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A new evaluation of the πN� term is presented that incorporates recent s-channel phase shifts and t-channel
ππ phase shifts. We also introduce analyticity-based extrapolation techniques that, along with standard dispersion
relation methods, produce a more reliable extrapolation to the Cheng-Dashen point. A recent George Washington
University (GWU) phase-shift analysis leads to a � term of 81 ± 6 MeV.
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I. INTRODUCTION

The “experimental” πN� term, defined by Eq. (1) in terms
of the πN amplitude D(+), is of key importance in hadronic
physics, as it is a measure of chiral symmetry breaking
and, on the QCD level, the nonstrange quark masses. It is
difficult to evaluate � in terms of experimental data because
D(+) is required at the “Cheng-Dashen” kinematic point,
which lies outside of the physical region. Dispersion relations
are the preferred tools for relating unphysical amplitudes to
experimental data. In a recent article [1], the � term was
evaluated by an application of interior dispersion relations
(IDRs). The present article significantly improves that analysis
by incorporating t-channel analyticity and ππ elastic phase
shifts. In addition, we employ a more recent GWU pion-
nucleon phase-shift analysis [2].

We begin with a brief preview of our method for determin-
ing �. As will be discussed more fully in Sec. II, IDRs express
πN amplitudes as the sum of a Born term (which vanishes
for our particular application) and two dispersion integrals.
The first dispersion integral, Is , requires an integration of
Im D(+) for the process πN → πN over a path in the physical
s channel. Is may be accurately evaluated (except for a small,
smooth correction arising from the truncation of the dispersion
integral at high energy) by use of well-established s-channel
phase-shift analyses. The second dispersion integral, It ,
requires an integration of Im D(+) for the process ππ → NN

evaluated over the region t � 4 (pion mass units). The region
4 � t < 4m2, where m is the proton mass, is below the physical
threshold and so is not directly accessible to experiment. For
small t we will evaluate It up to a small, smooth contribution by
use of t-channel partial-wave dispersion relations. The inputs
needed to evaluate these dispersion relations are t-channel
partial-wave amplitudes evaluated in the region (t � 0), where
they are projected from the same set of s-channel amplitudes
as were used to evaluate Is , and ππ phase shifts for t � 4,
which are related by unitarity to the phase of the t-channel
process ππ → NN . Combining these pieces, we reduce the
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calculation to known quantities and unknown “small, smooth”
corrections that may be well represented by a low-order
polynomial in t and that, therefore, may be determined or
finessed through the method of “discrepancy functions.” This
new procedure leads to a more stable extrapolation of the
πN amplitude to the Cheng-Dashen point than our previous
method and hence to a more reliable value of �.

In Sec. II, we review the IDR method of evaluating the
� term via a discrepancy function. In Sec. III we show how
the t-channel integral, It , may be evaluated using ππ phase
shifts, and t-channel partial-wave amplitudes in the region
t � 0. The method for obtaining the latter t-channel partial-
wave amplitudes from s-channel phase shifts is reviewed in
Sec. IV. Numerical results are found in Sec. V. Kinematics
and other details are given in the Appendix.

II. REVIEW OF IDR DISCREPANCY FUNCTION METHOD

A. Interior dispersion relations

As established by Cheng and Dashen [3], the conventional
“experimental” � term is (in mass units of µ = mπ+c2 = 1)

� = D
(+)

(ν = 0, t = 2)f 2
π , (1)

where D(+) = A(+) + ν
4m

B(+) is the current-algebra pion-
nucleon scattering amplitude, and fπ ≈ 0.663 ≈ 92.5 MeV
is the pion decay constant. The bar implies a Born-term
subtraction. The amplitude is evaluated at the unphysical, but
on-shell, Cheng-Dashen (CD) point: (ν ≡ s − u = 0, t = 2).

One way to evaluate D(+) at the CD point is to use a
dispersion relation defined along a path in the complex (ν, t)
plane that intersects this point. This may be achieved by the use
of IDRs, in which the amplitude is dispersed in the variable t
along a curve of fixed path variable, a = −[su − (m2 − 1)2]/t .
The natural set of independent variables with which to write
IDRs is (a, t). A curve of fixed negative a passes through the
interior of the s-channel physical region (with t < 0), through
the t-channel pseudophysical region (with 4 � t � 4m2), and
finally through the t-channel physical region (with t � 4m2).
The value of a for which the path intersects the CD point is
aCD = −m2 + 1

2 ≈ −0.871 GeV2 = −44.7.

0556-2813/2005/71(6)/065201(8)/$23.00 065201-1 ©2005 The American Physical Society



HITE, KAUFMANN, AND JACOB PHYSICAL REVIEW C 71, 065201 (2005)

The IDR for the amplitude D(+)(a, t) is [4]

D(+)(a, t) = D(+)(a, 0) + t

tN
D

(+)
N (a, t)

+ t

π

∫ ∞

4

Im D(+)(a, t ′)
t ′(t ′ − t)

dt ′

+ t

π

∫ 0

−∞

Im D(+)(a, t ′)
t ′(t ′ − t)

dt ′. (2)

The subtracted form ensures convergence of the integrals. The
unsubtracted Born term, D

(+)
N (a, t), is defined by

D
(+)
N (a, t) = g2

4m

(tN − 2)2

(m2 − a)(t − tN )
, (3)

where tN ≡ t(s = m2, a) = (4m2 − 1)/(m2 − a) , and
g2/4π = 13.73 [5] is the pseudoscalar pion-nucleon coupling
constant. It is easily verified that the Born term vanishes if
a = aCD.

The first integral in Eq. (2) is integrated over the cut in
the t-channel physical/pseudo-physical region, and the second
integral is integrated over the cut in the s-channel physical
region. Changing the integration variable in the second integral
to s ′ = s(a, t ′), we may rewrite the IDR as [6]

D(+)(a, t) = D(+)(a, 0) + t

tN
D

(+)
N (a, t)

+ t

π

∫ ∞

4

Im D(+)(a, t ′)
t ′(t ′ − t)

dt ′

+ t

π

∫ ∞

sth

Im D(+)[a, t(s ′, a)]

t(s ′, a)

×
(

1

s ′ − s
+ 1

s ′ − u
− 1

s ′ − a

)
ds ′, (4)

where sth = (1 + m)2 is the s-channel threshold, and where it is
understood that s and u are evaluated at the point corresponding
to (a, t); see the Appendix. It is also assumed throughout this
paper that both t ′ and s ′ in the kernels of the integrals have
small negative imaginary parts, −iε. Consequently, Re D(+)

results from use of the principal-value prescription. It also
follows that D(+) is real in the interval, 0 � t � 4, between the
s- and t-channel branch points.

From the dispersion relation, Eq. (4), it is seen that if
the pion-nucleon coupling constant, the imaginary part of the
amplitude on the cuts, and the isospin-even scattering length
a(+) [≡ 1

3 (2a3 + a1) = 1
4π(1+1/m)D

(+)(a, 0)] are known, then
the dispersion relation gives the real part of the amplitude
everywhere on the path defined by the chosen value of a.
However, the imaginary parts are not known for the entire in-
tegration regions, making it necessary to use an approximation
scheme, to which we now turn.

B. Discrepancy function

The discrepancy-function method is based on the assump-
tion that it is possible to find known quantities that, when
subtracted from the amplitude, leave a smooth remainder that
may be fit by a low-order polynomial in (and presumably

somewhat beyond) the region in which the amplitude is known.
The quantities to be subtracted may be Born terms, dispersion
integrals, etc. that account for the amplitude’s other than
smooth behavior. The amplitude is then reconstituted from the
low-order polynomial and the other quantities and provides
a good approximation in all regions in which the quantities
are known and accounts for all the amplitude’s nonsmooth
behavior.

To make this idea more precise, assume that the imaginary
part of the amplitude is known accurately for sth < s < sm,

and define the discrepancy function as

d(a, t) = D(+)(a, t) − t

tN
D

(+)
N (a, t)

− t

π

∫ ∞

4

Im D(+)(a, t ′)
t ′(t ′ − t)

dt ′

− t

π

∫ sm

sth

Im D(+)[a, t(s ′, a)]

t(s ′, a)

×
(

1

s ′ − s
+ 1

s ′ − u
− 1

s ′ − a

)
ds ′

≡ D(+)(a, t) − t

tN
D

(+)
N (a, t) − It (a, t) − Is(a, t).

(5)

By defining the discrepancy function in this manner, the
property of IDRs that all a curves pass through the s-
channel threshold point (s = sth, t = 0) ensures that d(a, 0) =
D(+)(a, 0) = 4π (1 + 1/m) a(+) and is independent of the path
parameter a. The s-channel integral, Is , may be evaluated
directly from extant πN phase-shift analyses. The t-channel
integral, It , will be evaluated, up to a low-order polynomial, by
an indirect method in Sec. IV. Under the assumption that both
integrals may be evaluated, the procedure follows three steps:
(1) For fixed path parameter a (equal to aCD in this application),
the discrepancy function d(a, t) is evaluated over an interval
in t in the physical s-channel region for which D(+)(a, t)
is accurately known from the same partial-wave analysis.
(2) The discrepancy function is then fit to a low-order
polynomial in t whose range of validity includes the desired
kinematic point. (3) Equation (5) is rearranged to read

D(+)(a, t) = d(a, t) + t

tN
D

(+)
N (a, t) + It (a, t) + Is(a, t),

(6)

and the variable t is set equal to the desired value. Assuming
the path parameter were chosen to be aCD, we simply set t = 2
to obtain D(+)(aCD, 2). The � term is then obtained from
Eq. (1).

In our previous article, the term −It (a, t) was omitted in
the definition of the discrepancy function [Eq. (5)], so that
the branch cut at t = 4 was not removed. The discrepancy
function was then fit not with a polynomial in t, which lacked
the branch point, but with a polynomial in the the t-channel
ππ momentum q = √

t/4 − 1. The present method is superior
because it, to a large extent, removes the t-channel threshold
branch cut, leaving a smoother discrepancy. We now turn to
the evaluation of It (a, t).
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III. THE t-CHANNEL INTEGRAL

In this and in the next section, we use dispersion relations
for the t-channel partial-wave amplitudes to write It (a, t) in
terms of known quantities (s-channel πN amplitudes and ππ

partial waves) plus a rapidly convergent series in t that can be
incorporated into the discrepancy function for D(+).

The t-channel partial-wave expansion for the amplitude
D(+) is [7,8]

D(+) = −4π

p2

∑
j even

(2j + 1)(pq)j

×
[
f

j
+(t)Pj (zt ) − t

4m

zt

[j (j + 1)]
1
2

f
j
−(t)P ′

j (zt )

]

≡
∑
j even

fj (a, t), (7)

where p ≡
√

t/4 − m2, q = √
t/4 − 1, and zt = cos θt . In

this expression f
j
±(t) are t-channel partial-wave amplitudes,

and we define f 0
−(t) ≡ 0. The corresponding Born terms,

f
j

±N (t), from which fj,N may be constructed, are given in
Ref. [9]. The Born-term free partial-wave amplitudes are
defined by f̃j ≡ fj − fj,N . We call fj (a, t) the jth partial-
wave contribution to D(+) [not to be confused with the
πN t-channel partial-wave amplitude, f

j
±(t)] and note that,

although fj (a, t) is a function of both a and t, a is held
constant, and its dependence will be formally suppressed in
the rest of this paper. We will also suppress the a dependence
of the other related functions such as D(+)(a, t) and It (a, t).

Recalling its definition, Eq. (5), we have

It (t) =
∑
j even

t

π

∫ ∞

4

Im fj (t ′)
t ′(t ′ − t)

dt ′. (8)

It does not matter whether fj or f̃j is used in the integrand
because Im fj,N (t � 4) = 0. Partial-wave dispersion relations
will now be used to evaluate this integral.

The amplitudes fj for all j are finite at p = 0 [10]. Owing
to the asymptotic behavior of f

j
+ and f

j
− [11], the fj satisfy

the dispersion relation [12]

f̃j (t) = f̃j (0) + t

π

∫ ∞

4

Im f̃j (t ′)
t ′(t ′ − t)

dt ′

+ t

π

∫ 0

tM

Im f̃j (t ′)
t ′(t ′ − t)

dt ′ + Pj (t), (9)

where

Pj (t) = t

π

∫ tM

−∞

Im f̃j (t ′)
t ′(t ′ − t)

dt ′

is expected to be a rapidly convergent series in t for sufficiently
small |t/tM |. We have used the fact that fj,N satisfies the same
dispersion relation as does fj with Im fj,N (t � 4) = 0.

Because higher partial-waves are thought to be less impor-
tant in the low-t region, the partial-wave expansion used to
approximate D(+) will be truncated at j = J , and, in practice,
J = 0 is adequate to give a smooth, nearly linear discrepancy
function, d(t). Since It (t) will be used in a discrepancy function

calculation, it need only be defined up to a rapidly convergent
series in t. Thus, without loss of generality, we redefine It as

It (t) =
J∑

j=0,2,...

[
f̃j (t) − f̃j (0) − t

π

∫ 0

tM

Im f̃j (t ′)
t ′(t ′ − t)

dt ′
]
, (10)

as can be seen by comparison with Eqs. (5), (7), and (9). The
amplitudes f̃j (t) will be evaluated in the next section for the
range tM < t � 0. This is sufficient information to evaluate
It (t) for negative values of t.

In reconstructing the amplitude at the CD point, however,
we will also need It (2). Although we may easily evaluate the
integral in Eq. (10) for any value of t including t = 2, f̃j (2) is
not available. In the spirit of the discrepancy method, one might
be tempted to think that for each j the expression in the square
brackets could be evaluated at negative values of t and analyti-
cally continued to positive values. However, because of the im-
portance and closeness of the t � 4 cut [see Eq. (8)] such con-
tinuations are not well represented by a low-order polynomial.

Fortunately, owing to extended unitarity, the phase of fj is
equal to that of elastic ππ scattering up to t = 16 [13]. This
phase can be used to define a related amplitude, Oj (t)fj (t),
whose continuation is more reliable because its cut does not
begin until t = 16. The Omnes function, Oj , is defined as [14]

Oj (t) = exp

[
− t

π

∫ ∞

4

δj (t ′)
t ′(t ′ − t − iε)

dt ′
]

, (11)

where we set δj equal to the ππ elastic phase shift [15]
from t = 4 to tc = 1 GeV2 ≈ 50.3. For t > tc, we take δj =
δj (tc) · tc/t so that Oj (t) is finite at asymptotic values of t.
The final results are insensitive to this choice of asymptotic
behavior. For example, if tc is increased to 1.4 GeV2, the
calculated value of the � term is altered by only a small
fraction of an MeV.

For t < 4 the Omnes function is real, whereas for t � 4 its
phase is −δj . Therefore in the interval 4 � t � 16, extended
unitarity implies that the phase of the Omnes function cancels
that of fj , and so in this interval Im (Ojfj ) is zero if the ππ

phase shifts are exact, and it is expected to be small if they
are only approximately correct. In practice, it is believed that
Im (Ojfj ) is small up to t ≈ 50 [13].

Since our parametrization of δj vanishes at large t, Oj f̃j

satisfies Eq. (9), the same dispersion relation as does f̃j . If
in the dispersion relation for Oj f̃j , we write Im (Oj f̃j ) =
Im [Oj (fj − fj,N )] in the t � 4 integral, then the unknown
contribution to the integral comes from Im (Ojfj ), which does
not contribute significantly until t � 16 in contrast to the t � 4
cut contribution of Im f̃j in Eq. (8). �j (t) is defined to be the
sum of the unknown portions of the (subtracted) dispersion
integrals:

�j (t) = t

π

∫ ∞

4

Im (fjO
j )

t ′(t ′ − t)
dt ′ + t

π

∫ tM

−∞

Oj Im f̃j

t ′(t ′ − t)
dt ′

= Oj f̃j (t) − f̃j (0) − t

π

∫ 0

tM

Oj Im f̃j

t ′(t ′ − t)
dt ′

+ t

π

∫ ∞

4

fj,N Im Oj

t ′(t ′ − t)
dt ′. (12)
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The second line, which may be interpreted as a discrepancy
function, follows from an application of the dispersion relation
[Eq. (9)]. As with Eq. (10) it may be evaluated in terms of
known amplitudes for t < 0. From the first line of Eq. (12)
and the fact that Im (Ojfj ) ≈ 0 below t = 16, we expect the
discrepancy function to be well represented by a low-order
polynomial out to t = 4, and probably beyond. We have chosen
tM = −70, below which we are not able to evaluate the partial-
wave projection f̃j (t) owing to the proximity of the double
spectral region.

Having obtained the t � 0 values for �j , one then extrapo-
lates to t > 0 and reconstructs the amplitude from Eq. (12):

f̃j (t) = 1

Oj (t)

[
�

j
extrap(t) + f̃j (0) + t

π

∫ 0

tM

Oj Im f̃j

t ′(t ′ − t)
dt ′

− t

π

∫ ∞

4

fj,N Im Oj

t ′(t ′ − t)
dt ′

]
, (13)

where �
j
extrap(t) is obtained from a polynomial fit of the

�j (t) values for t < 0 [16]. Substituting this result into our
expression for It gives

It (t) =
J∑

j=0,2,...

1

Oj (t)

[
�

j
extrap(t) + f̃j (0)[1 − Oj (t)]

+ t

π

∫ 0

tM

[Oj (t ′) − Oj (t)]Im f̃j

t ′(t ′ − t)
dt ′

− t

π

∫ ∞

4

fj,N Im Oj

t ′(t ′ − t)
dt ′

]
. (14)

This expression for the t-channel contribution will be used
to generate values of the discrepancy function d(a, t) for
t < 0 which will then be extrapolated to t > 0, where it, the
s-channel contribution, Is , and the Born term contribution, DN ,
will be combined to give the full amplitude, D(+)(aCD, tCD),
and hence �. The only quantity on the right-hand side of
the previous equation that remains to be calculated is f̃j for
tM < t � 0, to which we now turn.

IV. THE t-CHANNEL PARTIAL-WAVE AMPLITUDES

The real and imaginary parts of f
j
±(t) are given, respec-

tively, by integrals over the real and imaginary parts of the
invariant amplitudes. (See Refs. [7] and [8].) In particular,

f
j
+(t) = − 1

8π

p2

(pq)j−1
Cj (t) (15)

and

f
j
−(t) = 1

8π

[j (j + 1)]
1
2

(2j + 1)

1

(pq)j−1
[Bj−1(t) − Bj+1(t)],

(16)
where the partial-wave projections are defined by

B
(±)
j (t) =

∫ +1

−1
B(±)(t, zt )Pj (zt ) dzt (17)

with a similar expression for C
(±)
j (t). The integrals are over the

range −1 � zt � 1, which for negative t lies in the unphysical

region between the physical s and u channels where zt is,
respectively, −1 and +1. To evaluate f

j
±(t) for even values of

j, which are the only ones needed in this paper, the appropriate
integrands are B(+)/ν and C(+) multiplied by even functions
of ν. For even j, the symmetry of the invariant amplitudes and
Pj (zt ) allows us to replace these integrals by twice the same
integral taken from zt = −1 to zt = 0, that is, from ν = 0
to νs(t) = −4pq =

√
(4m2 − t)(4 − t), where the physical s

channel begins. Referring to B(+)/ν and C(+) by the generic
amplitude F, we need to evaluate Re F (ν, t) and Im F (ν, t)
from ν = 0 to νs(t). Concentrating first on Im F (ν, t), we
recognize that both u and s cuts may contribute, that is,

Im F (ν, t) = discνF (ν, t) = discsF (ν, t) + discuF (ν, t),
(18)

where discxF is the discontinuity across the x cut. We have
at our disposal the s-channel partial-wave expansion for F,
and within the Lehmann zs ellipse, discsF is given by the
imaginary part of the s-channel partial-wave expansion for F.
We therefore use the s-u crossing properties of B(+)/ν and
C(+) to write everything in terms of discsF :

Im F (ν, t) = discνF (ν, t) = discsF (ν, t) + discsF (−ν, t).

(19)

This means that if we want to evaluate Im F (ν, t) in the
projection integral over the interval −1 � zt � 0 by means
of the imaginary part of an s-channel partial-wave expan-
sion, then it must be evaluated at s = (2m2 + 2 − t + ν)/2
and at s = (2m2 + 2 − t − ν)/2. Consequently, the s-channel
partial-wave expansion is evaluated at every point along
the s cut from threshold to where zt = −1, that is, s−1 =
[2m2 + 2 − t +

√
(4m2 − t)(4 − t)]/2, and the −1 � zt � 0

projection integral is done by integrating the imaginary part
of an s-channel partial-wave expansion with the appropriate
factors from threshold to s−1.

Since Re F cannot be evaluated using partial-wave expan-
sions over the whole region 0 � ν � νs , we take advantage
of its fixed-t dispersion relation. Again because the region
over which partial-wave expansions are known is finite, a
discrepancy method is used to accommodate the high-energy
contribution. We define a discrepancy function

dν(ν, t) = F (ν, t) − FN (ν, t) − 2

π

∫ νm

ν0

ν ′Im F (ν ′, t)

ν ′2 − ν2
dν ′,

(20)

where FN (ν, t) is the fixed-t Born term, the lower limit of
integration is the minimum of 0 and ν(t, sth) = t + 4m, and
the upper limit of the integration νm = ν(t, sm), where sm is the
largest value of s where partial-wave expansions are available.
If we change the integration over ν to an integration over s and
use this expression for Im F (t, ν) in terms of the imaginary
parts of s-channel partial-wave expansions, dν can be written
as

dν(ν, t) = F (ν, t) − FN (ν, t) − 1

π

∫ sm

sth

Im F [s ′, zs(t, s
′)]

×
[

1

s ′ − s(ν, t)
+ 1

s ′ − u(ν, t)

]
ds ′, (21)
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where Im F (s, zs) is the imaginary part of the s-channel
partial-wave expansion of F. When the s and u cuts overlap
both terms in the square brackets contribute according to the
iε prescription.

In practice, the values for the discrepancy functions in the
physical region are very flat and can be easily fit to a low-order
polynomial in ν2 and extrapolated to the region 0 � ν � νs .
Then Re F can be obtained from

F (ν, t) = dν,extrap(ν, t) + FN (ν, t)

+ 1

π

∫ sm

sth

Im F [s ′, zs(t, s
′)]

×
[

1

s ′ − s(ν, t)
+ 1

s ′ − u(ν, t)

]
ds ′. (22)

It appears to be possible to use the projection expressions to
evaluate f

j
±(t) for values of t as low as −70.

V. RESULTS

In this section, we will present the numerical details leading
to the evaluation of the experimental � term. We begin by
evaluating the discrepancy function:

d(t) = Re D(+)(t) − t

tN
D

(+)
N (t) − It (t) − Is(t), (23)

where the last two terms are t- and s-channel dispersion
integrals defined in Eq. (5). All calculations in this section have
a = aCD. Our first goal is to determine d(t) from experimental
data for t in the interval (−25, 0). We discuss in turn each
contribution to the right-hand side of the definition.

Re [D(+)(aCD, t)] was evaluated in the interval −25 <

t < 0 by summing the s-channel partial-wave contributions
determined from the GWU FA02 phase-shift solution. As
mentioned earlier, the Born term is zero for a = aCD, and
it is included in the discrepancy formula in case the reader
wishes to extend our procedure to other values of a.

The principal value integral Is(t) was evaluated by numer-
ical integration directly from its definition in Eq. (5). The
imaginary part of D(+)(aCD, t ′), needed in the integrand, was
also obtained from the FA02 phase-shift solution. The upper
limit of the integral is the value of s that corresponds to
the upper limit of validity of the FA02 partial-wave solution
(sM = 4.8 GeV2 ≈ 250 in pion units). Because t occurs only
in the dispersion kernel, Is(t) may be evaluated for any desired
value of t. Figure 1 displays Is(t) for t in the range (−25, 2).
[The oscillation in Is(t) is a result of the low-lying s-channel
P33 resonance.] The value Is(2) ≈ 0.232 was used in Eq. (6) to
aid in the evaluation of D(+)(aCD, 2) (i.e., at the Cheng-Dashen
point). For comparison, Re D(+)(t) is also displayed in the
range (−25, 0).

To evaluate It (t), we first determined �j (t) as defined
in Eq. (12). As discussed in Sec. IV, the t-channel partial-
wave amplitudes fj (t) for t < 0 may be computed from the
projection formulas [Eqs. (15)–(17)]. The imaginary parts of
the invariant amplitudes within the required region t < 0 and
−1 < zt < +1 were obtained from the s-channel partial-wave

FIG. 1. Dispersion integral Is(t) as defined in Eq. (5), evaluated
by use of GWU phase-shift analysis FA02. The amplitude Re D(+)(t)
(dashed line) is also shown for comparison. All figures are displayed
in pion mass units. Alternatively, t, D, I , and f̃ 0

+ may be replaced by
the dimensionless quantities t/µ2, µD, µI , and f̃ 0

+/µ.

series and the FA02 phase shifts. For the real parts of the
invariant amplitudes, fixed-t dispersion relations were used.
The final results for the j = 0 case are displayed in Fig. 2.
The partial-wave amplitudes are very similar to those given
in Table 2.4.6 of Ref. [7]. (There is a slight shift in the
values of the j = 0 waves, which may be due to the different
values of the pion-nucleon coupling constant as used in
Ref. [7] (f 2

pv = 0.079) and the current FA02 analysis (f 2
pv =

0.076). The t-channel partial-wave amplitudes with higher j
are almost identical to those in the table in [7].)

Using the values of fj (t) determined for t � 0, we used
Eq. (12) to determine the partial-wave discrepancy function
�j (t). The resulting function and two simple fits (a polynomial
and a Pade) are given for j = 0 in Fig. 3. Fits to cubic, quartic,
and quintic polynomials gave mutually consistent results to
within about 3%. The Pade fit used a quadratic in t divided
by a linear function in t. The extrapolations to the point t = 2
are also shown on the figure. It was found that to obtain a

FIG. 2. t-channel partial-wave amplitudes Re f̃ 0+(t) and Im f̃ 0+(t)
projected from invariant amplitudes evaluated by the use of the phase-
shift analysis FA02. The Born term has been subtracted.
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FIG. 3. �j (t) as determined by Eq. (13) and the partial-wave
amplitudes of Fig. 2 for the region t < 0. The extrapolation to t = 2
is performed by a quartic fit as described in the text. The dashed
portion represents the extrapolation.

smooth discrepancy function it was sufficient to include only
the j = 0 contribution to It (t). The resulting function It (t),
reconstructed from Eq. (14), is displayed in Fig. 4.

Figure 5 compares the discrepancy function dst(t) ≡ d(t)
as defined in Eq. (5) with the “old fashioned” discrepancy
function ds(t) for which only Is(t) has been subtracted. That
is, dst(t) = ds(t) − It (t). On comparison with Fig. 1, it is seen
that the large resonance structures in Is(t) and D(+)(t) cancel,
leading to a much smoother function. Furthermore, it is seen
that the further subtraction of It (t) yields a yet smoother
function dst(t), one that may be expected to extrapolate more
reliably than ds(t).

To illustrate this point, we have extrapolated ds(t) (see
Fig. 6) by fitting it to several polynomials in t of different order.
It is seen that high-order polynomials (fourth through sixth
order) are required to give a respectable fit to ds(t) in the region
(−25 < t < 0). The extrapolations of these polynomials to
t = 2 give a rather wide range of values, which lead to a
large uncertainty in the corresponding � term (the values of
which are shown in parentheses on the figure). This contrasts

FIG. 4. The reconstructed function It (t) using Eq. (14) and the
results of the previous two figures.

FIG. 5. Comparison of the discrepancy functions ds(t) and dst(t).
Note that the latter is much more linear, indicating that it may be
more reliably extrapolated.

with the extrapolation of the improved discrepancy function
dst(t) as shown in Fig 7. The resulting linear and quadratic
extrapolations are much more consistent, yielding � terms
within 1 MeV. To assign meaningful uncertainties to this value
is difficult. From variations in the � term observed when
different polynomial orders are used in extrapolating �j and
dst, when the cutoff parameter in the Omnes function is varied,
and when we vary the fitting range of the discrepancy function,
we estimate � ≈ 81 ± 6 MeV. The “error bar” is simply our
estimate of the extrapolation uncertainty and does not include
any uncertainty inherent in the phase-shift analysis. Thus we
again see that the recent GWU phase-shift analysis implies
a significantly larger � term than was previously obtained
(as with, for example, the KH80 phase shifts). This is in
agreement with our earlier calculation [1] and also with the
recent calculation of Pavan et al. [17].

FIG. 6. Extrapolation of ds(t) to obtain the � term, whose value in
MeV is given in parenthesis. ds is fit to a polynomial in the region t � 0
and is then extrapolated to t > 0. Note that high-order polynomials
are required to fit the function and that the extrapolated values are
rather sensitive to the order of the polynomial.
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FIG. 7. Extrapolation of the improved discrepancy function dst(t)
to obtain the � term, whose value in MeV is given in parenthesis.
Because of the near linearity of dst(t) both linear and quadratic fits
are adequate and give consistent results.
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APPENDIX: KINEMATICS

We use the conventional Mandelstam variables (s, t, u),
which are related by s + t + u = 2m2 + 2µ2, where m and µ

are the nucleon and charged pion masses, respectively. From
here on and in the body of this paper we set µ = 1. In addition,
we define the IDR “path” variable as

a = −[su − (m2 − 1)2]/t. (A.1)

In terms of a, the s-channel physical boundaries are a =
−∞ (t = 0) for forward scattering and a = 0 for backward

scattering. For fixed negative a, the interval t ∈ (0,−∞)
defines a path of fixed laboratory angle

cos θL = − a + m2 − 1

[a2 − 2a(m2 + 1) + (m2 − 1)]
1
2

. (A.2)

The c.m. angle, given by

cos θC = a + s

a − s
, (A.3)

varies over the path of fixed a. Any pair of the four variables
(s, t , u, a) may be taken as independent. Fixed-t dispersion
relations are customarily written with ν ≡ s − u as the second
variable. The pair ν, t is convenient because the invariant
amplitudes are, at fixed t, even or odd under the exchange
of s and u (i.e., ν → −ν.) For fixed-a dispersion relations (or
IDR), the natural choice of independent variables is a and t.
With this choice, ν is given by

ν(a, t) =
√

(t − 4m2)(t − 4) + 4at (A.4)

and s and u become

s(a, t) = m2 + 1 − t

2
+ ν(a, t)

2
(A.5)

and

u(a, t) = m2 + 1 − t

2
− ν(a, t)

2
. (A.6)

Finally, in evaluating the t-channel contribution to the discrep-
ancy function, it is natural to adopt t, the square of the t-channel
c.m. energy, and zt , the cosine of the t-channel c.m. scattering
angle, as independent variables. zt is related to the previous
variables by

zt = cos θt = ν

4pq
, (A.7)

where p2 = t/4 − m2 and q2 = t/4 − 1 are the squares of the
NN̄ and ππ t-channel c.m. momenta.
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