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Electromagnetic properties of ground-state and excited-state pseudoscalar mesons
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The axial-vector Ward-Takahashi identity places constraints on particular properties of every pseudoscalar
meson. For example, in the chiral limit all pseudoscalar mesons, except the Goldstone mode, decouple from
the axial-vector current. Nevertheless, all neutral pseudoscalar mesons couple to two photons. The strength of
the π 0

nγ γ coupling, where n = 0 denotes the Goldstone mode, is affected by the Abelian anomaly’s continuum
contribution. The effect is material for n �= 0. The γ ∗πnγ

∗ transition form factor, Tπn
(Q2), is nonzero ∀n, and

Tπn
(Q2) ≈ (4π 2/3)(fπn

/Q2) at large Q2. For all pseudoscalars but the Goldstone mode, this leading contribution
vanishes in the chiral limit. In this instance the ultraviolet power-law behavior is 1/Q4 for n �= 0, and we find
numerically Tπ1 (Q2) � (4π 2/3)(−〈q̄q〉/Q4). This subleading power-law behavior is always present. In general
its coefficient is not simply related to fπn

. The properties of n �= 0 pseudoscalar mesons are sensitive to the
pointwise behavior of the long-range piece of the interaction between light quarks.
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I. INTRODUCTION

The known meson spectrum contains three pseudoscalars
[IG(J PC) = 1−(0−+)], all with masses below 2 GeV [1]:
π (140), π (1300), and π (1800). The lightest of these, the pion
[π (140)], is much studied and well understood as QCD’s
Goldstone mode. It is the basic degree of freedom in chiral
effective theories, and a veracious explanation of its properties
requires an approach to possess a valid realization of chiral
symmetry and its dynamical breaking.

The π (1300) is broad, with a width of 200 to 600 MeV.
In the framework of constituent-quark models it is usually
interpreted as the pion’s first radial excitation. Namely, the
π (1300) is pictured as an IG(JP )L = 1−(0−)S QQ̄ meson,
where Q denotes a constituent-quark; and the first radially
excited state of the π (140) on a QQ̄ n 1S0 trajectory, where n
is the “principal quantum number” [2,3].

At first sight it might appear natural to interpret the π (1800)
as the third state on the n 1S0 trajectory. However, in compar-
ison with π (1300), the π (1800) is narrow, with a width of
207 ± 13 MeV, and has a decay pattern that may be consistent
with its interpretation as a hybrid meson in constituent-quark
models [4]. This picture has the constituent-quarks’ spins
aligned to produce SQQ̄ = 1 with J = 0 obtained by coupling
SQQ̄ to a spin-1 excitation of the confinement potential.

It is legitimate to ask for a unified theoretical understanding
of these states and, indeed, the entire trajectory of pseudoscalar
mesons. This is a topical question, e.g., Refs. [5–15], and it
is easy to identify at least one reason why. In the context of
a constituent-quark model Hamiltonian, a subset, if not all,
of the pseudoscalar mesons form a QQ̄ n 1S0 trajectory. In
this framework the support possessed at long-range by the
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bound state’s wave function grows with increasing n. Hence
the properties of radially excited states become increasingly
sensitive to the manner by which confinement is expressed in
the potential. As we have already noted, in this same context
a definition and representation of hybrid mesons requires that
explicit excitation of the confinement potential be included as
an additional degree of freedom. Seen from this perspective
one may anticipate that the properties of all the heavier
pseudoscalar mesons are likely to be sensitive to the long-range
part of the interaction between light quarks in QCD, whether
they be radial excitations or hybrid mesons. This suggests that
the study of their properties can provide a map of what might
be called the confinement potential between light quarks. (NB.
The information obtained thereby is complementary to that
gathered in studies of axial-vector mesons [16–20], which in
constituent-quark models are interpreted as orbital excitations
of the π and ρ mesons.)

It is not possible to accurately describe pseudoscalar
mesons using a framework that fails to respect the axial-vector
Ward-Takahashi identity. For example, chiral symmetry and
its dynamical breakdown force the leptonic decay constant
of every pseudoscalar meson, except the Goldstone mode,
to vanish in the chiral limit [8,11–15]. Herein we therefore
employ QCD’s Dyson-Schwinger equations (DSEs) (modern
applications are reviewed in Refs. [21–23]) for which a system-
atic, Poincaré covariant and symmetry preserving treatment of
quark-antiquark bound states has been established [24–26].
To provide exemplars we will focus primarily on the π (140)
and the next-lightest pseudoscalar state. Nonetheless, the exact
results will apply to all elements on the pseudoscalar meson
trajectory.

It is noteworthy that in Poincaré covariant quantum field
theory all bound states with given quantum numbers, e.g.,
(IG, J PC), are described by the same homogeneous Bethe-
Salpeter equation (BSE). This is kindred to the statement
that all interpolating fields with the same quantum numbers
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are on-shell equivalent, a fact which is apparent in numerical
simulations of lattice QCD, e.g., Ref. [27]. Hence a given ho-
mogeneous BSE yields the mass and Bethe-Salpeter amplitude
of every bound state in the channel specified by (IG, J PC).

In a confining theory a given JP trajectory will likely
contain a countable infinity of bound states. The lowest mass
member of the trajectory is conventionally described as the
ground state. All other members may reasonably be described
as excited states. The radial excitation of a state with a
given JP preserves this total-momentum + parity assignment.
However, it may be distinguished from the ground state
by the pointwise behavior of its Bethe-Salpeter amplitude,
which when analyzed appropriately exhibits a finite number
of zeros. As in quantum mechanics, the number of zeros can
be associated with a principal quantum number n. Studies of
pseudoscalar mesons show that the ground state amplitude
has no zeros and can therefore be associated with n = 0. The
amplitude of the next highest mass pseudoscalar possesses one
zero and is therefore identified with n = 1, e.g., [8,11–15]. In
simple models, this pattern continues [9,10].

It may be that hybrid mesons, if they exist, can likewise
be identified through the pointwise behavior of their Bethe-
Salpeter amplitudes. For example, a solution of the pseu-
doscalar BSE, heavier than the first radial excitation, whose
Bethe-Salpeter amplitude exhibits both: a pattern of zeros
which does not match that associated with radial excitations;
and relationships between component functions in the Bethe-
Salpeter amplitude different from those present in the
lower mass solutions, would appear a reasonable hybrid
candidate.

Of course, Bethe-Salpeter amplitudes are not themselves
observable; and the experimental categorization of ground,
excited, and putative hybrid states proceeds via analysis of
their decay patterns. Notwithstanding this, the order in those
decay patterns is determined in large part by the Bethe-Salpeter
amplitudes’ pointwise behavior. We therefore anticipate that a
natural distinction between straightforward radial excitations
and hybrids may be possible without recourse to a constituent-
quark model basis.

In Sec. II we recapitulate on aspects of the DSEs and
truncation scheme that are relevant to our study. The Abelian
anomaly features in Sec. III, wherein exact results are derived
regarding the coupling of pseudoscalar mesons to two photons.
We outline a renormalization-group-improved model of the
quark-antiquark scattering kernel in Sec. IV. It is used in that
section to illustrate the exact results and explore effects of the
model’s realization of light-quark confinement on, e.g., bound
state charge radii. Section V is an epilogue.

II. BETHE-SALPETER AND GAP EQUATIONS

A Poincaré covariant and symmetry preserving treatment
of quark-antiquark bound states can be based on the homoge-
neous Bethe-Salpeter equation (BSE) [28]

[�(k; P )]tu =
∫ �

q

[χ (q; P )]srK
tu
rs (q, k; P ), (1)

where k is the relative and P the total momentum of
the constituents; r, . . . , u represent color, Dirac, and flavor
indices:

χ (q; P ) = S(q+)�(q; P )S(q−), (2)

q± = q ± P/2; and
∫ �

q
represents a Poincaré invariant reg-

ularization of the integral, with � the regularization mass
scale [29,30]. (We shall subsequently describe regularization
explicitly.) In Eq. (1), S is the renormalized dressed-quark
propagator and K is the fully amputated dressed-quark-
antiquark scattering kernel; namely, it is the sum of all
diagrams that cannot be disconnected by cutting two fermion
lines. The product (SS)K is a renormalization point invariant.
Hence, when the kernel is expressed completely in terms of
renormalized Schwinger functions, the homogeneous BSE’s
solution is independent of the regularization mass scale, which
may be removed; viz., � → ∞.

In a given channel the homogeneous BSE only has solutions
for particular, separated values of P 2: P 2 = −m2

n, where
mn is a bound state’s mass, whereat �n(k; P ) is that bound
state’s Bethe-Salpeter amplitude. In the flavor nonsinglet
pseudoscalar channel the lowest mass solution is associated
with the π (140). It is precisely QCD’s Goldstone mode [29],
and we denote it by a value of n = 0. The homogeneous
BSE next possesses a J PC = 0−+ solution when P 2 assumes
a value associated with the mass of the π (1300). We label
this state by n = 1. In the study of this meson in Ref. [12]
the Tchebychev moments of the Lorentz scalar functions
that appear in the matrix-valued Bethe-Salpeter amplitude
each exhibit a single zero. It can therefore be described as a
radially excited state. (NB. Hereafter the subscript n is merely
a counter labeling states of increasing mass: m0 < m1 <

m2 < . . . , etc.)
The pattern of isolated solutions continues so that in

principle one may obtain the mass and amplitude of every
pseudoscalar meson from Eq. (1). Herein we will exploit
this in comparing properties of the two lowest-mass flavor-
nonsinglet J PC = 0−+ mesons just described.

The dressed-quark propagator appearing in the BSE’s
kernel is determined by the renormalized gap equation

S(p)−1 = Z2(iγ · p + mbm) + �(p), (3)

�(p) = Z1

∫ �

q

g2Dµν(p − q)
λa

2
γµS(q)�a

ν (q, p), (4)

wherein Dµν is the dressed-gluon propagator, �ν(q, p) is
the dressed-quark-gluon vertex, and mbm is the �-dependent
current-quark bare mass. The quark-gluon-vertex and quark
wave function renormalization constants, Z1,2(ζ 2,�2), depend
on the gauge parameter, the renormalization point, ζ , and
the regularization mass scale. A Poincaré invariant regular-
ization of the integral is essential; and since pseudoscalar
mesons are our focus, we employ a Pauli-Villars scheme.
That is implemented in Eq. (3) by considering the quarks
as minimally anticoupled (gPV = ig) to additional massive
gluons (mPV

g = �). This effects a tempering of the integrand,
which is expressed via a modification of the gluon propagator’s
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ultraviolet behavior:

1

(p − q)2
→ 1

(p − q)2
− 1

(p − q)2 + �2
, (5)

and regulates the integral’s superficial linear divergence.
The gap equation’s solution has the form

S(p)−1 = iγ · pA(p2, ζ 2) + B(p2, ζ 2), (6)

= 1

Z(p2, ζ 2)
[iγ · p + M(p2)]. (7)

It is obtained from Eq. (3) augmented by the renormalization
condition

S(p)−1|p2=ζ 2 = iγ · p + m(ζ ), (8)

where m(ζ ) is the renormalized (running) current-quark mass:

Z2(ζ 2,�2)mbm(�) = Z4(ζ 2,�2)m(ζ ), (9)

with Z4 the Lagrangian mass renormalization constant. At
one-loop order in perturbative QCD

m(ζ ) = m̂

(ln ζ/�QCD)γm
, (10)

with γm = 12/(33 − 2Nf ), where Nf is the number of active
current-quark flavors, and m̂ is the renormalization-point-
invariant current-quark mass. The chiral limit is unambigu-
ously defined by setting m̂ = 0 [29–31], which is equivalent
to the requirement

Z2(ζ 2,�2)mbm(�) ≡ 0,∀� � ζ. (11)

The behavior and features of the solution of QCD’s
gap equation are reviewed in Refs. [21–23]. It is a long-
standing prediction of DSE studies that the dressed-quark
propagator is strongly dressed at infrared length scales,
namely, p2 <∼ 2 GeV2, and that this is materially important
in explaining a wide range of hadron properties [23]. Indeed,
an enhancement of the mass function, M(p2), is central to the
appearance of a constituent-quark mass scale and an existential
prerequisite for Goldstone modes. The DSE results have
been confirmed in numerical simulations of lattice-regularized
QCD [32] and the conditions have been explored under
which pointwise agreement between DSE results and lattice
simulations may be obtained [33–35].

The IG(J PC) = 1−(0−+) trajectory contains the pion,
whose properties are fundamentally governed by the phe-
nomenon of dynamical chiral symmetry breaking (DCSB).
One expression of the chiral properties of QCD is the axial-
vector Ward-Takahashi identity

Pµ�
j

5µ(k; P ) = S−1(k+)iγ5
τ j

2
+ iγ5

τ j

2
S−1(k−)

− 2i m(ζ ) �
j

5 (k; P ), (12)

which we have here written for two quark flavors, each with
the same current-quark mass: {τ i : i = 1, 2, 3} are flavor Pauli
matrices. In Eq. (12), �

j

5µ(k; P ) is the axial-vector vertex:

[
�

j

5µ(k; P )
]

tu = Z2

[
γ5γµ

τ j

2

]
tu

+
∫ �

q

[
χ

j

5µ(q; P )
]

srK
rs
tu(q, k; P ), (13)

and �
j

5 (k; P ) is the pseudoscalar vertex

[�5(k; P )]tu = Z4

[
γ5

τ j

2

]
tu

+
∫ �

q

[
χ

j

5 (q; P )
]

srK
rs
tu(q, k; P ). (14)

The quark propagator, axial-vector, and pseudoscalar ver-
tices are all expressed via integral equations, i.e., DSEs.
Equation (12) is an exact statement about chiral symmetry
and the pattern by which it is broken. Hence it must always
be satisfied. Since that cannot credibly be achieved through
fine-tuning, the distinct kernels of Eqs. (3), (4), (13), (14)
must be intimately related. Any theoretical tool employed in
calculating properties of the pseudoscalar and pseudovector
channels must preserve that relationship if the results are to be
both quantitatively and qualitatively reliable.

While a weak coupling expansion of the DSEs yields
perturbation theory and satisfies this constraint, that trunca-
tion scheme is not useful in the study of bound states or
of other intrinsically nonperturbative phenomena, such as
confinement and DCSB. Fortunately at least one nonpertur-
bative, systematic, and symmetry preserving scheme exists.
(References [25,26] give details.) This entails that the full
implications of Eq. (12) can be elucidated and illustrated.

Unless there is a reason for the residue to vanish, every
isovector pseudoscalar meson appears as a pole contribution
to the axial-vector and pseudoscalar vertices [29]:

�
j

5µ(k; P )
∣∣
P 2+m2

πn
≈ 0 = fπn

Pµ

P 2 + m2
πn

�j
πn

(k; P )

+�
j reg
5µ (k; P ), (15)

i�
j

5 (k; P )
∣∣
P 2+m2

πn
≈ 0 = ρπn

(ζ )

P 2 + m2
πn

�j
πn

(k; P )

+ i�
j reg
5 (k; P ); (16)

viz., each vertex may be expressed as a simple pole plus
terms regular in the neighborhood of this pole, with �

j
πn

(k; P )
representing the bound state’s canonically normalized Bethe-
Salpeter amplitude:

�j
πn

(k; P ) = τ jγ5
[
iEπn

(k; P ) + γ · PFπn
(k; P )

+ γ · k k · PGπn
(k; P ) + σµν kµPν Hπn

(k; P )
]
;

(17)
and

fπn
δijPµ = Z2 tr

∫ �

q

1

2
τ iγ5γµχj

πn
(q; P ), (18)

iρπn
(ζ )δij = Z4 tr

∫ �

q

1

2
τ iγ5χ

j
πn

(q; P ). (19)

The residues expressed in Eqs. (18) and (19) are gauge
invariant and cutoff independent.
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For an elementary pseudoscalar meson, Fπn
(k; P ) ≡ 0 ≡

Gπn
(k; P ) ≡ Hπn

(k; P ) in Eq. (17). The first two of these
functions can be described as characterizing the pseudoscalar
meson’s pseudovector components; and the last, its pseudoten-
sor component. The associated Dirac structures necessarily
occur in a Poincaré covariant bound state description: they
signal the presence of quark orbital angular momentum.

Equation (12) combined with Eqs. (15)–(19) yields [29,30]

fπn
m2

πn
= 2m(ζ )ρπn

(ζ ), (20)

i.e., an identity valid for every flavor nonsinglet 0− meson, and
irrespective of the magnitude of the current-quark mass [37].
In the chiral limit additional information about the ground
state pseudoscalar (n = 0) is available, namely, an array of
quark-level Goldberger-Treiman relations [29]

f 0
π0

Eπ0 (k; 0) = B(k2), (21)

FR(k; 0) + 2f 0
π0

Fπ0 (k; 0) = A(k2), (22)

GR(k; 0) + 2f 0
π0

Gπ0 (k; 0) = 2A′(k2), (23)

HR(k; 0) + 2f 0
π0

Hπ0 (k; 0) = 0, (24)

where FR,GR,HR are, respectively, the coefficient functions
of γ5γµ, γ · kkµ, σµνkν in �

j reg
5µ (k; P ) and

f 0
πn

:= lim
m̂→0

fπn
. (25)

Equations (22)–(24) are a pointwise consequence of DCSB
and a pointwise expression of Goldstone’s theorem. They can
be used to show

ρ0
π0

(ζ ) := lim
m̂→0

ρ(ζ ) = − 1

f 0
π0

〈q̄q〉0
ζ , (26)

wherein

−〈q̄q〉0
ζ = lim

�→∞
Z4(ζ 2,�2)NctrD

∫ �

q

S0(q, ζ ), (27)

is the vacuum quark condensate [31]. It is now plain to see
from Eq. (20) that in the neighborhood of m̂ = 0(

f 0
π0

)2
m2

π0
= −2m(ζ )〈q̄q〉0

ζ ; (28)

viz., the Gell-Mann–Oakes–Renner relation is a corollary of
Eq. (20).

III. TWO PHOTON COUPLING OF PSEUDOSCALAR
MESONS: EXACT RESULTS

A. Abelian anomaly

To be concrete we will begin by considering the two-photon
coupling as expressed via the renormalized triangle diagrams:

T 3
5µνρ(k1, k2) = tr

∫ M

�

S(�0+)�3
5ρ(�0+, �−0)S(�−0)

× iQ�µ(�−0, �)S(�)iQ�ν(�, �0+), (29)

T 3
5µν(k1, k2) = tr

∫ M

�

S(�0+)�3
5(�0+, �−0)S(�−0)

× iQ�µ(�−0, �)S(�)iQ�ν(�, �0+), (30)

where �αβ = � + αk1 + βk2, the electric charge matrix Q =
diag[eu, ed ] = e diag[2/3,−1/3],S = diag[Su, Sd ], and

[�µ(k; P )]tu = Z2[γµ]tu

+
∫ �

q

[
χj

µ(q; P )
]

srK
rs
tu(q, k; P ) (31)

is the renormalized dressed-quark-photon vertex.
The bare axial-vector–vector–vector vertex exhibits a su-

perficial linear divergence and, as with all other Schwinger
functions, it must be rigorously defined via a Poincaré invariant
regularization scheme. In this case an appropriate Pauli-Villars
prescription corresponds to minimally anticoupling the photon
to additional flavored quarks with a large mass mPV = M . To
elucidate, we introduce

T̃ 3
5µνρ(k1, k2; m̂)

= tr
∫

�

Sm̂(�0+)�3 m̂
5ρ (�0+, �−0)

×Sm̂(�−0)iQ�m̂
µ (�−0, �)Sm̂(�)iQ�m̂

ν (�, �0+), (32)

wherein the current-quark-mass dependence is explicit, so that
Eq. (29) can rigorously be written as

T 3
5µνρ(k1, k2; m̂) = T̃ 3

5µνρ(k1, k2; m̂) − T̃ 3
5µνρ(k1, k2; M), (33)

with M → ∞ as the last step in the calculation.
The dressed-quark propagators in Eqs. (29)–(32) are un-

derstood to be calculated using the rainbow-truncation gap
equation, which is defined by Eq. (3) with

�(p) =
∫ �

q

G[(p − q)2]Dfree
µν (p − q)

λa

2
γµS(q)

λa

2
γν, (34)

wherein Dfree
µν (�) is the free gauge boson propagator [36] and

G(�2) will subsequently be specified. The remaining element,
the axial-vector vertex, is obtained from the ladder Bethe-
Salpeter equation, whose kernel [see Eq. (1), for example] is
defined by the dressed-quark propagators just specified and

K tu
rs (q, k; P ) = −G[(k − q)2]Dfree

µν (k − q)

×
[
γµ

λa

2

]
ts

[
γν

λa

2

]
ru

. (35)

In what follows it is important that the rainbow-ladder
truncation is the first term in the systematic and symmetry
preserving truncation scheme described in Refs. [24–26] and,
furthermore, that with the choice

G(�2) = 4παS(�2), �2 � �2
QCD, (36)

the rainbow-ladder truncation is guaranteed to express the one-
loop renormalization group properties of QCD.

The axial-vector Ward-Takahashi identity depicted in Fig. 1
is an analogue of
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5µΓPµ

S
−1

G G

γ 5 γ 5

S
−1

M, Γi 5}{

G G

i

G G+ –=

i

FIG. 1. This axial-vector Ward-Takahashi identity is an analogue of Eq. (37). It is valid if, and only if: the dressed-quark propagator,
S, is obtained from Eq. (34); the axial-vector vertex, �5µ, is obtained from Eq. (13) with the kernel constructed from S and
Eq. (35); the pseudoscalar vertex is constructed analogously; and the unamputated renormalized quark-antiquark scattering matrix,
G = (SS) + (SS)K(SS) + (SS)K(SS)K(SS) + [. . .], is constructed from the elements just described.

PµS(k+) �
j

5µ(k; P )S(k−) = iγ5
τ j

2
S(k−) + S(k+)iγ5

τ j

2

−S(k+){M(ζ ), i�j

5 (k; P )}S(k−).

(37)

It can be derived following the method in Refs. [38,39]
if, and only if, every dressed-quark propagator that appears
is obtained from the rainbow DSE and the accompanying
dressed vertices are determined from the ladder Bethe-Salpeter
equation, both of which have just been defined.

Using the identity in Fig. 1 it can be shown [13] that

PρT
3

5µνρ(k1, k2) + 2im(ζ )T 3
5µν(k1, k2) = α

2π
εµνρσ k1ρk2σ ,

(38)

where α = e2/(4π ). This is an explicit demonstration that
the triangle-diagram representation of the axial-vector–two-
photon coupling calculated in the rainbow-ladder truncation
is a necessary and sufficient pairing to preserve the Abelian
anomaly.

In general the coupling of an axial-vector current to two
photons is described by a six-point Schwinger function, to
which Eq. (29) is an approximation. The same is true of the
pseudoscalar–two-photon coupling and its connection with
Eq. (30). Equation (38) is valid for any and all values of
P 2 = (k1 + k2)2. It is an exact statement of a divergence
relation between these two six-point Schwinger functions,
which is preserved by the truncation we will subsequently
employ in illustrative quantitative studies. Before provid-
ing those illustrations, however, we derive corollaries of
Eq. (38) that have important implications for the properties
of pseudoscalar bound states.

If one inserts Eqs. (15) and (16) into Eq. (38) and uses
Eq. (20), one finds that in the neighborhood of each electric-
charge-neutral pseudoscalar-meson bound-state pole

PρT
3 reg

5µνρ(k1, k2) + 2im(ζ )T 3 reg
5µν (k1, k2)

+ fπn
T

π0
n

µν (k1, k2) = α

2π
iεµνρσ k1ρk2σ .

(39)

In this equation, T 3 reg(k1, k2) are nonresonant or continuum
contributions to the relevant Schwinger functions, whose form
is concretely illustrated herein upon substitution of �

j reg
5µ (k; P )

and �
j reg
5 (k; P ) into Eqs. (29) and (30), respectively. More-

over, T π0
n is the six-point Schwinger function describing the

bound state contribution, which in rainbow-ladder truncation
is realized as

T
π0

n
µν (k1, k2) = tr

∫ M→∞

�

S(�0+)�π0
n
(�− 1

2
1
2
; P )S(�−0)

× iQ�µ(�−0, �)S(�)iQ�ν(�, �0+). (40)

This Schwinger function describes the direct coupling of a
pseudoscalar meson to two photons. The support properties
of the bound state Bethe-Salpeter amplitude guarantee that
the renormalized Schwinger function is finite so that the
regularizing parameter can be removed, i.e., M → ∞, in
general and in our truncation, Eq. (40).

We note that owing to the O(4) (Euclidean Lorentz)
transformation properties of each term on the left-hand side
(lhs) in Eq. (38), one may write

PρT
3 reg

5µνρ(k1, k2) = α

π
iεµνρσ k1ρk2σ A3 reg(k1, k2), (41)

T
3 reg

5µν (k1, k2) = α

π
iεµνρσ k1ρk2σ P 3 reg(k1, k2), (42)

T
π0

n
µν (k1, k2) = α

π
iεµνρσ k1ρk2σ Gπ0

n (k1, k2), (43)

so that Eq. (38) can be compactly expressed as

A3 reg(k1, k2) + 2im(ζ )P 3 reg(k1, k2) + fπn
Gπ0

n (k1, k2) = 1
2 .

(44)

It has been proven [15] that in the chiral limit

f 0
πn

≡ 0 ∀n � 1. (45)

Hence it follows from Eq. (39) that in this limit all pseu-
doscalar mesons, except the Goldstone mode, decouple from
the divergence of the axial-vector–two-photon vertex. (This is
true unless Gπ0

n (k1, k2) diverges in the chiral limit, which is
not the case, as we will see.)

In the chiral limit the pole associated with the ground state
pion appears at P 2 = 0 and thus

PρT
3

5µνρ(k1, k2)
∣∣
P 2 �=0 = PρT

3 reg
5µνρ(k1, k2)

∣∣
P 2 �=0

= α

2π
iεµνρσ k1ρk2σ , (46)

namely, outside the neighborhood of the ground state pole the
regular (or continuum) part of the divergence of the axial-
vector vertex saturates the anomaly in the divergence of the
axial-vector–two-photon coupling.
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On the other hand, in the neighborhood of P 2 = 0

A3 reg(k1, k2)|P 2�0 + fπ0 Gπ0 (k1, k2) = 1
2 , (47)

i.e., on this domain the contribution to the axial-vector–two-
photon coupling from the regular part of the divergence of the
axial-vector vertex combines with the direct π0

0 γ γ vertex to
fulfill the anomaly. This fact was illustrated in Ref. [40] by
direct calculation: Eqs. (21)–(24) are an essential part of that
demonstration.

If one defines

Tπ0
n
(P 2,Q2) = Gπ0

n (k1, k2)|k2
1=Q2=k2

2
, (48)

in which case P 2 = 2(k1 · k2 + Q2), then the physical width
of the neutral ground state pion is determined by

gπ0
0 γ γ := Tπ0

0

(−m2
π0

0
, 0

)
, (49)

viz., the second term on the lhs of Eq. (47) evaluated at the
on-shell points. This result is not useful unless one has a
means of estimating the contribution from the first term; viz.,
A3 reg(k1, k2). However, that is readily done. A consideration
[29] of the structure of the regular piece in Eq. (15) indicates
that the impact of this continuum term on the π0

0 γ γ coupling
is modulated by the magnitude of the pion’s mass, which is
small for realistic u and d current-quark masses and vanishes
in the chiral limit. One therefore expects this term to contribute
very little and anticipates from Eq. (47) that

gπ0
0 γ γ = 1

2

1

fπ0

(50)

is a good approximation. This is verified in explicit calcula-
tions, e.g., in Ref. [41], which evaluates the triangle diagrams
described herein, the first term on the lhs modifies the result
in Eq. (50) by less than 2%.

There is no reason to expect an analogous result for
pseudoscalar mesons other than the π (140), i.e., the states
which we denote by n � 1. Indeed, as all known such
pseudoscalar mesons have experimentally determined masses
that are greater than 1 GeV, the reasoning used above suggests
that the presence of the continuum terms, A3 reg(k1, k2) and
P 3 reg(k1, k2), must materially impact upon the value of gπ0

n γ γ .
This will subsequently be illustrated using the rainbow-ladder
truncation.

B. Asymptotic behavior of transition form factor

We have stated that the rainbow-ladder truncation preserves
the one-loop renormalization group properties of QCD. It
follows that Eq. (40) should reproduce the leading large-Q2

behavior of the γ ∗(Q)πn(P )γ ∗(Q) transition form factor
inferred from perturbative QCD. The QCD analysis has been
performed for the ground state pion (n = 0) with the result [42]

Tπ0
0

(
P 2 = −m2

π0
,Q2

) Q2��2
QCD= 4π2

3

fπ0

Q2
, (51)

and Ref. [43] verified that this is indeed the result contained in
Eq. (40). However, it is useful for our purposes to recapitulate
on that derivation.

Consider Eq. (40): the integral is finite and hence a shift in
the integration variable is permitted,

T
π0

n
µν (k1, k2) = tr

∫ M→∞

�

χπ0
n
(�; P )

× iQ�µ(�−P , �K )S(�K )iQ�ν(�K, �P ), (52)

where �P := � 1
2

1
2

= � + P/2 and �K := � 1
2 − 1

2
=: � + K . We

assume that k2
1 = Q2 = k2

2 with Q2 � �2
QCD; and because we

do not restrict ourselves to ground state pseudoscalar mesons,
assume besides that for the given n under consideration Q2 �
m2

πn
. On this domain K · P ≡ 0,K2 = Q2, and it is valid at

leading (1/Q2) order in Eq. (52) to write [44,45]

iQ�µ(�−P , �K )S(�K )iQ�ν(�K, �P ) = Z2iQγµ

−iγ · �K

�2
K

iQγν

(53)

so that

T
π0

n
µν (k1, k2)

= 4πα

3
iεµνρσ trZ2

∫ M

�

1

2
τ 3γ5γσχπ0

n
(�; P )

(�K )ρ
�2

K

. (54)

Since we are concerned with J PC = 0−+ states, it follows
that

T
π0

n
µν (k1, k2) = 4πα

3
iεµνρσ

× [KρIσ (K,P ) − KαJρσα(K,P )], (55)

where Eq. (54) yields

Iσ (K,P )

= trZ2

∫ M

�

1

2
τ 3γ5γσχπ0

n
(�; P ) (�2 + K2)�(�,K), (56)

KαJρσα(K,P )

= trZ2

∫ M

�

1

2
τ 3γ5γσχπ0

n
(�; P )2�ρ� · K�(�,K) (57)

with �(l, K) = 1/[(�2 + K2)2 − 4(� · K)2].
As we show in the Appendix, on the large-Q2 domain, that

part of Iσ (K,P ) which contributes to T
π0

n
µν (k1, k2) is

Iσ (K,P ) = Pσ

{
fπn

Q2
+ F

(2)
I (P 2)

lnγ Q2
/
ω2

πn

Q4

}
, (58)

P 2 = −m2
πn

, where γ is an anomalous dimension and ωπn
is

a mass scale associated with the momentum space width of
the meson’s Bethe-Salpeter wave function. Similar reasoning
exposes the leading contribution to Eq. (55) from Eq. (57):

KαJρσα(K,P ) = KρPσF
(2)
J (P 2)

lnγ Q2
/
ω2

πn

Q4
, (59)

P 2 = −m2
πn

. Combining these results one arrives at

T
π0

n
µν (k1, k2)

Q2→∞= 4πα

3
iεµνρσ k1ρk2σ

×
[

fπn

Q2
+ F (2)

n (P 2)
lnγ Q2

/
ω2

πn

Q4

]
. (60)
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We emphasize that the coefficient of the leading 1/Q2

term in Eq. (60) is exact and model-independent. That is
not true of the subleading 1/Q4 term. Furthermore, with
a given ansatz for G(k2) in Eqs. (34) and (35), Eq. (53)
is not sufficient to accurately determine the value of the
coefficient of the 1/Q4 term or the anomalous dimension
because, for example, momentum-dependent dressing of the
quark-photon vertex can contribute at this order. Nevertheless,
our analysis highlights the existence of a nonzero subleading
1/Q4 contribution whose strength is sensitive to features of
the dynamics. These observations were made previously for
the ground state (n = 0) pion [46].

We can now return to one of the stated reasons for this
analysis: Eq. (60) inserted in Eq. (43) and combined with
Eq. (48) reproduces the leading order result obtained in
perturbative QCD, Eq. (51). In fact, it provides more. The
perturbative result was only derived for the ground state
pseudoscalar meson. Our analysis shows that for each meson
on the pseudoscalar trajectory, identified herein by a value of
n, QCD predicts

Tπ0
n

(−m2
πn

,Q2)
Q2��2

QCD= 4π2

3

[
fπn

Q2
+ F (2)

n

(−m2
πn

) lnγ Q2
/
ω2

πn

Q4

]
. (61)

It is now apparent from Eq. (45) that ∀n � 1

lim
m̂→0

Tπ0
n

(−m2
πn

,Q2
)

Q2��2
QCD= 4π2

3
F (2)

n

(−m2
πn

) lnγ Q2
/
ω2

πn

Q4

∣∣∣∣∣
m̂=0

, (62)

namely, in the chiral limit the leading-order power law in the
transition form factor for excited state pseudoscalar mesons is
O(1/Q4). This result is model independent.

Furthermore, while we cannot determine the QCD value
of the coefficient F (2)

n (−m2
πn

) in the present truncation, in
general that coefficient is not proportional to fπn

, or some
power thereof, for any value of n. We will see this clearly
in the n � 1 transition form factor for which, if that were the
case, the 1/Q4 term would be absent in the chiral limit. For
all pseudoscalar states there are mass scales other than fπ that
are nonzero even in the chiral limit when chiral symmetry is
dynamically broken.

IV. COUPLINGS OF PSEUDOSCALAR MESONS:
MODEL RESULTS

A. Rainbow-ladder truncation

In order to illustrate the results presented above and
calculate other observables it is necessary to specify G(k2)
in Eqs. (34) and (35). We choose

G(s)

s
= 4π2

ω6
Dse−s/ω2 + 8π2γm

ln
[
τ + (

1 + s
/
�2

QCD

)2]F(s),

(63)

with F(s) = [1 − exp(−s/[4m2
t ])]/s,mt = 0.5 GeV, ln(τ +

1) = 2, γm = 12/25, and �QCD = �
(4)
MS

= 0.234 GeV.
This form expresses the interaction as a sum of two terms.

The second guarantees Eq. (36) and therefore ensures that
perturbative behavior is correctly realized at short range,
namely, as written, for (k − q)2 ∼ k2 ∼ q2>∼1 − 2 GeV2,K

is precisely as prescribed by QCD. On the other hand, the
first term in G(k2) is a model for the long-range behavior
of the interaction. It is a finite width representation of the
form introduced in Ref. [47], which has been rendered as
an integrable regularization of 1/k4 [48]. This interpretation,
when combined with the result that in a heavy-quark–heavy-
antiquark BSE the renormalization-group-improved ladder
truncation is exact [25], is consistent with G(k2) leading to
a Richardson-like potential [49] between static sources.

The active parameters in Eq. (63) are D and ω, which
together determine the integrated infrared strength of the
rainbow-ladder kernel, but they are not independent. In fitting
a selection of ground state observables [50], a change in one
is compensated by altering the other, e.g., on the domain
ω ∈ [0.3, 0.5] GeV, the fitted observables are approximately
constant along the trajectory

ωD = (0.72GeV)3 =: m3
g. (64)

(NB. The value of mg is typical of the mass scale associated
with nonperturbative gluon dynamics.) Herein, unless other-
wise stated, we use

ω = 0.35 GeV. (65)

Equation (63) defines a renormalization-group-improved
rainbow-ladder truncation. This form, introduced in Refs. [30,
50], has been employed extensively in the calculation of
properties of ground state pseudoscalar and vector mesons
[51]. These applications are reviewed in Ref. [23], from
which it is apparent that the model describes a basket of 31
hadron observables with a rms error between calculation and
experiment of 15%.

The calculation of observables is now straightforward. The
kernel of the gap equation, Eq. (34), is completely specified.
Thus a solution follows immediately upon fixing the current-
quark mass: this sets the boundary condition, Eq. (8). We focus
on the u-d sector and assume isospin symmetry:

m̂u = m̂d = m̂. (66)

With a result for the dressed-quark propagator in hand,
the kernel of Bethe-Salpeter equations is also complete.
The solutions of these equations yield the bound state
Bethe-Salpeter amplitudes; the axial-vector and pseudoscalar
vertices; and the dressed-quark-photon vertex, all of which
appear above. At this point one has every element necessary
for the calculation of an amplitude such as Eq. (52) and
therewith experimental observables. The numerical procedures
are described in Refs. [11,30,50,52].

B. Two photon couplings of pseudoscalar mesons

Figure 2 depicts the small-Q2 behavior of the
γ ∗(Q)πn(P )γ ∗(Q) transition form factor defined in Eq. (48),
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1 / ( 2 fπ0
)

FIG. 2. Small-Q2 behavior of the γ ∗(Q)πn(P )γ ∗(Q) transition
form factor, defined in Eq. (48), calculated with the current-quark
mass in Eq. (67). The ground state’s two-photon coupling suggested
by Eq. (50) is marked by “×.”

calculated for the two lowest-mass 0−+ states with

m(ζ0) := m̂

(ln ζ0/�QCD)γm
= 5.5 MeV, ζ0 = 1 GeV. (67)

(Recall that in this model the n = 1 state is a radial excitation.)
It is notable that while Tπ0

0
(−m2

π0
,Q2) > 0,

Tπ0
1

(−m2
π1

,Q2
)

< 0, Q2 � − m2
π1

/
4, (68)

viz., it is negative on the entire kinematically accessible
domain. Moreover, for nonzero current-quark mass we expect
the sign of this form factor to duplicate the pattern set by
the leptonic decay constant, which is (−1)n [15]. NB. On the
depicted domain and with the resolution in this figure there
is no perceptible difference between these curves and those
obtained in the chiral limit. That is not true for larger Q2, as
will become apparent.

The coupling constants for decay into two real photons
are presented in Table I, as are the associated decay widths,
calculated using

�π0
n γ γ = α2

em

m3
πn

16π3
g2

πnγ γ . (69)

It is evident from Table I that Eq. (50) is truly a good
approximation for the π (140).

The result for gπ1γ γ is, however, striking. This coupling
is negative because the π1’s Bethe-Salpeter amplitude has

TABLE I. Results for a range of properties of the two lowest mass
0−+ mesons. Note that for n = 0, Eq. (50) yields: chiral limit, 5.68 GeV−1;
massive, Eq. (67), 5.41 GeV−1. Decay widths: calculated from Eqs. (69);
value known experimentally [1]: �π0γ γ = 7.84 ± 0.56 eV. Also [1] mπ0 =
0.14 GeV; mπ1 = 1.3 ± 0.1 GeV. [NB. Our best estimate is �

π0
1 γ γ

≈ 240 eV,

for reasons presented in connection with Eq. (78).]

mn (GeV) fn (GeV) gπnγ γ (GeV)−1 �
π0

n γ γ
(eV)

π0 m̂ = 0 0.0 0.088 5.31
m̂, Eq. (67) 0.14 0.092 5.25 7.9

π1 m̂ = 0 1.04 0.0 −0.71
m̂, Eq. (67) 1.06 −0.0016 −0.70 63.0

1 10 100 1000
Q

2 [GeV
2]

10-5

10-4

10-3

10-2

10-1

100

|T
π n
(Q

2 )|
  [

G
eV

-1
]

n = 0
n = 1
4 π2

fπn
/ (3Q

2) 

FIG. 3. Calculated large-Q2 behavior of the γ ∗(Q)πn(P )γ ∗(Q)
transition form factor, Eq. (48): diamonds—ground state, n = 0; and
circles—first excited state, n = 1. The solid lines are Eq. (51) with
either fπ0 or fπ1 from Table I, as appropriate.

a significant domain of negative support [15]; and while
its magnitude is material, ∼ 0.13 gπ0γ γ , it is finite even in
the chiral limit. The last fact demonstrates that the π1γ γ

coupling is not inversely proportional to fπ1 cf. Eq. (50).
This confirms that the excited state decouples from the axial-
vector–two-photon vertex in the chiral limit, as described in
connection with Eq. (44). Consequently, the evolution with
P 2 of the regular (or continuum) part of the divergence of the
axial-vector–two-photon vertex is smooth, i.e.,

A3 reg(k1, k2)
∣∣
P 2�−m2

π1

≈ A3 reg(k1, k2)
∣∣
P 2=−m2

π1

, (70)

and in addition

[A3 reg(k1, k2) + 2im(ζ )P 3 reg(k1, k2)]P 2=−m2
π1

≈ 1
2 , (71)

with exact equality for m̂ = 0.
In Fig. 3 we depict the large-Q2 behavior of the

γ ∗(Q)πn(P )γ ∗(Q) transition form factor obtained with the
nonzero current-quark mass in Eq. (67), for the two lowest
mass pseudoscalars. The ultraviolet behavior anticipated for
the ground state from perturbative QCD, Eq. (51), is evident.
This is a numerical verification of the argument associated
with Eqs. (52)–(62); viz., that the truncation we employ
preserves leading-order QCD results. The analogous result
for the first excited state, indicated by Eq. (61), is also
conspicuous.

For the ground state the behavior of the transition form
factor in the chiral limit is not markedly different from that
found with m̂ in Eq. (67) and illustrated in Fig. 3. As evident
in Fig. 4, that is not the case for γ ∗(Q)π1(P )γ ∗(Q) in the
chiral limit. While the form factor is initially negative, as may
be anticipated from Fig. 2, it is positive for Q2 >∼ 8 GeV2 and
the asymptotic behavior indicated in Eq. (62) is exhibited for
Q2 >∼ 50 GeV2. With the model’s parameter value specified in
Eq. (65), we find

F
(2)
1

(−m2
π1

)
lnγ Q2

/
ω2

π1

∣∣
m̂=0 ≈ (0.22 GeV)3. (72)

This mass scale is commensurate with that set by the vacuum
quark condensate. The magnitude of F

(2)
1 depends on the model

065204-8



ELECTROMAGNETIC PROPERTIES OF GROUND-STATE . . . PHYSICAL REVIEW C 71, 065204 (2005)

1 10 100 1000
Q

2 [GeV
2]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

|T
π n
(Q

2 )|
  [

G
eV

-1
]

up/down quarks

4 π2
fπ1

/ (3Q
2) 

chiral limit 
(4 π2

 / 3) (0.22 GeV)3/ Q4

FIG. 4. Large-Q2 behavior of the γ ∗(Q)π1(P )γ ∗(Q) transition
form factor, Eq. (48): Diamonds—the result obtained with m̂ in
Eq. (67); Circles—our chiral limit calculation (m̂ = 0); Solid line—
the curve 4π2

3 (0.22 GeV)3/Q4.

parameter. So, too, does the precise location of the boundary
between the domains on which the transition form factor has
negative and positive support. However, qualitative features,
such as the existence of these domains, are robust.

It is noteworthy that while fπ1 ≡ 0 algebraically in the
chiral limit, in practice there is always a numerical error.
Hence, as is plain from Eq. (61), there will inevitably be a
value of Q2 beyond which the erroneous nonzero value of
fπ1 , produced by the numerical error, will come to dominate
the chiral-limit transition form factor. To obtain the value in
Eq. (72) we estimated the magnitude of this pollution and
subtracted it. For this reason, within the accuracy of our nu-
merical analysis, we cannot provide reliable information on the
ln Q2 modification. The figure hints, however, at the presence
in our model of such a modification to the 1/Q4 behavior.

C. Charge radii

At leading order in the truncation scheme we are using,
and in the isospin symmetric limit, the elastic electromagnetic
form factor of a pseudoscalar meson is described by

e(p1 + p2)Fπn
(Q2) : = e�µ(p1, p2)

= tr
∫

�

χπn

(
�0, 1

2

)
iQ�µ

(
�− 1

2
1
2
, � 1

2 − 1
2

)
× χπn

(
� 1

2 0; −p2
)
S

(
� 1

2
1
2

)−1
, (73)

with Q = p1 − p2. Each element that appears in the integrand
is fully renormalized and the integral is finite. The expression
automatically satisfies [52–54]

(p1 − p2)µ�µ(p1, p2) = 0 (74)

and guarantees

Fπn
(Q2 = 0) = 1. (75)

In Ref. [52] the model described in Sec. IV A was employed
to calculate the electromagnetic form factor of the pion using
Eq. (73). The prediction was subsequently verified in a JLab
experiment performed at intermediate Q2 [55].

0.3 0.32 0.34 0.36 0.38 0.4
ω   [GeV]

0.60

0.65

0.70

0.75

0.80

r π   
[f

m
]

n = 0 (ground state)
n = 1 (radial excitation)
linear fit: 0.61 + 0.11 ω
linear fit: 0.09 + 1.76 ω

FIG. 5. Evolution of ground and first excited state pseudoscalar
mesons’ electromagnetic charge radii with the model’s scale param-
eter ω. Dotted line: rπ = 0.66 fm, which indicates the experimental
value of the ground state’s radius. We must estimate the derivative
in Eq. (76) numerically. That is the primary source of the numerical
error depicted in the figure, which corresponds to a relative error <∼1%
for n = 0 and <∼3% for n = 1.

We have calculated the charge radii of the two lowest mass
pseudoscalars using the standard definition

r2
πn

= −6F ′
πn

(Q2 = 0). (76)

Our results appear in Fig. 5. As promised in association with
Eq. (65), the ground state’s properties are almost insensitive
to the model’s mass scale, ω: in formulating the model, a path
appeared in the (D,ω) parameter space along which vacuum
and ground state properties vary little. The orthogonality of the
excited states with respect to the ground state means there is no
reason to expect such insensitivity in properties of the excited
states. And, indeed, one observes that the charge radius of the
first excited state changes rapidly with increasing ω, with the
ratio rπ1/rπ0 varying from 0.9–1.2.

This outcome can readily be interpreted. The length scale
ra := 1/ω measures the range of strong attraction in our model:
magnifying ra increases the range of strong attraction. In Sec. I
we argued that the properties of radial excitations should be
sensitive to the nature of the interaction between light quarks
at long range. It is now apparent that this is true. Moreover,
decreasing ω has the effect of increasing the active range of the
confining piece of the interaction in Eq. (63). This effectively
strengthens the confinement force. That compresses the bound
state, as one observes in Fig. 5: rπ1 decreases rapidly with
decreasing ω (increasing ra).

A similar result for the evolution of the mass was observed
in Ref. [15], namely, the mass of the first excited state
dropped rapidly with increasing ra . On the domain illustrated
in Fig. 5, the mass of the ground state obtained with nonzero
current-quark mass varied by only 3% while that of the first
excited state changed by 14%. It is natural to expect that
an increase in the strength of the confinement force should
increase the magnitude of the binding energy and hence reduce
the mass, and that is precisely what occurs. (NB. Independent
of the parameters, the ground state mass is identically
zero in the chiral limit because the truncation is symmetry
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preserving. Dynamical chiral symmetry breaking, which has
many consequences, is another reason why properties of the
ground state pseudoscalar meson do not respond rapidly to
modest parameter changes.)

It is natural to suppose rπ1 > rπ0 , namely, that a radial exci-
tation is larger than the associated ground state. However, our
calculations illustrate that with the ground state pseudoscalar
meson’s properties constrained by Goldstone’s theorem and
its pointwise consequences, Eqs. (22)–(24), it is possible for
a confining interaction to compress the excited state with the
consequence that rπ1 < rπ0 . An analysis of the ω dependence
of mπ1 indicates that a value of 1.3 GeV may be obtained with
ω ≈ 0.48 [55]. However, quantitative difficulties connected
with the behavior of the dressed-quark propagator in the
complex-�2 plane [18,56] currently prevent us from studying
the excited state directly with ω > 0.4 in Eq. (63). Hence,
we cannot make a firm prediction for rπ1 . However, our results
suggest 1.1 < rπ1/rπ0 < 1.6, with a linear extrapolation giving

rπ1 � 1.4 rπ0 . (77)

Naturally, we have also studied the evolution of gπnγ γ

with ω. On the domain illustrated in Fig. 5, gπ0γ γ varies
by no more than 1%, whereas gπ1γ γ (ω = 0.3) = −0.55 and
gπ1γ γ (ω = 0.4) = −0.80, which is a variation over a range
of ∼40%. Following the reasoning above, and taking account
of the variation in mπ1 , we conclude that it is likely �π1γ γ >

150 eV >∼ 20 �π0γ γ . Our best estimate is 200 < �π1γ γ (eV) <

300, and linear extrapolation gives

�π1γ γ � 240 eV. (78)

V. EPILOGUE

The strong interaction spectrum exhibits trajectories of
mesons with the same spin+parity, JP . One may distinguish
between the states on these trajectories by introducing an
integer label n, with n = 0 denoting the lowest-mass state,
n = 1 the next-lightest state, etc. The Bethe-Salpeter equation
(BSE) yields the mass and amplitude of every bound state in
a given channel specified by JP . Hence it provides a practical
tool for the Poincaré covariant study of mesons on these
trajectories.

In applying the Bethe-Salpeter equation to a study of
pseudoscalar mesons we made use of the fact that at least one
nonperturbative and symmetry preserving Dyson-Schwinger
equation (DSE) truncation scheme exists. This fact supports a
proof that, in the chiral limit, excited state 0− mesons do not
couple to the axial-vector current; viz., fπn

≡ 0 ∀n � 1.
We demonstrated that the leading-order (rainbow-ladder)

term in the DSE truncation scheme, when consistently im-
plemented, is necessary and sufficient to express the Abelian
anomaly. It can therefore be used to illustrate the anomaly’s
observable consequences. We capitalized on this to show that
even though excited state pseudoscalar mesons decouple from
the axial-vector current in the chiral limit, they nevertheless
couple to two photons. (NB. The strength of this coupling
is materially affected by the continuum contribution to the
Abelian anomaly.) Hence the Primakov process, as employed

for example in PrimEx at JLab [58], may be used as a tool for
their production and study.

A renormalization-group-improved rainbow-ladder trun-
cation is guaranteed to express the one-loop renormalization
group properties of QCD. We exploited this and thereby
determined the leading power-law behavior of the γ ∗πnγ

∗
transition form factor. When the current-quark mass is nonzero
then, for all n, this form factor behaves as (4π2/3)(fπn

/Q2)
at deep spacelike momenta. For all but the Goldstone mode
this leading order contribution vanishes in the chiral limit.
In that case, however, the form factor remains nonzero and
the ultraviolet behavior is �(4π2/3)(−〈q̄q〉/Q4). Although
only exposed starkly in the chiral limit for excited states, this
subleading power-law contribution to the γ ∗πnγ

∗ transition
form factor is always present and in general its coefficient is
not simply related to fπn

.
As one might rationally expect, the properties of excited

(n � 1) states are sensitive to the pointwise behavior of what
might be called the confinement potential between light
quarks. We illustrated this by laying out the evolution of the
charge radii of the n = 0, 1 pseudoscalar mesons. As it is
shielded by Goldstone’s theorem, the ground state’s radius
can be insensitive to details of the long-range part of the
interaction. However, that is not true of rπ1 , the radius of
the first excited state, which is orthogonal to the vacuum.
An increase in the length scale that characterizes the range
of the confining potential reduces rπ1 . This result states that
increasing the confinement force compresses the excited state:
indeed, it is possible to obtain rπ1 < rπ0 . However, our current
best estimate is rπ1 � 1.4rπ0 .

A detailed exploration of the properties of collections
of mesons on particular JP trajectories offers the hope of
exposing features of the long-range part of the interaction
between light quarks. In principle, this interaction can be quite
different from that between heavy quarks. The pseudoscalar
trajectory is of particular interest because its lowest mass
entry is QCD’s Goldstone mode. Chiral current conservation
places constraints on some properties of every member of
this trajectory, whose study may therefore provide information
about the interplay between confinement and dynamical chiral
symmetry breaking.
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APPENDIX: ULTRAVIOLET BEHAVIOR OF
TRANSITION FORM FACTOR

We observed in Sec. IV B that since we are concerned with
J PC = 0−+ states it follows that
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T
π0

n
µν (k1, k2) = 4πα

3
iεµνρσ

= [KρIσ (K,P ) − KαJρσα(K,P )], (A.1)

where Eq. (54) yields

Iσ (K,P )

= trZ2

∫ M

�

1

2
τ 3γ5γσχπ0

n
(�; P ) (�2 + K2)�(�,K), (A.2)

with �(l, K) = 1/[(�2 + K2)2 − 4(� · K)2]. In this appendix
we work always on the ultraviolet domain where K · P = 0
and K2 = Q2.

The leading contribution to T
π0

n
µν (k1, k2) is obtained from

Eq. (A.2). That is apparent because

(�2 + K2)�(�,K) = 1

Q2
+ O

(
1

Q4

)
, (A.3)

and this result inserted into Eq. (A.2), with Eq. (18) used to
identify the residue, yields

Iσ (K,P ) = Pσ

{
fπn

Q2
+ O

(
1

Q4

)}
. (A.4)

Equation (51) follows immediately.
Herein we also want the subleading contribution. Consider

Eq. (A.2) with the explicit K2 factor, which we have already
used, removed from the numerator:

Ĩσ (K,P ) = trZ2

∫ M

�

1

2
τ 3γ5γσχπ0

n
(�; P ) �2�(�,K). (A.5)

This term’s contribution to Eq. (A.1) can be written

Ĩσ (K,P ) = PσF (2)
I (P 2,K2), (A.6)

with

F (2)
I (P 2,K2)P 2

= trZ2

∫ M

�

1

2
τ 3γ5γ · Pχπ0

n
(�; P ) �2�(�,K). (A.7)

Inspection and consideration of Eqs. (2), (7), (17) reveals
that one may write

trD
[
γ5γ · Pχπ0

n
(�; P )

] = 4P 2 XP 2 [�2, (� · P )2], (A.8)

where P 2 = −m2
πn

, i.e., P 2 is an eigenvalue, not a variable,
and the result is a function of (� · P )2 because J PC = 0−+.
(NB. For the following argument it is not necessary to make
explicit the color and flavor structure.)

It is further apparent from Eqs. (2), (7), (17) that when
chiral symmetry is dynamically broken

0 < XP 2 (0, 0) < ∞ ; (A.9)

and, moreover, that XP 2 [�2, (� · P )2] is a smooth function of
its arguments so that it may be written

XP 2 (�2, � · P ) =
∞∑
i=0

X i
P 2 (�2)(� · P )2i . (A.10)

In addition,

X i
P 2 (�2)

�2�ω2
πn∼

(
1

�2

)(3+i)

, (A.11)

up to lnγ̃ (�2/ω̃2
πn

) corrections, where ω̃2
πn

is a mass scale that
characterizes the momentum-space width of the pseudoscalar
meson’s Bethe-Salpeter wave function and γ̃ is this wave
function’s anomalous dimension.

One can now return to Eq. (A.7) and use the information
provided to determine the dominant contribution

F (2)
I (P 2,K2) = trZ2

∫ M

�

1

2
τ 3X 0

P 2 (�2) �2�(�,K). (A.12)

The angular integration is straightforward:∫
d4���(�,K) = π2

K2�2

K2 + �2 − |K2 − �2|
K2 + �2

, (A.13)

from which it follows that (recall K2 = Q2)

F (2)
I (P 2,Q2)

Q2→∞= 1

Q2
trZ2

1

8π2

∫ Q2

0
dy

1

2
τ 3X 0

P 2 (y)
y2

Q2 + y

Q2→∞= F
(2)
I (P 2)

ln
(
Q2

/
ω̃2

πn

)
Q4

, (A.14)

where we have used Eq. (A.11) and neglected the anomalous
dimension. [NB. An inspection of Eq. (A.13) will reveal that
the contribution to the integral from �2 > Q2 is finite and,
as Q2 → ∞, suppressed with respect to the term we have
exposed.]

The true exponent and width in the logarithmic modification
to the power-law behavior will be affected by, e.g., dressing
of the quark-gluon vertex, i.e., corrections to Eq. (53), and
diagrams beyond the rainbow-ladder truncation. Herein we
are satisfied merely to establish that the subleading power-law
behavior is 1/Q4 and that, in general, a lnγ Q2 modification
may be present.

The analysis presented in this appendix can be adapted
to show that in general the leading contribution from
KαJρσα(K,P ) in Eq. (57) also exhibits behavior of the type
in Eq. (A.14).
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[15] A. Höll, A. Krassnigg, and C. D. Roberts, Phys. Rev. C 70,

042203(R) (2004).
[16] E. S. Ackleh, T. Barnes, and E. S. Swanson, Phys. Rev. D 54,

6811 (1996).
[17] J. C. R. Bloch, Yu. L. Kalinovsky, C. D. Roberts, and

S. M. Schmidt, Phys. Rev. D 60, 111502(R) (1999).
[18] C. J. Burden and M. A. Pichowsky, Few Body Syst. 32, 119

(2002).
[19] D. Jarecke, P. Maris, and P. C. Tandy, Phys. Rev. C 67, 035202

(2003).
[20] P. Watson, W. Cassing, and P. C. Tandy, Few Body Syst. 35, 129

(2004).
[21] C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. Phys. 45, S1

(2000).
[22] R. Alkofer and L. von Smekal, Phys. Rep. 353, 281 (2001).
[23] P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003).
[24] A. Bender, C. D. Roberts, and L. von Smekal, Phys. Lett. B380,

7 (1996).
[25] A. Bender, W. Detmold, A. W. Thomas, and C. D. Roberts, Phys.

Rev. C 65, 065203 (2002).
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