what is implied by our results. One
explanation that is being widely discussed is that there is an
ε-dependent, two-photon-exchange effect that has not been
properly accounted for in the radiative corrections applied to
the experimental cross sections [17]. Some calculations [18]
indicate that including this effect would bring down the high-ε
data points relative to the low-ε data points and lead to
better agreement between the Rosenbluth and polarization-
transfer results. It is certainly premature to attribute the small
differences between Rosenbluth results and our polarization-
transfer results for K+� electroproduction to two-photon
exchange. However, it is interesting that the trend of the
differences is in the same direction as observed in the
µpGE/GM results.

We would like to note that the polarization-transfer data
from which we extracted Rσ is just the first to come out of
a larger program of kaon electroproduction in Hall B [19] at
Jefferson Laboratory. Analysis is currently underway in which
cross sections and polarization observables will be measured
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covering W from threshold to 3.0 GeV and Q2 from 0.3 up to
5 GeV2. These data will yield a factor of 4 better statistical
uncertainty for the � polarization transfer, thus leading to a
more reliable determination of Rσ . Additional back-angle data
will also allow extraction of Rσ in antiparallel kinematics. In
addition, Hall B will produce its own Rosenbluth separation
that will complement both the existing data and results that are
expected soon from Hall A [14]. We are eager to see whether
the apparent small differences between the two techniques of

extracting Rσ hold up with the up coming results or are simply
a case of statistical fluctuations.

In conclusion, we have done the first extraction of the
ratio Rσ = σL/σT from transferred polarization data for the
p(�e, e′K+) �� reaction. Our results are systematically lower
than the results obtained by the Rosenbluth technique and
are also significantly different from model predictions. These
results indicate a small longitudinal structure function for Q2

of around 0.7 GeV2 and W of 1.72, 1.84, and 1.98 GeV.
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