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Chromoelectric fields and quarkonium-hadron interactions at high energies
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We develop a simple model to study the heavy quarkonium-hadron cross section in the high-energy limit. The
hadron is represented by an external electric color field (capacitor) and the heavy quarkonium is represented by
a small color dipole. Using high-energy approximations we compute the relevant cross sections, which are then
compared with results obtained with other methods.
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I. INTRODUCTION

Quarkonium-hadron cross sections (σ�h) are a necessary
tool to understand the forthcoming data on quarkonium pro-
duction, which will become available at Brookhaven National
Laboratory’s Relativistic Heavy Ion Collider (RHIC). In the
past six years many efforts have been devoted to this problem
[1] and real progress has been achieved, especially for cross
sections at low energies, close to the dissociation threshold. In
the energy region far from threshold the situation is less clear
and even the energy dependence is still a subject of debate.
Extrapolations from calculations valid at low energies points
in different directions. Results obtained with the nonrelativistic
quark model [2] indicate a rapidly falling cross section. This
behavior is due to the Gaussian tail of the quark wave functions
used in the quark exchange model. This same behavior could
be found within chiral meson Lagrangian approaches with
the introduction of

√
s-dependent form factors [3]. In QCD

sum rules [4] the cross section was found to be monotonically
increasing with energy.

Calculations of σ�h designed to be valid at high en-
ergies (

√
s � 20 GeV) are quite few: the Bhanot-Peskin

(BP) approach [5–10], perturbative QCD plus geometrical
extrapolation [11], the model of the stochastic vacuum (MSV)
[12], and the light-cone dipole formalism [13]. During the past
few years the leading-order BP approach has been used most
often. However, the recent next-to-leading-order calculations
presented in [10] show that, for charmonium, the formalism
breaks down because this system is not heavy enough. Most of
the calculations mentioned here predict a rising cross section.
In Ref. [9], σ�h falls with energy and in Ref. [12] it stays
constant.

If the quarkonium is treated as an ordinary hadron, its
cross section for interaction with any other ordinary hadron
must increase smoothly at higher energies, in much the
same way as the proton-proton or pion-proton cross sections.
The underlying reason is the increasing role played by per-
turbative QCD dynamics and the manifestation of the partonic
nature of all hadrons. However, this partonic picture starts to be
dominant only at much higher energies (

√
s > 100 GeV). In

the energy region relevant for RHIC physics nonperturbative
aspects are still very important. In the aforementioned high-
energy calculations, different nonperturbative ingredients were
employed: moments of the gluon distribution in the hadron

[5–10], hadron and quarkonium wave functions [11], and QCD
vacuum expectation values (condensates) [12].

Since there are still discrepancies concerning numbers
(which may vary by one order of magnitude for different
estimates) and the energy behavior, we think that it is
interesting to calculate σ�h with a nonperturbative approach,
putting emphasis on the role played by the chromoelectric
fields. In [14] a similar treatment was adopted to study the
quarkonium dissociation inside a QCD plasma. The color
electric fields appearing in the transition matrix element were
related to the color charge density of the medium, which, in
turn, was computed in a specific model of the QGP. Here we
start with a similar expression for the transition amplitude but,
because we are in a purely hadronic phase, we must know the
chromoelectric field inside nucleons and pions. There has been
progress in the study of these fields, coming from models of
the QCD vacuum [15], lattice QCD [16], the field correlator
method (FCM) [17], and Coulomb gauge QCD [18]. We hope
that we can benefit from these advances and use the profiles
of the chromoelectric fields estimated in these works in our
problem. For this purpose, we treat the interaction between the
quarkonium and hadron as being analogous to the interaction
of a small dipole traversing a large capacitor and interacting
with the color electric field but not with its sources. In the
final part of this work we discuss the validity of this last
assumption. Using a contact interaction between a heavy quark
(or antiquark) and a quark (or antiquark) we compute the
corresponding cross section and find that it is indeed much
smaller than the heavy quark–external field cross section. The
model developed here bears some resemblance to the BP
picture but is much simpler. Some simplifying assumptions
are used to render the calculations quasi-analytic and preserve
the understanding of the basic physics.

II. THE MODEL

A. The interaction Hamiltonian

The starting point is the assumption that the quarkonium
(dipole) is small compared with the hadron (capacitor).
As a consequence, the Q-Q pair will interact mostly with
the external color field but not with the (quark) sources.
Moreover, the external color field is considered to have only
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FIG. 1. (Color online) Quarkonium-hadron
interaction in the quarkonium rest frame. The
hadron is a capacitor moving to the right. The
�Ea field is along the x direction. The thick black
dots are the capacitor “plates:” quark-antiquark
for the pion and quark-diquark for the proton.

low momentum components (“soft gluons”) and thus is able
to transfer only a small amount of energy, which will be
barely enough to dissociate the bound state. In the case of
the charmonium, the typical binding energy is ε � 0.6 GeV.
Therefore, in a first approximation

ε �M�, (1)

where M� is the mass of the bound state (M� � 3 GeV). In the
case of the bottonium this approximation is even better. The
binding energy is also small compared to the collision energy,

ε � √
s. (2)

Inequality (1) justifies the use of quantum mechanical
perturbation theory (the Born approximation) and inequality
(2) justifies the use of the eikonal approximation, which, in this
case, implies that the hadron follows a straight-line trajectory
and remains essentially undisturbed during the interaction. In
Fig. 1 we present our picture of the scattering and our choice
of coordinates, in the quarkonium rest frame: �r1 and �r2 are the
quark and antiquark coordinates and �Ea is the chromoelectric
field in the projectile, which will be a proton or a pion, moving
with constant velocity �v at impact parameter �b.

With these assumptions we can write the interaction
Hamiltonian as

Hint = g
(
T a

1
�Ea

1 �r1 + T
b

2
�Eb

2 �r2
)
, (3)

where T a (T
b
) are the generators of color group SU(3) in

the fundamental (conjugate) representation; �Ea
1 and �Eb

2 are
the chromoelectric fields generated by the hadron in motion
(capacitor) and “felt” by quark and antiquark in the bound
state, respectively. They have to be Lorentz transformed to the
quarkonium rest frame, bringing to our calculation a Lorentz
gamma factor, which is the source of the energy dependence
(
√

s) of our results. We shall for the moment neglect the
magnetic component, since it does not do any work on the
charges and thus is not effective in the energy transfer. Besides,
the magnetic interaction is inversely proportional to the quark
mass, and so is suppressed.

We can represent this external field by

�Ea(re, t) = γ �Ea
0 exp

[
− (X − xe)2

d2
− (Y − ye)2

d2

]

× exp

[
−γ 2 (vt − ze)2

d2

]
, (4)

with e = 1, 2. X, Y , and Z are the hadron coordinates and γ

is the usual Lorentz factor. Z = vt , because the hadron moves
with velocity �v along the z axis. �Ea

0 , which will be abreviated
by E, is the color electric field at the center of the projectile.
The projectile mean-square radius is related to the parameter
d through √〈

r2
h

〉 = 0.86 d.

We neglect the deflection of the hadron trajectory, because we
are studying reactions in the high-energy and nonperturbative
regime (i.e., with low momentum transfer). X and Y are related
to the impact parameter b by b2 = X2 + Y 2. Notice that, for
simplicity, we choose one preferencial direction for the field,
in this case, the x axis.

Neglecting the c.m. motion, we can rewrite (3) as

Hint = g

(
λa

2
Ea

1 + λbT

2
Eb

2

) (
x1 − x2

2

)
. (5)

Also for the sake of simplicity, when working with (5), we will
take x1 − x2 � a, where a is the typical separation between
quark and antiquark. Initially, the quark-antiquark pair is in a
localized region of space.

B. The initial state

The initial wave function of the system has spatial and color
parts defined by

�i = f (r1, r2)cndn, (6)

where cn and dn, with n = 1, 2, 3, are the initial color vectors
[19] for quark and antiquark, respectively, taken in a color
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singlet state. We choose

f (r1, r2) = Niexp

[
− �r2

1

a2

]
exp

[
− �r2

2

a2

]
exp(−iεi t), (7)

where εi (εi = M�) is the quarkonium initial energy and Ni is
a normalization constant given by

N2
i =

(
2

π

)3 1

a6
.

The initial wave function �i describes the confinement of
quarks and also asymptotic freedom, as it allows the quarks
to be independent inside the bag. It is easy to see that the
connection between the quarkonium mean-square radius and
the parameter a is √〈

r2
QQ

〉 = 1.09 a.

C. The final state

Under the action of the external field the initial wave
function �i evolves to a final state �f :

�f = t(r1, r2)cjdk, (8)

where cj and dk , with j, k = 1, 2, 3, are the quark and
antiquark final color vectors, respectively, and t(r1, r2) is the
spatial part of the wave function. In the final state of this
reaction we have to deal with the transition of a pair of an
excited quark and an antiquark to a pair of mesons D-D (or
B-B). This transition is highly nonperturbative and has to be
modeled. We shall use two approaches.

1. Model A

We first assume that the quark and antiquark are converted
into two free mesons (a M and a M), which are thus described
by plane waves

tA(r1, r2) = NA exp(i �p1.�r1) exp(i �p2.�r2) exp(−iεf t), (9)

where �p1 and �p2 are the meson momenta and NA is a
normalization constant given by

N2
A = 1

V 2
,

with V being an arbitrary normalization volume, which will
be canceled in the calculation of the cross section. In Eq. (9)
εf is the final energy of the Q-Q pair. The energy transferred
during the reaction must be sufficient to dissociate the bound
state into a pair of mesons with open charm (DD) or beauty
(BB) and therefore

εf =
√

( �p1)2 + m2
M +

√
( �p2)2 + m2

M
, (10)

where mM (mM ) is the mass of the meson resulting from the
fragmentation of the quark (antiquark). With this definition
of εf we implicitly account for the conversion of quarks into
hadrons, a process that cannot be better described in this simple
model.

The assumptions (9) and (10) are reasonable but they
represent a case of “extreme freedom”: They do not take

into account the energy loss from a parent quark when it is
converted to a (less energetic) final meson. This process is
described, in certain situations, by the fragmentation functions.
Morevover, the final mesons can have any momentum and
even though higher momenta will be naturally suppressed in
the calculation, we are overestimating the phase space of the
reaction.

2. Model B

Given these weak points of (9) and (10) we shall also use a
second, more conservative approach for the final state. We shall
assume that the energy transferred to the heavy quarkonium
� will transform it into an excited (but still bound) state �′.
The mass of this excited state will be taken to be slightly
higher than the first charmonium and bottonium excitations,
� ′ and ϒ ′, respectively. It is known that these excitations are
very weakly bound. Therefore, by choosing slightly higher
masses for them, which are above the D-D and B-B decay
thresholds, we are simulating a fragmentation process to a pair
of nearly at rest mesons. This assumption is complementary
to (9) and (10) since here we give to the heavy quarks only
the “minimal freedom.” The ground-state wave function was
chosen to be the Gaussian (7). Taking the harmonic oscillator
as inspiration, we choose the wave function of the first excited
state as a function that is odd in the x direction (the direction
of the chromoelectric field) and symmetric in x1 and x2:

tB(r1, r2) = NB

x1 + x2

2
exp

[
− �r2

1

a′2

]

× exp

[
− �r2

2

a′2

]
exp(−iεf t), (11)

where the normalization constant is

N2
B =

(
4

π

)3 1

a′8

and a′ is related to the size of the state � ′ or ϒ ′. Using the
wave function (11) has some advantages. First, it avoids the
definition of a fragmentation mechanism with the introduction
of new parameters. Second, as can be seen, (11) is orthogonal
to (9), so that the matrix element 〈�f |Hint|�i〉 is zero if
the Hamiltonian is a constant. Notice that this does not
happen when we use (9) and therefore approach A might
contain spurious contributions. The same comment is valid
for the calculations made in Ref. [14]. This makes the contrast
between approaches A and B even more necessary. Finally,
in what follows we shall use the Hamiltonian (3), without the
approximation x1 − x2 � a made in model A.

3. Transition amplitudes and cross sections

The transition amplitude for model A can be easily
computed from (5), (4), (6), (8), and (9):

Tf i = 〈�f |Hint|�i〉
=

∫
dt

∫
d3�r1

∫
d3�r2 �∗

f (�r1, �r2)

×Hint(�r1, �r2)�i(�r1, �r2). (12)
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An analogous expression holds for model B with the use of
(3), (4), (6), (8), and (11). We next take the amplitude squared,
|Tf i |2 = T ∗

f iTf i , and since color is not observed, we take the
average of the all initial color states and the sum of all final
states:

|Tf i |2 → |Tf i |2 ≡ 1

3

∑
n

1

8

∑
a

∑
j

∑
k

|Tf i |2. (13)

The cross section with model A is given by

σA =
∫

V

(2π3)
d3p1

∫
V

(2π3)
d3p22π

∫ ∞

0
db b|Tf i |2. (14)

This expression is very simple and can almost be calculated
analytically. Because of the Gaussian ansatz (4) and (6) we
can easily integrate (12) over the coordinates and over the
impact parameter. In the last step of (14), the integration
over the phase space had to be done numerically. In [20]
we made the additional assumption that the outgoing mesons
are nearly at rest and we could thus simplify (10) and
perform the integration over �p1 and �p2 analytically. Here we
prefer to be more “exact” and perform the last integrations
numerically.

The cross section with model B is simply given by

σB = 2π

∫ ∞

0
db b|Tf i |2, (15)

which, after the proper substitutions and integrations yields

σB = 32

3
π5 〈gE0〉2 γ 2

γ 2 − 1

× d10a′8a10

(a′2 + a2)5[a′2a2 + d2(a′2 + a2)]3

× exp


−ω2

γ 2a′2a2

(a′2+a2) + d2

2(γ 2 − 1)


, (16)

where

ω = εf − εi = M�′ − M�. (17)

From Eq. (16) we can observe that the cross section
rises with the energy (γ ) and saturates at a constant value.
The enhancement of the chromoelectric field is tamed by
the Lorentz contraction of the projectile. As for the size
parameters, a, a′, and d, the cross section first rises and then
falls with increasing values of the parameters. The values
of the maxima strongly depend on the model and might
change for a different choice of wave functions. However,
the physical picture is very simple. Expression (16) tells us
that the probability of converting a quarkonium of given initial
size a to a final state with size a′ tends to zero if a′ = 0 or
if a′ → ∞ because the overlap between these very different
states and the initial state is zero. For the same reason the cross
section vanishes for a = 0 and for a → ∞. The parameter
d is associated with the extension of the capacitor. In the
limit when d → ∞ the spatial dependence of the potential

disappears and it becomes a constant and then 〈�f |Hint|�i〉 →
〈�f |�i〉 = 0.

D. Interaction with the sources

In the introduction it was assumed that the quarkonium is
well represented by a small dipole, which traverses a large
capacitor. However, this may be too strong of an assumption
because the dipole is not always so small. For example,
comparing the size of the charmonium with the size of pion we
have tipically a/d � 0.4/0.6 � 0.67. Therefore it is necessary
to include the interaction between the quark and antiquark in
the quarkonium with the sources (the “plates” of the capacitor),
which may be either a quark and an antiquark in the case
of the pion or a quark and a diquark in the case of the
proton.

To take these interactions into account we shall assume
that the interaction between a quark (or diquark) in the
capacitor and a charm quark (or antiquark) in the dipole can
be divided into a short-distance part and a long-distance part.
The latter was already included before in the interaction with
the chromoelectric fields produced by the sources. The former
will be modeled as follows.

1. Model C

The short-distance interaction can be approximated by the
contact interaction part (the one with the delta function) of the
one-gluon exchange potential [21]:

Hint = VOGE =
∑
i=a,b

∑
j=1,2

αs

4
�λi · �λj

×
[

1

rij

− 2π

3mimj

�σi · �σj δ
3( �rij )

]
, (18)

where λ and σ are the Gell-Mann and Pauli matrices, respec-
tively, which are responsible for color and spin interactions.
The Coulomb term in this expression will be neglected because
it is of long range. The labels i = a, b and j = 1, 2 refer to
particles in the capacitor and dipole, respectively. With this
notation, in the interaction between particle a and 1 the delta
function takes the form

δ3( �ra − �r1) = δ(xa − x1) × δ(ya − y1) × δ(za − z1), (19)

where �r1 = (x1, y1, z1) is the same as before and �ra =
(xa, ya, za) is the coordinate of particle a in the quarkonium
rest frame. To compute the transition amplitude we need to
know the new wave functions, which now include both the
quarkonium and the capacitor. They are

�i = f ( �r1, �r2)g( �ra, �rb)cndnemhm (20)

and

�f = tC( �r1, �r2)g( �ra, �rb)cidj elhk. (21)

In Eq. (20) the function f is the same as before and is given
by (7). The function tC in Eq. (21) represents the spatial
distribution of the heavy quarks in the final state, which is
assumed to be an excited but still bound state, very much

065206-4



CHROMOELECTRIC FIELDS AND QUARKONIUM-HADRON . . . PHYSICAL REVIEW C 71, 065206 (2005)

like in model B. However, if we would choose tC = tB , the
transition amplitude 〈�f |Hint|�i〉 would vanish because the
contact interaction does not depend on the coordinates and
hence 〈�f |�i〉 is the product of an odd and an even function
of x and is thus zero. Since we are mostly interested in
knowing the order of magnitude of this contact interaction we
shall approximate the final-state wave function by a Gaussian,
given by

tC( �r1, �r2) = NC exp

(−r2
1

a′2

)
exp

(−r2
2

a′2

)
e−iεf t , (22)

with the normalization constant given by

N2
C =

(
2

π

)3 1

a′6 . (23)

The computation of the contact interaction requires knowledge
of the positions of the quarks in the capacitor, which is given
by the function

g( �rb, �rb) = NP exp

[−(xa − X)2

d2

]
exp

[−(ya − Y )2

d2

]

× exp

[−(xb − X)2

d2

]
exp

[−(yb − Y )2

d2

]

× exp

[−γ 2(za − Z)2

d2

]
exp

[−γ 2(zb − Z)2

d2

]
,

(24)

where Z = vt, d and γ have the same meaning as before,
and NP is the normalization constant of the projectile wave
function, given by

N2
P = 8γ 2

π3d6
. (25)

Notice that g is the same in the initial and in the final state.
This assumption is consistent with the eikonal approximation
previously introduced and avoids the introduction of new
parameters.

With these ingredients we can evaluate the transition
amplitude,

Tf i = 〈�f |Hint|�i〉 =
∫

dt

∫
d3�r1d

3�r2

∫
d3 �rad

3 �rb �∗
f

× (�r1, �r2, �ra, �rb)Hint(�r1, �r2, �ra, �rb)

× �i(�r1, �r2, �ra, �rb), (26)

and the cross section,

σC = 210

34
πα2

s

(
1

mam1
+ 1

mam2
+ 1

mbm1
+ 1

mbm2

)2

× γ 2

γ 2 − 1

a6a′6

(a′2 + a2)5[d2(a′2 + a2) + 2a2a′2]

× exp

(
−ω2

γ 2a′2a2

(a′2+a2) + d2

4(γ 2 − 1)

)
, (27)

where we have used (13) and the analogous expression for the
sum and average over spins. Apart from a numerical factor,
(16) and (27) have the same energy dependence. This is so

because the same Lorentz contraction in the exponent of the
Hamiltonian (3) and (4) leading to (16) is now present in
the capacitor wave function (24). Moreover, the same Lorentz
γ factor, previously multiplying the �Ea field in (4), reappears
now in the normalization constant (25). The dependence of
(27) on a and a′ is qualitatively the same as the one found in
(16) and has the same physical origin. Finally, the cross section
in Eq. (27) is now a monotonically decreasing function of d.
The observed behavior with d means that, in a larger capacitor,
the quarks are spread across a larger transverse area and it
becomes more difficult for them to find the charm quarks in
the target and suffer a contact interaction.

III. RESULTS AND DISCUSSION

In the numerical estimates presented in the following, we
shall adopt d = 0.8 and 0.6 fm for the proton and the pion,
respectively. We shall also take a = 0.4 and 0.2 fm for the
J/ψ and ϒ ′, respectively, and a′ = 0.8 and 0.45 fm for the � ′
and ϒ ′, respectively. The bound states � (m� = 3.07 GeV)
and ϒ ′ (mϒ = 9.46 GeV) will be, in model A, dissociated
into pairs of mesons D (mD = 1.87 GeV) and B (mB =
5.27 GeV). The excited states used in models B and C have
masses m�′ = 3.8 GeV and m�′ = 11 GeV in the case of
charmonium and bottonium, respectively. The value of the
strong coupling constant and the constituent quark masses
are the same as used in [21] (i.e., αs = 0.64,mq = 0.3 GeV,
mc = 1.2 GeV, and mb = 4.74 GeV) and the diquark mass is
md = 0.60 GeV.

As is clear from (5) and (4), we need to know the
average value of the color electric field in the projectile
gE = 〈h|gE|h〉. In a first approximation this number might
be identified with the string tension κ � 0.18 GeV2 or κ �
0.9 GeV/fm. The string tension calculated in [18] is somewhat
larger. In [17] the transverse profile of the string was studied.
The strength of 〈h|gE|h〉 depends on the quark-antiquark (or
quark-diquark) separation, it is larger for larger systems and
so far it has been calculated only for large systems. Therefore
〈h|gE|h〉 is another source of differences between a proton
and a pion projectile. Taking an average of the values found
in [17] we choose 〈h|gE|h〉 = 1 GeV/fm.

As mentioned in the introduction, our model has common
aspects with the BP approach. Therefore we shall, in what
follows, compare our results for σ�h with those obtained by
Kharzeev in [7]:

σ�h = 2.5

(
1 − λ0

λ

)6.5

mb (28)

with λ given by

λ �
(
s − M2

�

)
2M�

(29)

and λ0 � (Mh + ε), where Mh is the projectile mass and

ε = 2 mM − M�. (30)

In Fig. 2 we show the cross sections for the proton-
charmonium dissociation obtained with model A (dotted lines)
and model B (dashed lines) and compare them with the BP
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FIG. 2. J/ψ + p cross section with model A (dotted lines), with
model B (dashed lines), and with the Bhanot-Peskin approach (lines
with stars). Upper curves: stronger �Ea field. Lower curves: weaker
�Ea field.

cross section (solid line with stars) given by (28). The two
upper curves are obtained with 〈h|gE|h〉 = 1 GeV/fm and the
two lower curves with 〈h|gE|h〉 = 0.57 GeV/fm (model A)
and 〈h|gE|h〉 = 0.53 GeV/fm (model B). With these smaller
values of the chromoelectric field our curves come close
to (28). Figure 3 shows the corresponding cross sections
for the proton-bottonium dissociation. Again, the two upper
curves are obtained with 〈h|gE|h〉 = 1 GeV/fm and the two
lower curves with 〈h|gE|h〉 = 0.69 GeV/fm (model A) and
〈h|gE|h〉 = 0.49 GeV/fm (model B). As in the previous figure,
reducing the value of 〈h|gE|h〉 leads to some agreement with
(28). Given the conceptual resemblance between our model
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FIG. 4. Pion-charmonium cross section as a function of
√

s with
several models.

and the BP one, it is reassuring to find a certain similarity
between the results, both in magnitude and energy behavior,
once an appropriate value of 〈h|gE|h〉 is chosen.

In Fig. 4 we show the cross section for J/ψ dissociation by
pions compared with results obtained with the meson exchange
model [3] (thin dotted line), the quark exchange model [2]
(thin long dashed line), short-distance QCD [the BP approach;
Eq. (28)] (thick solid line), and QCD sum rules [1] (thin solid
line). In spite of the fact that at such low energies our approach
loses validity, it is, nevertheless, interesting to observe that
our curve is in the center of the region covered by the other
calculations. In Fig. 5 we compare the cross sections p + J/ψ

3020100
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lower  J /Ψ+π (model A) 
upper  J /Ψ+p (model B)
lower  J /Ψ+π (model B) 

FIG. 5. Charmonium-hadron cross section with model A (dotted
lines) and model B (dashed lines). Upper curves: σJ/ψ + p. Lower
curves σJ/ψ + π .
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FIG. 6. Same as Fig. 5 for bottonium-hadron cross sections.

(upper curves) and π + J/ψ (lower curves) calculated with
models A (dotted lines) and B (dashed lines). In the high-
energy limit, where both cross sections are nearly constant,
we observe that the relation between the cross sections
is

σp-� � 3σπ-� (model A), (31)

σp-� � 4.2σπ-� (model B), (32)

which in both cases is much larger than the one expected from
the additive quark model:

σp-� � 3
2σπ-�. (33)

This is remarkable since the additive quark model relation
holds for other high-energy scattering processes such as π -p
and p-p. Since 〈h|gE|h〉 was kept the same for both cases,
this unexpected relation between the cross sections must come
from differences in the wave functions. In Fig. 6 we repeat this
comparison for the reactions p + ϒ and π + ϒ , finding (31)
for both models. We have kept 〈h|gE|h〉 = 1 GeV/fm for both
projectiles. Taking 〈p|gE|p〉 > 〈π |gE|π〉 would increase the
deviation from (33).

In the high-energy limit ordinary hadrons are expected to
have a geometrical total cross section. Since the quarkonium
dissociation discussed here is a more specific reaction it is not
obvious that its cross section follows a geometrical behavior.
Such a behavior was found in [8]: σ�h ∝ αsa

2
0 , where a0 is

the Bohr radius of the quarkonium. In our case, as can be
seen from (16), (27), and the numerical evaluation of (14), we
have a very nontrivial dependence on a. Since the initial state
(containing the variable a) is the same, the difference between
models comes from the spatial dependence of the final state.
The plane waves in model A have no spatial scale. Therefore
they are more “inclusive” and so σA should be closer to the
quarkonium-hadron total cross section than σB . In model B
the quarkonium ground state is converted into a resonancelike
state, the wave function of which contains the size parameter

0.50 1.5 21

a (fm)

0

20

40

60

80

100

σ/
a2

model A   J/Ψ+p
model B   J/ Ψ+p

FIG. 7. Charmonium-hadron cross sections as a function of the
charmonium size parameter for model A (dotted line) and for model
B (dashed line).

of the resonance and distorts the final geometrical behavior.
Therefore model A is closer to a geometrical behavior than
model B.

To see how far we are from the geometrical behavior, we
show in Figs. 7 and 8 the dependence of σA (dotted line) and
σB (dashed line) on a for charmonium (Fig. 7) and bottonium
(Fig. 8) dissociation. The cross sections are divided by a2 so
that geometrical behavior translates into a horizontal line. We
see that, whereas model A tends to this behavior, model B is
far from a geometrical behavior. This indicates again that our
model is very sensitive to the choice of the final-state wave
functions.
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model B   Υ + p  

FIG. 8. Same as Fig. 7 for bottonium-hadron cross sections.
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FIG. 9. Charmonium-proton (dashed line) and charmonium-
pion (solid line) cross sections calculated with model C (contact
interactions).

In Fig. 9 we show the cross section σC (27) for charmonium
dissociation by protons (solid line) and by pions (dashed
line). In Fig. 10 we show the same quantitity for bottonium
dissociation. We use the central values for a, a′, d, and αs .
We can see that, in all processes, the cross sections are more
than two orders of magnitude smaller than the corresponding
cross sections computed with model A or model B. No
possible change in parameters could make these cross sections
comparable. Another feature of these curves is that the cross
sections for J/ψ dissociation by pions are larger than those
for protons by a factor close to 4. This might be guessed by
looking at (27). The pion is a light quark-antiquark system
and the proton is a light quark-diquark dipole. The diquark is
twice as heavy as a constituent quark. Whereas for the pion
mb = ma , for the proton we have mb = 2ma .

30252015105
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0.005
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 (
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FIG. 10. Same as Fig. 9 for bottonium-hadron cross sections.

Before concluding we need remark on medium effects on
the cross sections calculated here. We are primarily studying
reactions that happen before thermalization (in nucleus-
nucleus collisions) or with no thermalization at all (in proton-
nucleus collisions). The formation time of the heavy quark pair
is of the order of 0.2 fm. The thermalization time of hadronic
matter formed in heavy-ion collisions is a model-dependent
quantity. Early estimates pointed to 1 fm. Recent estimates [23]
point to 0.6 fm. Even if we take seriously this last number, it
is fair to say that heavy quark pair production (and collision
with a hadron at high energies) precedes the formation of
an equilibrated medium. After thermalization, the energy is
completely redistributed and collisions occur at energies of
the order of the temperature (<1 GeV). In this regime we do
not expect our approach to be valid. The effects of a thermal
medium on heavy quarkonium are known [24]: The string
tension becomes weaker, the quarkonium size increases, and
its mass decreases. These effects are all very small except
close to the deconfinement transition temperature. In view of
these considerations we have neglected medium effects in our
calculations.

IV. CONCLUSIONS

We have developed a simple model for the nonperturbative
quarkonium-hadron interaction. At the present stage of the
field, this sort of model remains useful for organizing our
ideas. We tried to make simple and yet realistic choices
for the interaction Hamiltonian and for the wave func-
tions. In particular, we have treated the final state in two
very different and complementary ways. Simple models are
in appropriate for providing very precise results but they
can help in determining the order of magnitude of the
cross sections and their behavior with the reaction energy.
Having said that, we can summarize our conclusions as
follows:

(i) The charmonium-hadron cross section is about a few
milibarns. The bottonium-hadron cross section is about
one-quarter as large. This is in agreement with most of
the previous calculations.

(ii) All cross sections grow with the reaction energy and reach
a plateau in the high-energy limit. This is in agreement
with the BP approach.

(iii) In this limit they do not obey the simple relations derived
from the additive quark model.

(iv) Also in this limit our cross sections deviate significantly
from the geometrical behavior (σ ∝ a2).

(v) The contact interactions between the heavy quarks and the
light quarks in the light hadrons is negligible compared
to the long-distance quark– �Ea field interaction. This is
surprising since sometimes the dipole and the capacitor
have similar sizes. This finding gives a posteriori support
to our model and also to the BP approach.

Conclusion (i) may be relevant for RHIC and Large
Hadron Collider (LHC) physics. Conclusions (ii), (iii), and
(iv) suggest that heavy quarkonium has interaction properties
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that are very different from light hadrons. This has been
conjectured before. In particular, in [22] this difference was
attributed to the fact that in heavy quarkonium the energy is
mainly stored in the masses whereas in light hadrons the energy
(mass of the hadron) comes mostly from the gluonic fields.
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