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Signals in single-event pion interferometry for granular sources of quark-gluon plasma droplets
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We investigate two-pion Bose-Einstein correlations of quark-gluon plasma droplet sources in single-event
measurements. We find that the distribution of the fluctuation between correlation functions of the single and
mixed events provides useful signals to detect the granular structure of the source.
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I. INTRODUCTION

Recently, there has been much progress in the experimental
search for the quark-gluon plasma [1,2]. Although there are
many indications suggesting the presence of a very dense
matter produced in high-energy heavy-ion collisions [1,2], a
very important question is whether the produced dense matter
is a quark-gluon plasma. If it is a quark-gluon plasma, it will
undergo a phase transition from the quark-gluon plasma phase
to the hadronic phase. It is desirable to search for the signature
for the phase transition of the quark-gluon plasma.

The signature for the phase transition however depends
sensitively on the order of the transition. Previously, it was
suggested by Witten and many other workers that a granular
structure of droplets occurs in a first-order QCD phase
transition, and the observation of the granular structure can
be used as a signature for a first-order QCD phase transition
[3–15].

Recent lattice gauge calculations indicate that the phase
transition at zero baryon chemical potential, µb = 0, is likely
to be a crossover transition. The transition becomes first
order when µb is greater than a critical value µc [16–18].
Fodor and Katz found µc to be 360 MeV [17], although
there may be uncertainties as the continuum extrapolation
has not been carried out. Other theoretical estimates of Ejiri
et al. give a value of µc from 52 to 140 MeV [16]. Clearly,
whatever the theoretical predictions may be, it is ultimately
an experimental question to explore the order of the phase
transition empirically. Because the baryon density increases as
the rapidity increases, the variation of the phase transition order
as a function of rapidity will provide additional information
on the location of the critical point µc.

Recent Hanbury-Brown-Twiss (HBT) intensity interfer-
ometry measurements indicate that Rout/Rside ∼ 1, whereas
the traditional hydrodynamical model predicts a much larger
ratio [19–21]. Previous descriptions of these HBT radii were
presented in terms of the hadronic cascade model of Humanic
[22], the parton cascade model of Lin et al. [23] and Molnár
and Gyulassy [24], and the hydrodynamical Buda-Lund model
of Csanád et al. [25]. The puzzling aspect of the HBT
measurement may also arise from other considerations. In a
recent analysis, a granular emitting source of droplets was
put forth to explain the HBT puzzle for nucleus-nucleus
collisions at Brookhaven National Laboratory’s Relativistic

Heavy Ion Collider (RHIC) [14]. The suggestion was based
on the observation that, in the hydrodynamical model [19,20],
the particle emission time scales with the radius of the droplet.
Particles will be emitted earlier if the radius of the droplet is
smaller, as in a source of many droplets. An earlier emission
time will lead to a smaller extracted HBT radius Rout. As a
result, the value of Rout can be close to Rside for a granular
quark-gluon plasma source [14].

Previously, Pratt et al. studied the HBT interferometry of
granular droplets by averaging over many events [6]. Methods
to detect a granular structure by the single-event intensity
interferometry were recently proposed [26]. It was found that
the single-event correlation function from a chaotic source
of granular droplets exhibits large fluctuations, with maxima
and minima at relative momenta that depend on the relative
coordinates of the droplet centers. The presence of this type of
maxima and minima of a single-event correlation function at
many relative momenta is a signature for a granular structure
and a first-order QCD phase transition [26].

The difficulty of using the single-event two-pion inter-
ferometry at RHIC arises because of the small number of
pion pairs with small relative momenta. In a typical single
event of a nearly head-on collision at very high energies at
RHIC, the number of identical pions is of the order of a
few thousand. The number of observed identical pions nπ is
only a small fraction of this number. For example, the number
of identical pions detected in the STAR Collaboration in the
most central Au + Au collisions at RHIC is of the order of a
few hundred [27]. Although the number of pairs of identical
pions in the event varies as Nππ = nπ (nπ − 1)/2, only a small
fraction of these pairs have relative momentum small enough
to be useful in a HBT analysis. The number of pion pairs in
each relative momentum bin may be so small that there can be
large associated statistical errors.

Instead of trying to obtain the detailed granular structure of
the emitting source in each event at present, it will be useful in
the initial stage to have a more modest goal. It is desirable to
see whether the correlation functions indicate possible signals
for a granular structure. More refined study of the granular
structure can follow after the initial stage becomes successful.

Accordingly, we shall try to outline a method to extract
the signals for the granular structure. Our idea is to calculate
the fluctuations of the single event correlation function relative
to its corresponding mixed-event correlation function. The
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difference constitutes the “signal” for the event in question.
The distribution of these fluctuations (in units of their statistical
errors), collected for a large number of single events to enhance
statistics, would have a wider distribution for a granular struc-
ture, compared to those from an emitting source without the
granular structure. The distribution of the correlation function
fluctuations provides a useful tool to detect the granular
structure of the source. In particular, the root-mean-square
fluctuation, in the case of a granular droplet structure, increases
when the number of droplets decreases. If the phase transition
is accompanied by only a few droplets, the signal may be large
enough to make it detectable. In what follows, we would like
to analyze whether this method may be feasible.

II. SINGLE-EVENT AND MIXED-EVENT TWO-PION
CORRELATION FUNCTIONS

The two-particle Bose-Einstein correlation function for
the detection of identical pions with momenta k1 and k2 is
defined as C(k1, k2) = P (k1, k2)/P (k1)P (k2), where P (k1, k2)
is the two-particle momentum distribution, P (ki) is the
single-particle momentum distribution with momentum ki , and
the momenta are measured in the source center-of-mass frame.
For a chaotic pion-emitting source, P (ki) (i = 1, 2) is

P (ki) =
∑
Xi

A2(ki, Xi), (1)

where A(ki, Xi) is the magnitude of the amplitude for emitting
a pion with 4-momentum ki = (Ei, ki) at Xi . The two-particle
distribution function P (k1, k2) can be expressed as

P (k1, k2) =
∑

X1,X2

|�(k1, k2; X1, X2)|2, (2)

where �(k1, k2; X1, X2) is the two-pion wave function. Ne-
glecting the absorption of the emitted pions by other droplets,
we write �(k1, k2; X1, X2) simply [28] as

�(k1, k2; X1, X2)

= 1√
2

[
A(k1, X1)A(k2, X2)eik1·X1+ik2·X2

+A(k1, X2)A(k2, X1)eik1·X2+ik2·X1
]
. (3)

The correlation function C(k1, k2) is in general a function
of the 4-dimensional momenta k1 − k2 and k1 + k2. Previous
results of the single-event correlation function of granular
droplets indicate large fluctuations as a function of the relative
4-momentum k1 − k2, having maxima and minima at locations
that depend on the relative coordinates of the droplet centers
[26]. To map out the details of such a multidimensional
correlation function, it is necessary to have a large number
of pion pairs in a single event, which may be beyond the
capabilities of present detectors and accelerators. With limited
statistics as would likely be the case, we can first study
the simplifying case by concentrating on a small number
of degrees of freedom and integrating out other degrees of
freedom so that the statistical errors in the correlation function
can be smaller. For this purpose, we shall study the correlation
function as a function of the variable q = |k1 − k2| in the

source center-of-mass frame for which the other degrees of
freedom have been integrated out.

In our numerical work for a granular source with Nd

droplets, we obtain the single-event and mixed-event two-pion
correlation functions for the granular source with the following
steps:

Step 1: Generate the space-time coordinates Rj (j =
1, 2, . . . , Nd ) of the droplet centers according to a distribution
of the droplet centers.

Step 2: Select the two emitting pions from the droplets
randomly, and get the space-time coordinates X1 and X2 of
the pions in the source center-of-mass frame according to
the density distribution of the droplets, the coordinates of the
droplet centers, and the collective velocities at the emission
points, v(Xi)(i = 1, 2).

Step 3: Generate the momenta k′
1 = (E′

1, k′
1) and k′

2 =
(E′

2, k′
2) of the two pions in the frame in which the source

element is at rest according to the distribution A2(k′
i , X),

taken to be the Bose-Einstein distribution characterized by
the temperature Tf , and obtain their momenta k1 and k2 in the
source center-of-mass frame by Lorentz transformation if the
source element is boosted in the source center-of-mass frame.

Step 4: Accumulate the event in the bin of the corresponding
relative momentum variable q = |k1 − k2| with the weight
factor w11 for the probability P (k1)P (k2) for a pair of
uncorrelated pions of relative momentum q, and with the
weight factor w12 for the probability P (k1, k2) for a pair of
correlated pions of relative momentum q,

w11 = [E′
1/E1][E′

2/E2], (4)

w12 = 1
2

∣∣√E′
1/E1

√
E′

2/E2e
ik1·X1+ik2·X2

+
√

E′
12/E1

√
E′

21/E2e
ik1·X2+ik2·X1

∣∣2
, (5)

where E′
ij (i, j = 1, 2) is the energy of the ith pion in the frame

in which the source element at Xj is at rest, which is obtained
from Ei by a reverse Lorentz transformation with the collective
velocity v(Xj ).

Step 5: Repeat steps 2 through 4 for Nππ pairs of pions
in a single event. We label the distributions obtained for
P (k1)P (k2) for a pair of uncorrelated pions by Uncors(q) and
the distribution of P (k1, k2) for a pair of correlated pions by
Cors(q).

Step 6: Repeat steps 1 through 5 for Nevent number of
different events, and obtain the mixed-event correlated and
uncorrelated pion-pair distributions Corm(q) and Uncorm(q),
by summing Cors(q) and Uncors(q) of the Nevent different
events.

Step 7: Obtain the single-event correlation function Cs(q)
by dividing Cors(q) by Uncorm(q) and the mixed-event
correlation function Cm(q) by dividing Corm(q) by Uncorm(q).

We first investigate the two-pion correlation functions
for Nd static granular droplet sources. The centers of the
droplets are assumed to follow a Gaussian distribution with
a standard deviation σR , and the density distribution of each
droplet is assumed to be given by a Gaussian distribution
with a standard deviation σd . In our numerical examples,
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FIG. 1. Two-pion correlation functions for a sample of different
single events (dashed lines) and mixed events (solid lines) for static
granular sources of Nd droplets.

σR and σd are taken as 5.0 and 1.5 fm, respectively, and
the thermal emission temperature of the pions is taken to
be 0.65Tc = 0.65 × 160 = 104 MeV. Figures 1(a)–1(c) show
the two-pion correlation functions for the granular sources
with Nd = 4, 8, and 16, respectively. In each figure the
dashed lines give the correlation function C(q) for a sample of
different single events, each of which has a correlated pion-pair
distribution Cors(q) calculated with Nππ = 106 pion pairs
within q � 250 MeV, and the solid line is for the mixed-event
obtained by averaging Nevent = 103 single events. One can
see that there are fluctuations for the single-event correlation
functions relative to the mixed-event correlation function, and
the fluctuations increase as Nd decreases.

III. DISTRIBUTION OF THE FLUCTUATION OF
SINGLE-EVENT TWO-PION CORRELATION

FUNCTION

From the results in Fig. 1, we observe that the correlation
function Cs(q) for individual single events fluctuates with
respect to the mixed-event correlation function Cm(q). We can
make the fluctuation quantitative and introduce the fluctuation

10
1

10
2

10
3

10
4

dN
/d

f

0 42 6 8 1210

f

10
1

10
2

10
3

10
4

dN
/d

f

(a) Nππ =5×104

(b) Nππ =1×105

Nd=4
Nd=8
Nd=16
Nd=32

Single 
source

FIG. 2. The distributions dN/df of f for (a) Nππ = 5 × 104 and
(b) Nππ = 105.

as the difference between the single-event correlation function
and the mixed-event correlation function. To take into account
the error of the measurement, we weigh the fluctuation by the
inverse of the corresponding error and define the fluctuation
quantitatively as

f (q) = |Cs(q) − Cm(q)|
�|Cs(q) − Cm(q)| , (6)

where �|Cs(q) − Cm(q)| is the error in the measurement of
Cs(q) − Cm(q) given by

�|Cs(q) − Cm(q)| = �Cs(q) + �Cm(q) � �Cs(q)

� Cs(q)

{
1√
Nππ

+ 1√
Cors(q)

}
. (7)

We calculate the distribution of the fluctuation f for
the sources with different numbers of droplets. In these
calculations, we take the width of the relative momentum bin
as 10 MeV and use the bins in the region 20 � q � 250 MeV.
Figures 2(a) and 2(b) show the distributions of f for Nd =
4, 8, 16, and32, obtained from 1000 single events, each
of which has the correlated pion-pair distribution Cors(q)
calculated with Nππ = 5 × 104 and 105 pion pairs within
q � 250 MeV. The standard deviations σR and σd for the
granular sources are 5.0 and 1.5 fm, respectively. The results
for a nongranular single source with a Gaussian density
distribution with 5.0 fm standard deviation are also shown
as a reference. It can be seen that the distributions for the
granular sources are wider than that for the single source.
The width of the distribution for the granular source decreases
with Nd .

From the distribution of f, one can calculate the root-
mean-square values of f. Figures 3(a) and 3(b) show the
root-mean-square f as a function of Nd for sources with σR =
5.0 and 7.0 fm obtained for the cases of Nππ = 105 and
σd =1.5 fm and of Nππ = 5 × 104 and σd = 2.0, 1.5, and
1.0 fm. The double-dot-dashed lines are the root-mean-square
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FIG. 3. The root-mean-square f as a function of Nd for static
granular sources. The double-dot-dashed lines are the result for a
single Gaussian source.

f for the distribution of the single Gaussian source in Fig. 2.
It can be seen that frms is sensitive to Nd and decreases as σd

and σR increase. With the values of frms, one may distinguish
the granular source with Nd = 16 from the single Gaussian
source with Nππ = 5 × 104 pairs of identical pions, and one
may even distinguish the granular sources up to Nd = 32 with
Nππ = 105 identical pions.

IV. DISTRIBUTION OF THE FLUCTUATION FOR
HYDRODYNAMICAL QUARK-GLUON PLASMA

DROPLET SOURCE

We investigate next the distribution of f for a granular
sources of quark-gluon plasma droplets that evolve hydro-
dynamically. We assume that all of the droplets in the source
have the same initial radius rd = 1.5 fm and evolve hydrody-
namically in the same way. We use relativistic hydrodynamics
with the equation of state of the entropy density [29,30] to
describe the evolution of the droplets [14,19,20], and we take
the temperature width of the transition as �T = 0.05 and the
initial conditions of the droplets as [14,19,20]

ε′(t ′ = 0, r ′) =
{

ε0, r ′ < rd,

0, r ′ > rd,
(8)

v′(t ′ = 0, r ′) = 0,

where r ′, ε′, and v′ are, respectively, the radial coordinate,
energy density, and velocity of a fluid element in the droplet
rest frame, and ε0 = 1.875Tcsc [19,20] is the initial energy
density of the droplets. The initial distribution of the droplet
centers is taken to be a Gaussian distribution with the standard
deviation σR = 5.0 fm. For the case with an additional
collective radial expansion, the droplet centers are assumed
to have a constant radial velocity vd in the center-of-mass
frame of the granular source [14]. To reduce the influence
of source lifetime on our observations for the granular
structure [6], we use the “side” component of the relative
momentum of the two pions, qs (perpendicular to the total
momentum of the two pions), as the variable [31–34] for the
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FIG. 4. Two-pion correlation functions for a sample of different
single events (dashed lines) and mixed events (solid lines) of the
dynamical granular sources.

granular source of hydrodynamic-evolution quark-gluon
plasma droplets. Figures 4(a)–4(c) show the correlation func-
tion C(qs) (with qout � 20 MeV) for the dynamical granular
sources with vd = 0.5 and Nd = 4, 8, and 16, respectively.
In each figure the dashed lines give the correlation function
C(qs) for a sample of different single events, each of which
has a correlated pion-pair distribution Cors(qs) calculated with
Nππ = 106 pion pairs within qs � 250 MeV, and the solid
line is for the mixed-event obtained by averaging Nevent = 103

single events. The freeze-out temperature of the pions is taken
to be 0.65Tc = 0.65 × 160 = 104 MeV.

Figures 5(a) and 5(b) show the distributions of f for the
dynamic granular sources with vd = 0 and vd = 0.5, and
Nd = 4, 8, 16, and 32. The double-dot-dashed lines are for
a dynamical single source with initial radius rd = 5.0 fm as
a reference. The number of pion pairs within qs � 250 MeV
for one single event is Nππ = 5 × 104 and the number of
events is Nevent = 103 for all the distributions. Because of
the hydrodynamical evolution of the droplet, the single-
droplet source has a collective radial expansion. However,
the multidroplet granular source does not have a collective
radial expansion when vd = 0. When vd �= 0 the width of the
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FIG. 5. The distributions of f for the dynamical quark-gluon
plasma granular sources with vd = 0 and 0.5.

distributions for the granular sources decreases because of the
additional collective radial expansion velocity vd .

Figures 6(a) and 6(b) show the root-mean-square values of
f calculated from the distributions of 1000 single events for the
dynamical granular sources with vd = 0 and 0.5, respectively.
The � symbols are for the case of the number Nππ of the pion
pair within qs � 250 MeV for one single event is 105. The
• and ∗ symbols are for the cases of Nππ = 5 × 104 with and
without the constraint qo � 20 MeV. The double-dot-dashed
lines are the result for the distribution of the single-droplet
source in Fig. 5. One observes that frms for the granular sources
are larger than that for the single-droplet source, and the
root-mean-square f for the granular sources increase with Nππ .
Although the frms results with the constraint qo � 20 MeV
are larger than those without the constraint, our simulations
indicate that this constraint is very restrictive and only about
3.5% of the pion pairs within qs � 250 MeV satisfy it. As
the droplet number decreases, the fluctuation increases. The
effect of the increase becomes less pronounced as the collective
expansion velocity increases.
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FIG. 6. The root-mean-square f as a function of Nd for dynamical
granular sources.

V. CONCLUSIONS AND DISCUSSION

Recent experiments at RHIC provide ample evidence for a
dense matter produced in high-energy heavy-ion collisions. Is
the produced dense matter the quark-gluon plasma? If so, what
is the order of its phase transition? Because a granular structure
of droplets occurs in a first-order QCD phase transition, the
observation of the granular structure can be used as a signature
for a first-order QCD phase transition [3–15].

We would like to develop tools to use HBT interferometry
to examine the granular droplet structure of the dense matter
if it is produced in high-energy heavy-ion collisions. We
showed previously that the single-event correlation function
in HBT interferometry for granular droplets exhibits oscil-
lations, depending on the relative coordinates of the droplet
centers [26]. In realistic experimental situations, the number
of identical pion pairs in each single event is limited. We
continue our investigation here to find appropriate measurable
quantities that could be used to detect granular structure in
HBT measurements.

In our present investigation, we study the fluctuation
between the single-event correlation function and the mixed-
event correlation function and find that the distribution of the
correlation function fluctuation f between the single-event and
the mixed-event correlation functions can be a measurable
quantity that could be used to probe the granular droplet
structure. The width of the distribution is greater for a granular
source than for a single source, and the width increases as the
droplet number decreases. The effect of the increase becomes
less pronounced when the droplets have a collective expansion.
These changes of widths can be quantified in terms of the
root-mean-square fluctuation of f. The frms for a granular
droplet source increases with the number of identical pion pairs
in an event. The detection of the granular droplets becomes
more favorable as the number of identical pairs increases.

Our numerical simulated calculations indicate that the
correlation function fluctuation leads to detectable differences
if the droplet number is small (less than or equal to 16) and
the number of identical pairs in each single event is of order
5 × 104 or more. At RHIC energies, the multiplicity of an
identical pion event is about a few hundred, and the number
of pion pairs in an event is about 105. In this case, it may be
possible to reveal the source granularity by the distribution f
constructed with 1000 events with almost the same identical
pion multiplicity (same impact parameter) if Nd � 16. One can
infer from Fig. 6(b) that in the measurement of frms a precision
of 1.3 units will allow one to test or exclude the hypothesis of
a granular source of 4 droplets, a precision of 0.9 units will
allow one to test or exclude 8 droplets, and a precision of 0.6
units will allow one to test or exclude 16 droplets. So, it will be
of interest to see whether the correlation function fluctuation
can indeed be measured at RHIC. The situation becomes even
more favorable for Large Hadron Collider collisions at higher
energies, where there can be a greater number of identical pion
pairs.

As with the development of many new experimental tools,
progress is made by gradually increasing the complexity
of one’s scope of research and the areas of focus. In the
present analysis, we have not considered the absorption and
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the multiple scattering of the pions [35,36]. Investigations
on these effects can be carried out in the future to see how
they may modify the distribution of the fluctuations. We have
also not considered the fluctuation of the overall size of the
emission source, which clearly depends on the experimental
selection and will require an investigation in conjunction with
the experimental setup and selections. An event multiplicity
cut may be needed to reduce the fluctuation resulting from
the sizes of the emitting source. Future investigations to refine
the tool of HBT measurements for the detection of granular

structure will be of great interest to probe the order of the
quark-gluon plasma phase transition.
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