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Thermalization of gluons in ultrarelativistic heavy ion collisions by including three-body
interactions in a parton cascade
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We develop a new 3 + 1 dimensional Monte Carlo cascade solving the kinetic on-shell Boltzmann equations
for partons including the inelastic gg ↔ ggg pQCD processes. The back reaction channel is treated—for the
first time—fully consistently within this scheme. An extended stochastic method is used to solve the collision
integral. The frame dependence and convergency are studied for a fixed tube with thermal initial conditions. The
detailed numerical analysis shows that the stochastic method is fully covariant and that convergency is achieved
more efficiently than within a standard geometrical formulation of the collision term, especially for high gluon
interaction rates. The cascade is then applied to simulate parton evolution and to investigate thermalization of
gluons for a central Au+Au collision at RHIC energy. For this study the initial conditions are assumed to be
generated by independent minijets with pT > p0 = 2 GeV. With that choice it is demonstrated that overall kinetic
equilibration is driven mainly by the inelastic processes and is achieved on a scale of 1 fm/c. The further evolution
of the expanding gluonic matter in the central region then shows almost an ideal hydrodynamical behavior. In
addition, full chemical equilibration of the gluons follows on a longer time scale of about 3 fm/c.
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I. INTRODUCTION

The main subject of the heavy ion experiments at the
Relativistic Heavy Ion Collider (RHIC) at BNL and at the
Large Hadron Collider (LHC) at CERN is to create a new state
of matter, the quark gluon plasma (QGP), which is expected to
be a transient thermal system of interacting quarks and gluons.
Due to the confinement free quarks and gluons cannot be
detected. The search for QGP has to be carried out by analyzing
certain proposed hadronic and electromagnetic signatures
[1–8]. However, the possible signatures of the QGP may also
come in part from the late time dynamics of a hadron gas
formed after the phase transition [9–15]. Therefore one needs
detailed informations about the creation of the QGP, its lifetime
and the hadronization in order to draw reliable conclusions.

Recent measurements [16] at RHIC of the elliptic flow
parameter v2 for semicentral collisions suggest that—in
comparison to fits based on simple ideal hydrodynamical
models [17]—the evolving system builds up a sufficiently early
pressure and potentially also achieves (local) equilibrium.
On the other hand, the system in the reaction is at least
initially far from any (quasi-)equilibrium configuration. To
address the crucial question of thermalization of gluons and
quarks, a number of theoretical analyses have been worked
out either using the relaxation time approximation [18–21]
or performing full 3 + 1 dimensional Monte Carlo cascade
simulations based on the solution of the Boltzmann equations
for quarks and gluons [22–26]. The first parton cascade,
VNI, inspired by pQCD including binary elastic scatterings
(2 ↔ 2) and gluon radiation and fusion (1 ↔ 2) was developed
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by Geiger and Müller [22]. In the simulation for a central
Au+Au collision at RHIC energy [27] they concluded that a
thermalized QGP will be formed at τ ≈ 1.8 fm/c. However, the
onset of potential hydrodynamical behavior during the parton
evolution was not demonstrated in their analyses. In addition,
the treatment of the propagation of off-shell partons in their
approach is not clear from a physical point of view. Recently,
Molnar and Gyulassy studied the buildup of the elliptic flow at
RHIC [28] applying an on-shell parton cascade, MPC [24]
(an improved version of ZPC [23]), in which up to now
only elastic gluon interactions are included. In their analysis
the early pressure can be achieved only if an unrealistic,
much higher cross section is being employed. Furthermore,
it is known that the elastic (and forward directed) gg ↔ gg

collisions cannot drive the system to kinetic equilibrium, as
pointed out in Ref. [29]. This would suggest that the collective
flow phenomena observed at RHIC cannot be described via
pQCD. On the other hand, the possible importance of the
inelastic interactions on overall thermalization was raised in
the so-called “bottom up thermalization” picture [30]. It is
intuitively clear that gluon multiplication should not only lead
to chemical equilibration [31], but also should lead to a faster
kinetic equilibration [32,33]. This represents one (but not all)
important motivation for developing a consistent algorithm to
handle inelastic processes like gg ↔ ggg.

In solving the transport equations, in most of the cascade
models cross sections are interpreted geometrically to model
the collision processes. It turns out that in dense matter when
the interaction length

√
σ/π is not much smaller than the

mean free path of particles, causality violation [34,35] will
arise in these cascade models and will lead to numerical
artifacts [36,37]. One way to reduce these artifacts is to apply
the common test particle method (or “particle subdivisions”)
[38,39], in which the interaction length of the test particles
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is reduced by
√

Ntest, while the mean free path is unchanged.
Ntest denotes the number of the test particles per real particle.
However, the limitation of these transport models is obvious:
Inelastic collision processes with more than two incoming
particles cannot be straightforwardly implemented since it is
in general difficult to determine, for instance, a 3 → 2 process
geometrically. Therefore, until now, the role of the inelastic
processes in the formation of the QGP has not been studied
fully quantitatively.

An alternative collision algorithm suggested in [40–42]
dealt with the transition rate instead of the geometrical
interpretation of cross section and determined proceeding
collision processes in a stochastic manner by sampling possible
transitions in a certain volume and time interval. This collision
algorithm opens up the possibility to include the inelastic
collision processes into transport simulations solving the
Boltzmann equations(

∂

∂t
+ p1

E1

∂

∂r

)
f1(r, p1, t) = C22 + C23 + · · · , (1)

where C22 and C23 denote the collision term of 2 ↔ 2 and
2 ↔ 3 processes. In this paper we will present a newly
developed on-shell parton cascade using this sort of stochastic
collision algorithm. Also the oftenly employed scheme based
on the geometrical interpretation of cross section is discussed
and compared with the stochastic algorithm. In particular, we
concentrate on the study of the (unphysical) frame dependence.
The new transport scheme will then be applied to simulate
the parton evolution for a central ultrarelativistic heavy ion
collision at highest RHIC energy. The emphasis is put on
the investigation of gluon thermalization and their collective
dynamics. For this investigation the initial conditions are
assumed to be generated by independent minijets [43,44].
Other initial conditions, like the much discussed “color glass
condensate” [45], can also be implemented, but we leave this
for a future work. For the present study we consider quarks and
gluons as classical Boltzmann particles throughout the paper.
The Pauli blocking and gluon enhancement can, in principle,
be implemented and will also be discussed elsewhere.

The paper is organized as follows. In Sec. II we consider
two-body collision processes and contrast the geometrical with
the stochastic collision algorithm. The dynamical evolution of
a system within a fixed box is carried out to study global kinetic
equilibration. In addition, such calculations are mandatory to
debug the operation of the code and to look for the limitation of
the algorithms. The implementation of the inelastic collision
processes is described in Sec. III. There, we carry out box
calculations to study global kinetic and chemical equilibration.
In Sec. IV we study thermalization of a parton system in a box
with initial conditions sampled according to the production of
minijets as expected in a central heavy ion collision at RHIC.
The Lorentz or frame (nondependence) and the convergency
of results extracted from cascade simulations are investigated
in Sec. V. In Sec. VI we then finally present first results of
cascade simulations for a central Au+Au collision at RHIC
energy. (The readers, who are solely interested in the operation
and results of the full 3 + 1 dimensional cascade, may directly
pass to Sec. VI.) We summarize in Sec. VII and give an outlook

for future works. In Appendices A and B more details of the
geometrical collision algorithm are given. We list the pQCD
partonic scattering cross sections in Appendix C for two-body
processes and in Appendix D for gg ↔ ggg processes. In
Appendix E the numerical recipes for Monte Carlo samplings
are presented.

II. TWO-BODY COLLISION PROCESSES

We consider a system consisting of classical, ultrarelativis-
tic particles which are interacting via two-body collisions.
The main emphasis is put on the numerical realization of
such collision sequences in a relativistic transport simulation,
which is theoretically based on the solution of the Boltzmann
equations (1) with the following collision term given by

C22 = 1

2E1

∫
d3p2

(2π )32E2

1

ν

∫
d3p′

1

(2π )32E′
1

d3p′
2

(2π )32E′
2

f ′
1f

′
2

× |M1′2′→12|2(2π )4δ(4)(p′
1 + p′

2 − p1 − p2) − 1

2E1

×
∫

d3p2

(2π )32E2

1

ν

∫
d3p′

1

(2π )32E′
1

d3p′
2

(2π )32E′
2

f1f2

× |M12→1′2′ |2(2π )4δ(4)(p1 + p2 − p′
1 − p′

2). (2)

ν will be set to 2 when considering the double counting if 1′
and 2′ are identical particles. Otherwise ν is set to 1.

Since no mean field is considered throughout the present
study, the evolution of particles is intuitively straightforward:
Particles move along straight line between two collision
events. After a particular collision the momenta of colliding
particles are changed statistically according to the differential
cross section. The determination of the collision sequence is,
however, not unique and depends on the particular numerical
implementation. We present in this section two numerical
methods dealing with the realization of binary collisions.
Comparisons between these two methods will be made in detail
when investigating kinetic equilibration in a fixed box. We
also study any potential (but unphysical) frame dependence
of transport simulations within both schemes and how to
minimize possible deficiencies. These results will be presented
later in Sec. V.

A. The geometrical method

In the first method a collision happens when two incoming
particles approach as close to each other that their closest
distance is smaller than

√
σ22/π , where σ22 denotes the total

cross section for the colliding particles. In other words, the
collision probability is either 1 or 0, depending on how close
the collision partners come together. Since the total cross
section is interpreted geometrically, we label this procedure
the “geometrical method.” In this picture of the closest
approach,which is already employed in parton cascade models
like ZPC [23], MPC [24], and PCPC [25], collisions do happen
one by one as time proceeds. The next collision event can be
determined by comparing the individual times marking the
occurrence of the various and possible collisions.

Unlike the total cross section the closest distance is,
however, not invariant under Lorentz transformation. This
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leads to the situation that a particle pair collides in one frame,
but might not in another frame, which is unphysical. One faces
here a violation of covariance, which is a historic problem in
microscopic simulation within relativistic transport models.
In the present scheme we define the closest distance in the
center-of-mass frame of the individual particle pair [37] and
thus make it to be a Lorentz invariant quantity by hand. In spite
of this definition the covariance of the Boltzmann equation is
still not fulfilled, because the time ordering of collisions might
be changed under Lorentz transformation [34,35]. Still, for a
sufficiently dilute system the geometrical method works rather
robust. We will continue discussing this problem of covariance
violation later in this section and also in Sec. V. Besides the
problem just mentioned, the ordering time of one particular
collision itself which orders the occurrence of all collisions in
a particular frame, called lab frame, is not well defined. Since
we determine the closest distance of two incoming particles
in their center of mass frame, it is reasonable to define the
collision points for the two particles also in this frame at
the closest distance and at the same time. Consequently both
particles, if they do collide, change their momenta at the
same time in their center of mass frame, but generally at
different times in the lab frame. (We now denote these
individual two times by “collision times”.) One can now define
the ordering time at some stage between these two collision
times. There is, however, no unambiguous prescription. In
general, different choices for the ordering time will lead to
different collision sequences. This, as numerically verified,
does not strongly affect the behaviors of physical (ensemble
averaged) quantities shown below. In our simulation we choose
the smaller one of the two collision times as the ordering time.
In ZPC [23] and MPC [24] the ordering time was taken as the
average of the two collision times.

In order to demonstrate the correct operation of the
numerical realization of the geometrical method, we will
choose a situation when the outcome is known analytically.
For this purpose we carry out “box calculations,” in which a
particle ensemble with a nonequilibrium initial condition is
enclosed in a fixed box and will evolve dynamically until an
appropriate final time. The collisions of particles against the
walls of the box are simply done via mechanical reflections.
For sufficiently long times, the system should get kinetically
equilibrated at the end. For a classical, ultrarelativistic ideal
gas the energy distribution has the Boltzmann form

dN

NE2dE
= 1

2T 3
e−E/T , (3)

which guides as an analytical reference for the numerical
results. The temperature T can be obtained from the simple
relation between energy and particle density

ε = 3nT , (4)

where ε and n are solely given by the initial conditions.
Initially, particles are now distributed homogeneously within
the box and their momentum distribution is chosen highly
anisotropic via

dN

NdpT dpz

= δ(pT − 6GeV) δ(pz). (5)

FIG. 1. Energy distribution at final time (t = 5 fm/c) of a system
consisting of N = 2000 massless particles in a fixed box. The
initial energy distribution is set to be a delta function at 6 GeV.
The size of the box is 5 fm × 5 fm × 5 fm. We here apply the
geometrical collision algorithm. The collisions are taken as isotropic
and the total cross section is fixed to be a constant σ22 = 10 mb. The
dotted line denotes the analytical result of temperature T = 2 GeV.
The numerical distribution is obtained from an ensemble of 50
independent realizations.

In Fig. 1 the final energy distribution from such box calcula-
tions for a system of N = 2000 massless particles is depicted.
The size of the box is set to be 5 fm × 5 fm × 5 fm. We
consider isotropic collisions and take a constant total cross
section of σ22 = 10 mb. The final time is set to be 5 fm/c.
(As one will shortly realize, this chosen time is sufficient long
for the system to become equilibrated.) To improve statistics
we have collected particles from 50 independent realizations.
The dotted line depicted in Fig. 1 denotes the analytical
distribution (3) with temperature T = 2 GeV. We see a nice
agreement between the numerical result and the analytical
distribution except a slight, but characteristic deviation at
low energies. We will come back to explain this discrepancy
immediately.

Such a successful passing of the previous test is necessary
for every collision algorithm, but it is still not a sufficient
argument to guarantee whether the presented algorithm is
operating correctly. One has to ask any numerical algorithm for
its limitation of correctly describing the underlying problem.
To be specific when considering the collision integral (2),
it is not obvious whether the geometrical interpretation of
the total cross section is a reasonable choice to account for
the Boltzmann process. In fact such a description has some
shortcomings concerning causality violations which have been
pointed out for example in Ref. [35]. Especially for the
algorithm presented above we have to face the fact that the
collision times of colliding particles are different in the lab
frame. This will lead to a noticeable reduction of the collision
rate compared to one given by the collision integral: Assume
that the difference of the collision times is �tc. Consequently
the particle with larger collision time should not collide again
during this interval �tc, otherwise causality would be violated.
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FIG. 2. Collision rates for given particle densities. The size of the
box is 5 fm × 5 fm × 5 fm. We apply here the geometrical collision
algorithm. The collisions are isotropic and the total cross section
is fixed to a constant σ22 = 10 mb. The particle system is taken
initially as thermal with a temperature of T = 1 GeV. The solid line
shows the expected relationship between collision rate and particle
density: R = nσ22. The solid squares show the calculated collision
rates without test particles (Ntest = 1) and the open squares show the
results with 50 test particles per real particle (Ntest = 50).

As pointed out in Appendix A, for a system in equilibrium
the ensemble averaged time delay 〈�tc〉 depends only on
the total cross section and increases with the increasing total
cross section. This will lead to an artificial increase of the
mean free path and thus to a decrease of the collision rate.
In other words, the collision rate decreases when noncausal
collisions are forbidden. This problem has also been pointed
out in Ref. [36,37]. We can demonstrate this effect employing
box calculations, in which we consider an initially kinetic
equilibrated gas distributed homogenously within the box.
The size of the box is taken to be the same as in Fig. 1. We
employ isotropic collisions with a constant cross section of
σ22 = 10 mb. In Fig. 2 collision rates are depicted as solid
squares for several particle densities. The collision rate is
obtained here as the time average of the collision number.
While the box size is fixed, we vary the particle number
to get different densities. The solid line shows the expected
relationship between the collision rate and particle density in
equilibrium R = nσ22. We see a clear decrease of the collision
rate when the expected mean free path 1/nσ22 is not much
larger than the interaction length

√
σ22/π . Such a numerical

artifact would strongly slow down the kinetic thermalization
of an initially highly nonequilibrium state, as, for instance, in
case of ultrarelativistic heavy ion collisions. As also clearly
seen from Fig. 2, the collision rate tends to saturate at high
density. The reason for this is that the collision rate has an upper
limit which is exactly the inverse of the average collision time
difference 〈�tc〉/2 depending only on the total cross section
as mentioned before. One can compute 〈�tc〉/2 analytically.
The detailed calculation is given in Appendix A. It turns out
that 〈�tc〉/2 = 0.12 fm/c for σ22 = 10 mb. This indicates that
the saturation value of the collision rate would be 8.3 fm−1 at
high density.

FIG. 3. Energy distributions from box calculations. The thin
histogram shows the same distribution as in Fig. 1. The thick
histogram shows the result with a smaller total cross section of
σ22 = 0.1 mb.

We now return to the slight discrepancy at low energy as
noticed in Fig. 1 and consider this as a consequence of the same
effect of the relativistic time spread of collisions pointed out
above, since in this particular situation the particle density is so
high that the mean free path is one order of magnitude smaller
than the interaction length. To confirm this suspicion, we carry
out similar calculations as in Fig. 1, but with a tiny cross section
of σ22 = 0.1 mb. The energy distribution, depicted as thick
histogram, is shown in Fig. 3 compared with the distribution
(thin histogram) obtained by using σ22 = 10 mb. One does not
see the artificial distortion in the spectrum at low energies any
more when the cross section and hence the relativistic time
spread is small. As a conclusion, the relativistic time spread
effect not only decreases the collision rate, but also slightly
distorts the system out of equilibrium.

To suppress this numerical artifact and hence to conserve
Lorentz covariance we employ the widely used test particle,
or “subdivision,” technique [38,39] based on the scaling

n → nNtest and σ → σ/Ntest, (6)

where Ntest is the number of test particles belonging to one
real particle. While the mean free path is unchanged by
the scaling, the interaction length is reduced by a factor of√

Ntest. This consequently reduces the relativistic time spread
which vanishes in the limit Ntest → ∞. The open squares in
Fig. 2 denote the results by using Ntest = 50. The tendency of
convergency towards the ideal limit is visible.

In Fig. 4 we show the time evolution of the momentum
anisotropy defined as the fraction of the average transverse
momentum squared over the average longitudinal momentum
squared. The initial conditions and parameters are set to be the
same as in Fig 1. The dotted line depicts the result without
applying the test particle method (Ntest = 1) and the dashed
line shows the result with Ntest = 50. The results confirm
our reasoning that the relativistic effect of spreading of the
two collision times for a colliding particle pair increases the
relaxation time for achieving kinetic equilibrium.
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FIG. 4. Time evolution of the momentum anisotropy from box
calculations. The initial condition and parameters are set to be the
same as in Fig. 1. The dotted (dashed) curve shows the results obtained
by employing the geometrical method without test particles (with
50 test particles per real particle). The solid curve shows the result
obtained by employing the stochastic method with ten test particles
per real particle.

B. The stochastic method

In the last section we determined the collision probability
of two incoming particles by means of the geometrical
interpretation of the total cross section. Instead, one can also
derive the collision probability directly from the collision
term of the Boltzmann equation [40–42]. When assuming two
particles in a spatial volume element �3x with momenta in
the range (p1, p1 + �3p1) and (p2, p2 + �3p2), the collision
rate per unit phase space for such particle pair can be read off
from Eq. (2)

�N2→2
coll

�t 1
(2π)3 �3x�3p1

= 1

2E1

�3p2

(2π )32E2
f1f2

× 1

ν

∫
d3p′

1

(2π )32E′
1

d3p′
2

(2π )32E′
2

|M12→1′2′ |2

× (2π )4δ(4)(p1 + p2 − p′
1 − p′

2). (7)

Expressing distribution functions as

fi = �Ni

1
(2π)3 �3x�3pi

, i = 1, 2, (8)

and employing the usual definition of cross section [46] for
massless particles

σ22 = 1

2s

1

ν

∫
d3p′

1

(2π )32E′
1

d3p′
2

(2π )32E′
2

|M12→1′2′ |2

× (2π )4δ(4)(p1 + p2 − p′
1 − p′

2), (9)

one obtains the absolute collision probability in a unit box �3x

and unit time �t

P22 = �N2→2
coll

�N1�N2
= vrelσ22

�t

�3x
. (10)

vrel = s/2E1E2 denotes the relative velocity, where s is the
invariant mass of the particle pair. Unlike in the geometrical
method where the collision probability is either 0 or 1, P22 now
can be any number between 0 and 1. (Notice that, in practice,
one should choose suitable �3x and �t to make P22 to be
consistently less than 1.) Whether the collision will happen or
not is sampled stochastically as follows: We compare P22 with
a random number between 0 and 1. If the random number is
less than P22, the collision will occur. Otherwise there is no
collision between the two particles within the present time step.
We call this collision algorithm the “stochastic method.” Since
in the limit �t → 0 and �3x → 0 the numerical solutions
using the stochastic method converge to the exact solutions of
the Boltzmann equation [47], we divide in practice the space
into sufficient small spatial cells. For a true situation �t and
�3x have to be taken smaller than the typical scales of spatial
and temporal inhomogeneities of the particle densities. Only
particles from the same cell can collide with each other. If
a particle pair collides, the collision time will be sampled
uniformly within the interval (t, t + �t). The collision times
for both colliding particles are here the same. The particle
system propagates now from one time step to the next. This is
different compared to the transport simulation scheme utilizing
the geometrical method.

In general we also might employ, in addition, the test
particle technique in order to reduce statistical fluctuations
of the collision events in cells. Accordingly the collision
probability is changed to

P ′
22 = vrel

σ22

Ntest

�t

�3x
(11)

by the scaling σ → σ/Ntest.
In the following we discuss the Lorentz invariance of

the stochastic algorithm in the limit �3x → 0, �t → 0 and
Ntest → ∞. Since �t�3x,�3p/�E, the distribution function
f and the total cross section are Lorentz scalars, it is easy to
realize from Eq. (7) that the collision number �N2→2

coll is a
scalar under Lorentz transformations. Furthermore this is also
true for �Ni , the particle number counted within a phase
space interval at time t. Hence, the collision rate �N2→2

coll /

�Ni�τ as well as the collision probability P22 are scalars un-
der Lorentz transformations. Therefore, in the limit �3x → 0,

�t → 0 and Ntest → ∞ the stochastic method yields per se a
Lorentz covariant algorithm. However, in practice, a nonzero
subvolume �3x and a nonzero timestep �t disturb full Lorentz
invariance explicitly. Any potential, but unphysical frame
dependence will be discussed later in Sec. V.

To test and demonstrate the stochastic method we again
pursue box calculations. The initial conditions are the same
as in Fig. 1. The size of the box is set as before to be
5 fm × 5 fm × 5 fm. Since we consider a spatially homoge-
neous initial situation of particles and this configuration will
not change very much during particle propagation, we choose a
straightforward static cell configuration and divide the box into
equal cells. The cell length is set to be 1 fm in the calculations.
We consider isotropic collisions and use a constant total cross
section of σ22 = 10 mb. Figure 5 shows the final energy
distribution obtained by an average over 50 independent runs
(with Ntest = 1). One clearly recognizes that the stochastic
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FIG. 5. Energy distribution from box calculations. The initial
conditions and parameters are set to be the same as in Fig. 1. We
apply here the stochastic collision algorithm. The box is divided into
equal cells. The length of a cell is 1 fm.

collision algorithm also passes this basic test. The agreement
between the numerical and analytical distribution is perfect
and we do not see any distortion in the spectrum in contrast to
the situation experienced in Fig. 1.

Since the stochastic method is based directly on the formal
collision rate, thus the numerical realized collision rate should
be met in transport simulations if the sampled statistics in
each cell is sufficiently high. We extract the collision rates
from box calculations employing the stochastic method and
show the results in Fig. 6 as solid squares. The box size and
cell configuration are set to be the same as in Fig. 5. The system
is taken at thermal equilibrium for the initial condition. One
nicely recognizes that the squares lay on the expected line.
(We do mention here that the box size is fixed and we vary
the particle number to simulate different particle densities. For
instance, a density of 1 fm−3 corresponds to a total particle
number of 125, which means on average one particle per cell.
For still lower densities not investigated, one would have to
work in addition with a suitable amount of test particles.)

For a system which is initially out of equilibrium the
lack of statistics in cells will affect the dynamical evolution
of the system, since now all cells are correlated during the
relaxation time. To study the effect we repeat the same
simulations performed for Fig. 5 starting with that particular
nonequilibrium initial condition (5) and calculate the time
evolution of momentum anisotropy. We use here the test
particle method to control statistical fluctuations. Figure 7
shows the time evolution of the anisotropy for different test
particle numbers Ntest. We see that the lack of statistics in cells
leads to a slight slowdown in the momentum relaxation. This
effect is reduced by using larger values for Ntest, which in turn
results in lower statistical fluctuations.

Let us summarize with some comparisons between the
two simulation methods of treating collisions as presented
in this section. In the simulation employing the stochastic
method, the collision rate is correctly realized if the statistics

FIG. 6. Collision rates for given particle densities. The initial
conditions and parameters are set to be the same as in Fig. 2. We
apply here the stochastic collision algorithm. The cell configuration
is the same as in Fig. 5.

in the individual cell is sufficiently high. In contrast, the
collision rate will be numerically suppressed in the simulation
using the geometrical method, when the mean free path
is not much larger than the interaction length among test
particles. In simulations with both algorithms the test particle
technique has to be applied in addition in order to solve the
Boltzmann equation with sufficient accuracy. For dense and
strongly interacting system, convergence of the numerical
results with increasing test particle number turns out to be
more efficient in simulations employing the stochastic method
than in simulations employing the geometrical method, as
shown in Fig. 4. In transport simulations applying the

FIG. 7. Time evolution of momentum anisotropy from box
calculations. The initial conditions and parameters are set to be the
same as in Fig. 1 (or Fig. 5). The stochastic method is used here. The
cell configuration is the same as in Fig. 5. The curves show the results
with different number of test particles.
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stochastic method we have to face the difficulty of dynamically
configurating the space into small cells, which is not necessary
in the geometrical method. Furthermore, the time step has
to be chosen much smaller than the cell volume to avoid
a strong change of the density distribution in cells. This,
of course, reduces the computing efficiency. In general one
should choose such a collision algorithm, so that numerical
expense is small. However, the stochasic method offers an
advanced technique when dealing with inelastic collision
processes, which is the subject of the next section, whereas
it might be rather impossible to get a unique and consistent
geometrical picture for multiparticle transition processes like
2 ↔ 3 for instance. A further comparison between the two
algorithms will be discussed in Sec. V concerning any
potential, but unphysical Lorentz frame dependence of the
algorithms.

III. PARTICLE MULTIPLICATION AND
ANNIHILATION PROCESSES

In this section we will now immediately extend the
stochastic method to the more complicated particle multipli-
cation and annihilation processes involving more than two
particles. These processes are essential to drive the system
towards chemical equilibrium and also do contribute to kinetic
equilibration. The simplest processes are 2 ↔ 3. In physical
terms such processes will be specified then later in the paper
as gluon Bremsstrahlung and its back reaction. We note
that the stochastic method has already been employed for
2 ↔ 3 processes in deuteron production pnN ↔ dN [40]
and antibaryon production via, e.g., ρ + ρ + ω ↔ B̄ + B [42]
with much simpler and factorized matrix elements. The true
complication in the following is to incorporate the true
Bremsstrahlung matrix element. Now we will discuss their
numerical implementations. The implementation of higher or-
der processes is straightforward within the extended stochastic
algorithm.

The collision term corresponding the 2 ↔ 3 processes of
identical particles is given by the expression

C23 = 1

2E1

1

2!

∫
d3p2

(2π )32E2

d3p3

(2π )32E3

1

2!

∫
d3p′

1

(2π )32E′
1

× d3p′
2

(2π )32E′
2

f ′
1 f ′

2 |M1′2′→123|2 (2π )4

× δ(4)(p′
1 + p′

2 − p1 − p2 − p3) + 1

2E1

∫
d3p2

(2π )32E2

1

3!

×
∫

d3p′
1

(2π )32E′
1

d3p′
2

(2π )32E′
2

d3p′
3

(2π )32E′
3

f ′
1 f ′

2 f ′
3

× |M1′2′3′→12|2(2π )4 δ(4)(p′
1 + p′

2 + p′
3 − p1 − p2)

− 1

2E1

1

2!

∫
d3p2

(2π )32E2

d3p3

(2π )32E3

1

2!

∫
d3p′

1

(2π )32E′
1

× d3p′
2

(2π )32E′
2

f1f2f3|M123→1′2′ |2 (2π )4

× δ(4)(p1 + p2 + p3 − p′
1 − p′

2) − 1

2E1

∫
d3p2

(2π )32E2

1

3!

×
∫

d3p′
1

(2π )32E′
1

d3p′
2

(2π )32E′
2

d3p′
3

(2π )32E′
3

f1 f2|M12→1′2′3′ |2(2π )4

× δ(4)(p1 + p2 − p′
1 − p′

2 − p′
3). (12)

The collision probability P23 for a particle multiplication
process can be derived analogously to Eq. (10) as

P23 = vrel
σ23

Ntest

�t

�3x
, (13)

where the total cross section σ23 is defined as

σ23 = 1

2s

1

3!

∫
d3p′

1

(2π )32E′
1

d3p′
2

(2π )32E′
2

d3p′
3

(2π )32E′
3

|M12→1′2′3′ |2

× (2π )4δ(4)(p1 + p2 − p′
1 − p′

2 − p′
3). (14)

One can also extend the geometrical method to the multipli-
cation processes. But it is in general impossible to obtain a
unified scheme for the annihilation processes in a consistent
geometrical picture. In contrast, the extension to 3 → 2
processes via the stochastic method is straightforward. We
write the collision rate stemming from Eq. (12) per unit phase
space in a form like Eq. (7)

�N3→2
coll /Ntest

�t 1
(2π)3 �3x�3p1

= 1

2E1

�3p2

(2π )32E2

�3p3

(2π )32E3

f1

Ntest

f2

Ntest

× f3

Ntest

1

2!

∫
d3p′

1

(2π )32E′
1

d3p′
2

(2π )32E′
2

× |M123→1′2′ |2(2π )4

× δ(4)(p1 + p2 + p3 − p′
1 − p′

2),

(15)

where fi, i = 1, 2, 3, denote now the phase space density of
the test particles. Inserting Eq. (8) into Eq. (15) gives the
collision probability of a 3 → 2 process

P32 = �N3→2
coll

�N1�N2�N3
= 1

8E1E2E3

I32

N2
test

�t

(�3x)2
(16)

for given momenta of the incoming particles in a particular
space cell. I32 is defined as the integral 1

2!

∫
d3p′

1d
3p′

2 · · · in
Eq. (15) over the final states.

Danielewicz and Bertsch [40] obtained a similar expression
for P32

P32 = v12
σ12

Ntest

V3

Ntest

�t

(�3x)2
, (17)

when investigating the production of deuterons in a nonrel-
ativistic transport model of low energy heavy ion reactions,
where they approximately factorized the matrix element into
a term describing a two-body collision and a term mimicking
particle fusion. σ12 is the total cross section for the two-body
collision and V3 can be interpreted as a volume: Once three
particles are within this volume, a 3 → 2 transition may be
considered to occur. The volume scales with V3 → V3/Ntest

when employing test particles. Therefore it is intuitively clear
why the quantity I32 in Eq. (16) scales with 1/N2

test. In contrast
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to Eq. (17), expression (16) is a more general one formulated in
a unified manner, and is correct for any given matrix elements
without any approximations.

As an example, when considering isotropic 2 ↔ 3 colli-
sions for identical particles, integrals over momentum space
for σ23 and I32 can be easily calculated analytically and one
obtains

I32 = 192π2σ23. (18)

Applying the probabilities (13) and (16) we are now able to
study kinetic and chemical equilibration in a box. We assume
a system consisting of identical particles and consider only
isotropic 2 ↔ 3 collisions. σ23 is set to be 10 mb. As in the box
calculations refering to Fig. 1, initially the system is chosen
to be strongly out of equilibrium according to Eq. (5). The
particles are distributed homogeneously in the box. The box
has a volume of 5 fm × 5 fm × 5 fm and is divided into equal
cells. The cell length is 1 fm. Initially the system contains
N0 = 2000 massless particles. Newly produced particles will
be positioned randomly within the individual cells where
the transitions occur. Before we come to the results, let us
determine the final particle density and temperature to be
expected when the system becomes thermally equilibrated.
For an ultrarelativistic (one component) Maxwell-Boltzmann
gas the following relations:

ε = 3neqT and neq = T 3

π2
(19)

hold in equilibrium. One can solve T and neq for an energy
density given by the initial condition. In our case, according
to Eq. (5), we obtain T = 1.248 GeV and neq = 25.64 fm−3

which is larger than the initial particle density n(t0) = 16 fm−3.
Figure 8 depicts the time evolution of the particle density
obtained from the box calculation. The results are obtained
by averaging ten independent runs. We see that the particle
density increases smoothly towards its final value which
agrees fully with the analytical expectation. The dotted curve
presents an estimate made by using the following relaxation
approximation:

n(t) = neq + (n(t0) − neq)e− t−t0
θ , (20)

where θ stands for the relaxation time. In general, for any
complex equilibration, this quantity will be time dependent.
For the estimate the relaxation time is taken by a simple
fixed value at equilibrium θ = 1/neqσ23 which slightly over-
estimates the relaxation, as also seen in Fig. 8. In Fig. 9
the final energy distribution is depicted by the histogram.
The dotted line denotes the analytical distribution with the
expected temperature T = 1.248 GeV. The numerical result
agrees again perfectly with the analytical distribution. The
fact that the final particle density and the final temperature
obtained from the inverse slope of the energy spectrum are
identical to the two analytical values demonstrates that detailed
balance between the multiplication and annihilation processes
is fully realized in our simulations. In Fig. 10 we compare
the time evolutions of the normalized particle density (the
fugacity) and the momentum anisotropy. It turns out that

FIG. 8. Time evolution of the particle density from box calcula-
tions. The initial conditions and parameters are set to be the same
as in Fig. 1 (or Fig. 5). We consider isotropic inelastic collisions
(2 ↔ 3) with a constant cross section of σ23 = 10 mb and employ
the stochastic collision algorithm. The cell configuration is the same
as in Fig. 5. The dotted line denotes the estimate using a simple time
relaxation approximation.

for the given initial conditions the kinetic equilibration is
slightly slower compared to the chemical equilibration. We no-
tice that the quantity 2〈p2

z 〉/〈p2
T 〉= 2

∫
d3p p2

zf /
∫
d3p p2

T f is
more sensitive to fluctuations than n = ∫

d3p/(2π )3f , which
is the reason why in Fig. 10 the curve of the fugacity is
smoother than that of the momentum anisotrophy.

IV. QUARK GLUON PLASMA IN BOX

A quark gluon plasma (QGP) is suggested as a kineticly
and chemically equilibrated system of deconfined quarks and

FIG. 9. Energy distribution from the same calculations as in
Fig. 8. The histogram shows the numerical result. The dotted line
shows the analytical expectation and the dashed line shows the
analytical distribution (the same as in Fig. 5) if the particle number
would be conserved.
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FIG. 10. Time evolution of the fugacity [n(t)]/neq versus the
momentum anisotropy from the same calculation as in Fig. 8.

gluons. Such state of matter is presumed to have been formed
after the big bang and also expected to exist temporarily
during the course of an ultrarelativistic heavy ion collision
in the laboratory. The main goal of the heavy ion collision
experiments at RHIC and of the future experiments at LHC is
to find evidence of such a new state of matter, the existence
of quark gluon plasma. From the theoretical point of view
it is also very interesting to address the possibility of the
formation of QGP under different theoretical assumptions of
the initial conditions, and to investigate the further evolution
of the quark gluon system in space and time. A cascade type
transport simulation solving relativistic Boltzmann equations
for quarks and gluons with Monte Carlo technique is just well
suited for such a study. Whereas the current parton cascade
models, MPC [24], PCPC [25], and VNI/BMS [26], have
not included the 2 ↔ 3 processes, we can apply the extended
stochastic collision algorithm presented in the last section to
build up a parton cascade describing the space-time evolution
of interacting quarks and gluons including gg ↔ ggg within
the framework of perturbative QCD. As a first application, we
restrict ourselves in this section to investigate the formation
of a quark gluon plasma in a fixed box. The convenience
is that a thermalized parton system should be formed in
any case after some time. Although this situation cannot be
given in reality, one can still address the way of equilibration
for different particle species. Furthermore, box calculations
offer an essential test for the numerical realization of detailed
balance of gg ↔ ggg and gg ↔ qq̄ processes. A realistic
space-time approach for the simulation of parton evolution
during the early stage after an ultrarelativistic heavy ion
collision will be presented in Sec. VI.

The parton interactions include all two-body processes:
(1) gg ↔ gg, (2) gg ↔ qq̄, (3) gq ↔ gq, (4) qq ↔ qq,
(5) qq ′ ↔ qq ′, (6) qq̄ ↔ qq̄, (7) qq̄ ↔ q ′q̄ ′, and three-
body processes (8) gg ↔ ggg. The matrix elements squared
in leading order of the perturbative QCD are taken from
Refs. [48,49]. We regularize the infrared divergences by using
the Debye screening mass [21] m2

D for gluons

m2
D = 16παs

∫
d3p

(2π )3

1

p
(Ncfg + nf fq) (21)

and the quark medium mass m2
q for quarks

m2
q = 4παs

N2
c − 1

2Nc

∫
d3p

(2π )3

1

p
(fg + fq), (22)

where Nc = 3 for SU(3) of QCD and nf is the number of
quark flavor. All formulas for the differential cross sections
are listed in Appendices C and D. Here we write down only
the differential cross sections (or the matrix element squared)
of the dominant processes for achieving kinetic and chemical
equilibration [20,31]:

dσgg→gg

dq2
⊥

= 9πα2
s(

q2
⊥ + m2

D

)2 , (23)

dσgg→qq̄

dq2
⊥

= πα2
s

3s
(
q2

⊥ + m2
q

) , (24)

|Mgg→ggg|2 =
(

9g4

2

s2(
q2

⊥ + m2
D

)2

)

×
(

12g2q2
⊥

k2
⊥
[
(k⊥ − q⊥)2 + m2

D

]
)

, (25)

where g2 = 4παs . The matrix element (25) describing the
gg ↔ ggg transitions is factorized into a part for elastic
scattering and a part for gluon radiation (or gluon fusion).
q⊥ and k⊥ denote, respectively, the perpendicular component
of the momentum transfer and that of the momentum of the
radiated gluon in the c.m. frame. In a dense medium the
radiation of soft gluons is assumed to be suppressed due to
the Landau-Pomeranchuk effect: The emission of a soft gluon
should be completed before it scatters again. This leads to
a lower cutoff of k⊥ via a step function 
(k⊥�g − cosh y),
where y is the rapidity of the radiated gluon in the c.m.
frame and �g denotes the gluon mean free path which is
the inverse of the gluon collision rate �g = 1/Rg . Rg is
the sum of the rate of the following transitions: gg → gg,
gg → qq̄, gq → gq, gg → ggg, and ggg → gg.

The collision rate is an important quantity governing the
time scale of kinetic and chemical equilibration. In Fig. 11
we depict the thermally averged cross section 〈vrelσ 〉 and the
gluon collision rates as function of temperature for gg →
gg, gg → qq̄, gq → gq, and gg → ggg transitions. 〈vrelσ 〉
are calculated numerically, for which we take the screening
masses obtained at equilibrium (fg = fq = e−E/T )

m2
D = (3 + nf )

8

π
αsT

2 and m2
q = 16

3π
αsT

2. (26)

In the calculations we consider two quark flavors (nf = 2)
and employ a constant coupling αs = 0.3. The corresponding
collision rates are obtained by R = ng〈vrelσ 〉, where ng =
νgT

3/π2 is the gluon density in thermal equilibrium. νg =
2 × 8 denotes the degeneracy of gluons. Because of our
simple minded inclusion of the Landau-Pomeranchuk effect,
the cross section σgg→ggg depends on the sum of the rates Rg =
Rgg→gg + Rgg→qq̄ + Rgg→ggg + Rggg→gg , in which, however,
Rgg→ggg and Rggg→gg(= Rgg→ggg in equilibrium) depend
again on σgg→ggg . This problem is solved by a selfconsistent,
iterative computation. Inspecting Fig. 11 we see that the
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FIG. 11. Gluon collision rates and thermally averaged 〈vrelσ 〉
as function of temperature. The solid, dashed, dotted, and dash-
dotted line show the temperature dependence for gg → ggg, gg →
gg, gq → gq, and gg → qq̄ transitions, respectively. We consider
here two quark flavors and employ a constant coupling αs = 0.3 (for
the cross sections and the screening masses).

collision rates are proportional to the temperature, which
indicates that the 〈vrelσ 〉 are inversely proportional to T 2. This
behavior stems from the fact that the cross section σgg→gg

and σgq→gq depend mainly on 1/m2
D and the cross section

σgg→ggg and σgg→qq̄ mainly on 1/s. Furthermore we realize
that the collision rate of the three-body processes is in the same
order as the rate of two-body gluon collisions.

We now come to some numerical details when simulat-
ing the parton equilibration in a fixed box. As shown in
Appendix D, the computations of σ23 and I32 over momentum
space are reduced to a four- (D9) and a two-dimensional (D13)
integration, respectively. Even then, the computations are still
time-consuming when σ23 and I32 have to be calculated for
every gluon doublet and triplet in cells, since the number
of integrations is proportional to n2 and n3, respectively
(n being the total gluon number in an individual cell). In order
to reduce the computing time, one first thinks of tabulating
σ23 as well as I32. In simulations we then make interpolations
using these tabulated data sets. This gives a convenient way
for obtaining σ23 because the underlying integral depends
on only two parameters, m2

D/s and �g

√
s, as mentioned

in Appendix D. The same data sets have been used for
calculating σ23 in thermal equilibrium as shown in Fig. 11.
In contrast to the case for σ23, I32 depends on five parameters
(see Appendix D). A tabulation of I32 is thus crude due
to the limitation of the storage, which leads to large errors
by interpolations. Therefore we decide to calculate I32 in
simulations using the Monte Carlo algorithm VEGAS [50]

with low computing expense (two iterations and 100 function
calls). Furthermore, instead of evaluating probabilities of all
possible collisions, we follow the scheme of Refs. [40,41] and
choose randomly N out of the possible doublets or triplets,
since in our case the transition probabilities of any channel are
in fact very small within one time step. In order to achieve
the correct collision rate, we have to accordingly amplify the
corresponding collision probabilities to be

P22 → P22
n(n − 1)/2

N22
, P23 → P23

n(n − 1)/2

N23
,

P32 → P32
n(n − 1)(n − 2)/6

N32
. (27)

The choices ofN22,N23, andN32 are arbitrary. In the following
simulations we set N22 = N23 = N32 = n.

The initial condition for the box calculations is taken by
sampling multiple minijet production in heavy ion collisions at
RHIC energy

√
s = 200 GeV. Minijets denote on-shell partons

with transverse momentum being greater than p0, where p0

is a parameter separating the hard, perturbative, from the soft,
nonperturbative, nucleon interactions. In calculations we set p0

to be 2 GeV. It had been proposed a long time ago in Ref. [44]
that at RHIC energy the produced minijets take half of the
transverse energy. The momentum spectrum of the minijets
has a power-law behavior and thus the initial condition of the
minijets is strongly out of equilibrium. In the following studies
we are interested in the way of how thermalization of different
parton species proceeds and also interested in the timescales
of kinetic and chemical equilibration.

We assume that a nucleus-nucleus collision can be simply
modeled as a sequence of binary nucleon-nucleon collisions.
Then the initial momentum distribution of the produced
partons is obtained according to the differential jet cross
section in nucleon-nucleon collisions [51]

dσjet

dp2
T dy1dy2

= K
∑
a,b

x1fa

(
x1, p

2
T

)
x2fb

(
x2, p

2
T

)dσab

dt̂
,

(28)

where pT is the transverse momentum and y1 and y2 are
the momentum rapidities of the produced partons. x1 and
x2 are the Feynman variables denoting the longitudinal
momentum fractions carried by the partons, respectively.
dσab stands for the leading order perturbative parton-parton
cross sections. The phenomenological factor K, set to be
2, accounts for higher-order corrections. We employ the
Glück-Reya-Vogt parametrization [52] for the parton structure
functions fa(x, p2

T ). For the box calculations we consider
gluons stemming from a central rapidity region y ∈ [−0.5 :
0.5] as the only initial parton species, since at the central
rapidity region the partons with small x dominate and these
are almost gluons. The initial number of gluons is assumed to
be 500.

The primary minijets produced in a real high energy heavy
ion collision are distributed within a thin disc due to the Lorentz
contraction. Instead of such a space-time configuration, we
assume a homogeneous spatial distribution of partons in the
box for simplicity. This allows us to still use a static cell
configuration. Moreover, all particles are assumed to be formed
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at t = 0 fm/c. We will discuss the space-time distribution of the
primary minijets later in Sec. VI when considering the parton
evolution in a real heavy ion collision. The size of the box is
set to be 3 fm × 3 fm × 3 fm and the box is divided into equal
cells. The length of a cell is set to be 1 fm. These settings are
tuned as that there will be enough gluons (about 15) in each
cell during the whole evolution. (For quarks strong statistic
fluctuation occurs at the beginning of the evolution due to the
initial lack of quarks.)

We employ a constant coupling of αs = 0.3 in the rest of
this section for evaluating the screening masses and the cross
sections. The screening masses m2

D and m2
q are calculated

dynamically according to Eqs. (21) and (22). The integrations
are computed as ∫

d3p

(2π )3 p
f → 1

V

∑
i

1

pi

, (29)

where the sum runs over all particles in a volume V, which
should be, in general, small in order to maintain the local
homogeneity. Since the initial position of partons is distributed
homogeneously, we extend the sum over all particles in the
fixed box.

The gluon collision rate, which will be employed for
evaluating σ23 and I32, can be obtained from the calculated
collision probabilities, since the sum of the probabilities of
all possible collisions gives the average total collision number
within the current time step. We then have

Rgg→f =
∑

iP
gg→f

i

1
2Ng�t

, f = gg, qq̄, ggg, (30)

Rggg→gg =
∑

iP
ggg→gg

i

1
2Ng�t

, (31)

and Rgq→gq =
∑

iP
gq→gq

i

Ng�t
, (32)

where the sums run over possible particle doublets or triplets in
the individual cells and also over all cells. Ng denotes the total
gluon number in the box. On the other hand, the P

gg→ggg

i and
P

ggg→gg

i depend again on σ23 and I32 respectively. Therefore,
a correct calculation for σ23 and I32 as well as P

gg→ggg

i and
P

ggg→gg

i should be a selfconsistent, iterative computation.
However, since such computations are too time consuming,
we employ the gluon collision rate, obtained at the last time
step, to calculate σ23 and I32 within the current time step.

When the parton system becomes fully equilibrated at the
later evolution, the final values of gluon and quark number
should be given by

N eq
g = νg

T 3

π2
V, (33)

N eq
q = 2νq

T 3

π2
V, (34)

where νg = 2 × 8 and νq = 2 × 3 × nf are the degeneracy
factors of a gluon and quark respectively. The factor 2 in
Eq. (34) indicates the sum of quark and antiquark. Employing
the relation

E = 3
(
N eq

g + N eq
q

)
T , (35)

FIG. 12. Time evolution of the gluon and quark number in box
calculations. We consider here gluons and quarks with two flavors
as parton species. Collision processes are the elementary two-body
parton-parton scatterings and three-body processes gg ↔ ggg in
leading order of perturbative QCD. The coupling is assumed to
be a constant of αs = 0.3. The initial momentum distribution of
particles is taken from the minijets production in central rapidity
interval y ∈ (−0.5 : 0.5) in a nucleon-nucleon collision at RHIC
energy

√
s = 200 GeV. The initial particles are gluons and distributed

homogenously in the box. The size of the box is 3 fm × 3 fm × 3 fm
and the box is divided into equal cells. The length of a cell is 1 fm.
The initial gluon number is set to be 500. The results are obtained
from an average over 60 runs.

which holds in thermal equilibrium, we obtain the final
temperature

T =
(

E

V

π2

3(νg + 2νq)

) 1
4

. (36)

The total energy E can be determined by the specified initial
momentum distribution of minijets, Eq. (28). Considering only
up and down quarks (nf = 2) we get a final temperature of
about 430 MeV and thus m2

D ≈ 0.7 GeV2 and m2
q ≈ 0.1 GeV2

for αs = 0.3.
Figure 12 shows time evolutions of the gluon and quark

number. Sixty independent realizations are collected to obtain
sufficient statistics. We see that the time evolution of the
gluon number has two stages. At first the gluon number
increases rapidly to a maximum and then relaxes towards
its equilibrium value on a slower scale. The quark number
starts from zero because of the initial absence of quark
species and increases smoothly towards its equilibrium value.
The gluon and quark number do reach their final values
simultaneously. These behaviors of Ng(t) and Nq(t) reveal
the well-known scenario of two-stage chemical equilibration:
The gluon system equilibrates at first as if no quarks were there
and then cools down gradually by producing quark-antiquark
pairs until the quarks reach the equilibrium. Such two-stage
equilibration could also happen in a real high energy heavy
ion collision [53].

Next we compare the equilibrium values of gluon and
quark number of Fig. 12 with the analytical values which one
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FIG. 13. Energy distributions at different times from the same
calculation as in Fig. 12.

would expect directly from the initial conditions. The final
temperature in one individual run can be obtained by inserting
the total amount of energy into expression (36). Averaged over
60 runs we have 〈T 〉= 427.84 MeV. Inserting the averaged
temperature into Eqs. (33) and (34) gives 〈N eq

g 〉= 428 and
〈N eq

q 〉= 643. The values extracted from Fig. 12 are Ng = 430
and Nq = 640. We see that the agreements are pretty good,
which demonstrates that our new cascade algorithm is indeed
very successful in keeping the detailed balance even for the
considered complexity of employing pQCD motivated cross
sections. We also calculate the equilibrium number of gluons
when no quarks are considered (nf = 0). In the present
situation this is N̄

eq
g = 852, which is somewhat greater than

the maximum of gluon number read off from Fig. 12, since in
the latter case gluons are already lost due to the production
of quark-antiquark pairs starting at the beginning of the
evolution.

In Fig. 13 we depict the energy distributions of the partons
(gluons and quarks) at different times. The initial (t = 0 fm/c)
distribution possesses a cutoff at E = p0 = 2 GeV and is
highly nonthermal. Immediately after the onset of interactions,
soft gluons with smaller energy do emerge by the process
gg → ggg and thermalize very quickly. We see that at 0.3 fm/c
the energy distribution for partons with smaller energy than
2 GeV is largely populated. The hard particles with larger en-
ergy are still out of equilibrium. There is still a hump at 2 GeV.
This hump will vanish gradually and at 2 fm/c the total
distribution becomes exponential. One can refer to this stage
as the onset of kinetic equilibration. The energy distribution at
a final time of t = 50 fm/c is also depicted in Fig. 13. We have
compared this spectrum to the analytical form Eq. (3) with
the averaged temperature 〈T 〉= 427.84 MeV obtained from
the initial input. (The analytical distribution is not shown in
Fig. 13.) The agreement is very good.

To study the kinetic equilibration in more detail, we
calculate the time evolutions of the momentum anisotropy

2
〈
p2

z

〉
g〈

p2
T

〉
g

(t),
2
〈
p2

z

〉
q〈

p2
T

〉
q

(t) (37)

FIG. 14. Time evolution of the momentum anisotropy for gluons
and quarks from the same calculation as in Fig. 12.

for gluons and quarks, which are shown in Fig. 14. We
see that the momentum of the gluons and quarks becomes
isotropic at almost same time of about 1 − 2 fm/c which is
just the timescale when the energy spectrum gets exponential,
as shown in Fig. 13. However, if one looks at the time
evolutions of the effective temperatures in Fig. 15, which are
defined as Tg(t) := Eg(t)/3 Ng(t) and Tq(t) := Eq(t)/3 Nq(t),
one notices that between 0 fm/c and 10 fm/c the temperature of
quarks is lower than the one of gluons. The reason is that the
quarks stem mainly by the gg → qq̄ quark pair production
and the cross section σgg→qq̄ is inversely proportional to s.
Therefore, when the quark production is still more dominant
compared to the annihilation process, more quark-antiquark
pairs with smaller energies are produced than those with larger
energies, compared to the equilibrated Boltzmann distribution.
Correspondingly, there would be a slight suppression in
the energy spectrum of quarks at high energy and in the
energy spectrum of gluons at low energy during the ongoing
chemical equilibration. It takes time for the gluon-quark
mixture to obtain an identical temperature via the gluon-quark
interactions. This identical, final temperature is extracted from
Fig. 15, Tg = Tq = 429 MeV, and agrees perfectly with the
expectation of 〈T 〉= 427.84 MeV.

The parton fugacity is defined as follows:

λg(t) := Ng(t)

Ñ
eq
g (t)

and λq(t) := Nq(t)

Ñ
eq
q (t)

, (38)

where

Ñ eq
g (t) := νg

T 3
g (t)

π2
V and Ñ eq

q (t) := 2νq

T 3
q (t)

π2
V. (39)

In Fig. 16 the time evolutions of the fugacity are depicted for
gluons (solid curve) and quarks (dotted curve). We see that
while the gluons approach the chemical equilibrium at about
3 fm/c, the quarks do equilibrate later at 20 fm/c. The two-stage
chemical equilibration is clearly demonstrated in Fig. 16.

We also depict the time evolutions of the screening masses
in Fig. 17 and of the gluon collision rates in Fig. 18. The
comparisons of the extracted equilibrium values from the
figures with the analytical values give perfect agreements.
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FIG. 15. Time evolution of the temperature for gluons and quarks
from the same calculation as in Fig. 12.

In the small window of Fig. 18 the collision rate of gg → ggg

(upper) and ggg → gg (lower) are shown by solid lines. We
see that the two processes occur with the same rates at about
2 ∼ 3 fm/c, which is just the time scale when the gluons
become chemically equilibrated. The identical time scale is
also obtained from Fig. 16. We did not depict the time evolution
of the rate of ggg → gg process from 3 fm/c to 50 fm/c, since
it is almost identical with that of gg → ggg process.

From the present study of creating QGP in a box some
speculations are made when we consider parton evolution in
a real ultrarelativistic heavy ion collision. (1) Two-stage equi-
libration is a good scenario describing parton thermalization
in high energy heavy ion collisions. (2) The cross section
σgg→ggg is in the same order as σgg→gg and thus the gg ↔ ggg

processes should play an important role in chemical and as
well as kinetic equilibration. Analyses based on a full 3 + 1
dimensional transport simulation of the parton evolution after
a high energy heavy ion collision will be presented in Sec. VI.

FIG. 16. Time evolution of the fugacity for gluons and quarks
from the same calculation as in Fig. 12.

FIG. 17. Time evolution of the screening mass for gluons and
quarks from the same calculation as in Fig. 12.

V. TESTING THE FRAME INDEPENDENCE

The relativistic kinetic equation

pµ∂µf = Icoll (40)

is a Lorentz covariant expression. Therefore the covariance
of its solution should not be affected by the choice of
the frame, in which the many-body dynamics is actually
described. Frame independence must also be fulfilled for
any physical observables which can be expressed as Lorentz
scalars. However, the equation (40) cannot be solved exactly in
practice by applying a transport algorithm. Strictly speaking,
the frame independence is not fulfilled in any cascade-type
simulations. Our aim in this section is to study potential frame
dependence in our description employing collision algorithms
presented in Secs. II and III. We will also demonstrate the
increasing insensitivity of the particularly chosen frame and
the convergency of the numerical results when adding more
and more test particles into the dynamics.

As explained in Sec. II, the geometrical method is based
on the geometrical interpretation of the total cross section

FIG. 18. Time evolution of the collision rates for gluons in the
different channels. The results are obtained from the same calculation
as in Fig. 12.
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and the time ordering of the collision events is generally
frame dependent when the mean free path of particles is in
the same order as the mean interaction length. In contrast,
in simulations employing the stochastic method, which deals
with the transition rate, a time ordering of the collision
sequence is not needed because collision events will be
sampled stochastically within a time step. Still, one has to
be aware that a nonzero subvolume of cells and a nonzero
timestep disturb the Lorentz invariance. Zhang and Pang
had studied already the frame dependence of parton cascade
results in Ref. [54] applying a parton cascade code with
a similar geometrical collision scheme as presented by us.
They argued that results from parton cascade simulations are
not sensitive to the choice of the frame when the collision
criterion is formulated in the center of mass frame of two
incoming partons. We will demonstrate the issues in detail in
the following considerations and calculations.

A. One dimensional expansion in a tube

For the purpose of studying the frame dependence we do
not need consider a special situation. However, as emphasized
in the Introduction, the cascade model presented here will
be applied to simulate the parton evolution in ultrarelativistic
heavy ion collisions. Therefore it makes sense to consider a
one dimensional expanding system as testing ground, since
at the initial stage of an ultrarelativistic heavy ion collision
the partonic system will undergo mainly a longitudinal
expansion. For convenience, particles of the test system are
classical Boltzmann particles instead of quarks and gluons.
Furthermore, in the present section we will employ isotropic
collisions and a constant cross section. In order to mimic a
perfect longitudinal expansion we embed all particles into a
cylindrical tube with infinite length. The reflections of particles
against the tube wall are operated in a same way as performed
in the box calculations.

Initially, particles are considered to be thermal in their local
spatial element. We use a Bjorken-type boost invariant initial
conditions [55]

f (x, p, τ ) = e
− p⊥ cosh(y−η)

T (τ ) , (41)

where τ is the proper time τ = √
t2 − z2 and y and η denote,

respectively, momentum and space-time rapidity

y = 1

2
ln

E + pz

E − pz

, η = 1

2
ln

t + z

t − z
. (42)

Due to the assumption of the boost invariance, quantities such
as particle density n, energy density ε, and temperature T
depend only on the proper time τ . For an ideal, longitudinal
and boost-invariant hydrodynamical expansion we obtain

n(τ ) = n(τ0)
τ0

τ
, (43)

ε(τ ) = ε(τ0)
(τ0

τ

)4/3
, (44)

T (τ ) = T (τ0)
(τ0

τ

)1/3
. (45)

Besides the study of the frame dependence we also attempt to
address the possibility of buildup of an approximately ideal
hydrodynamical expansion in cascade simulations when the
collision rate is considered to be very high. The time depen-
dences (43), (44), and (45) then serve as ideal references when
comparing them with results extracted from the numerical
simulations.

To be able to apply the stochastic method, the tube needs to
be subdivided into sufficient small cells. A static cell structure
as configurated in the box calculations is not suitable any more
for an expanding system. However, since the expansion is only
one dimensional, we can still employ a static configuration in
the transverse plane. Instead of a lattice structure, (which will
also work,) we make use of the symmetry in the given situation
and consider a spider web like structure in the transverse plane.
Particularly we divide the polar angle φ and the radial length
squared r2 equally within the interval [0, 2π ] and [0, R2],
respectively, where R denotes the radius of the cylindrical tube.
This division gives a same transverse area �F = �φ�r2/2
for all cells. Longitudinally we have to construct a comoving
cell configuration which adapts to the expanding system, since,
as a reminder, the spatial inhomogeneity of particles in the local
cells should be small within one time step. Using the thermal
distribution function (41) it can be simply realized by means
of the Cooper-Frye formula [56] that the particle number per
unit space-time rapidity dN/dη calculated at time t in a frame
(and also at τ as well) is constant, i.e., time independent,
when the system expands hydrodynamically. This gives us the
guideline to divide the tube longitudinally into equal small η

bins. We mark the individual cells [ηi, ηi+1] with the central
value η = (ηi + ηi+1)/2 and the size �ηc = ηi+1 − ηi . Then
the longitudinal length of a particular cell reads

�z(t) = t[tanh(η + �ηc/2) − tanh(η − �ηc/2)] (46)

and increases linearly in time. At time t, when going outwards
from the expansion center towards the front edges, the cells
becomes more and more narrow. Since the particle diffusion
within a time step should not destroy the homogeneity in
the local cells very much, the time step has to be chosen
smaller than the shortest longitudinal size among all cells. In
simulations we set the time step to be half of the shortest �z

of the cell located at the front edge

�t(t) = 0.5 �zmin(t) = 0.5 t [tanh(ηm + �ηc/2)

− tanh(ηm − �ηc/2)], (47)

where ηm denotes the outermost η bin.
With Eq. (47) we obtain the collision probability for a two-

body process in the central cell (η = 0)

P22 = vrelσ22
�t

�3x
= vrelσ22

× 0.5[tanh(ηm + �ηc/2) − tanh(ηm − �ηc/2)]

�x⊥ 2 tanh(�ηc/2)
.

(48)

For the parameters σ22 = 10 mb, �x⊥ = 2.5 fm2, ηm = 3.0,
and �ηc = 0.2, the collision probability P22 in the central
region is expected to be a small value, P22 < 0.004. In
order to make an estimate of the collision probability in
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the noncentral cells we go to their local comoving frames
for convenience, since the collision probability is invariant
under Lorentz transformations. The time in the local frame
of a η bin is τ = t/γ , where γ = cosh η denotes the Lorentz
factor. Suppose that the system undergoes one-dimensional
hydrodynamical expansion, the collision rate R = n〈vrelσ22〉
in the local frame of a moving noncentral cell is higher than
that in the central cell by factor γ , since the particle density
is just γ -times higher according to Eq. (43). [Note that the
estimate becomes complicated when the total cross section
depends on s instead of a constant, since the distribution of s
is a function of the temperature and the temperatures in the
central and noncentral cell are different at time t according to
Eq. (45).] On the other hand the transformed time step �τ

is γ -times smaller than �t . Therefore the averaged collision
number, which is a Lorentz scalar, is the same in all cells within
a time step �t . Furthermore, for the given cell configuration
there are on average the same number of particles in each
cell. This leads to the conclusion that for an approximate
one dimensional hydrodynamical expansion and choosing
a constant cross section, the mean collision probability of
two incoming particles (for an ensemble average) is the
same wherever the collision will occur. Due to the fact that
the collision probability is small we employ the method as
explained in Sec. IV to reduce the computing time: We choose
randomly n collision pairs (n being the particle number in a
cell) instead of n(n − 1)/2 possible doublets. The collision
probability of each chosen pair is then amplified by a factor of
(n − 1)/2.

For the numerical simulations we consider a tube with a
radius of R = 5 fm. All particles will be produced initially
at τ0 = 0.1 fm/c and are distributed homogeneously within a
space-time rapidity region η ∈ [−3 : 3]. The initial tempera-
ture at τ0 is set to be T0 = 2.6 GeV and thus the initial particle
density is

dN

dη
(τ0) = πR2 T 3

0

π2
τ0 = 1748. (49)

We have chosen these parameters to achieve initially a dense
system. For the cell configuration we set

�φ = 2π/8, �r2 = R2/4 fm2, and �ηc = 0.2. (50)

The transverse area of cells is thus about 2.5 fm2 and the
particle number in one cell is around 11.

The total cross section of the two-body collisions is set
to be σ22 = 10 mb if only 2 ↔ 2 processes are included.
We also carry out calculations including both 2 ↔ 2 and
2 ↔ 3 processes. To be able to make comparisons between
simulations without and with inelastic processes, we set
the cross sections in the latter case to be σ22 = 5 mb and
σ23 = 5/2 mb, which will lead to the same number of absolute
transitions per unit time in both cases. The angular distributions
of the transitions are considered to be isotropic.

To study the frame dependence we will simulate the
expansion in a so-called lab frame, whose origin agrees with
the center of the expanding system and in a boosted reference
frame, which is moving relatively to the lab frame with
velocity β = − tanh η0. The situation is illustrated in Fig. 19.
In the simulations we set η0 = 2. Since particles are initialized

Z, Z´

XX´

β

FIG. 19. One dimensional expansion in a tube. The lab frame is
labeled by X, Y , and Z, the boosted frame by X′, Y ′, and Z′ which is
moving with a velocity of β relative to the lab frame.

longitudinally within a limited spatial region in rapidity, the
pictures of the expansion in the two frames will be quite
different. The expansion in the lab frame is symmetric, while
in the boosted frame the right part of the system expands
faster than the left part at late times. Therefore the expansion
itself is frame dependent at late times due to the limitation of
the particle initialization. We will concentrate on a so-called
central region which is a cylinder around η = 0 in the lab
frame and correspondingly around η0 in the boosted frame
with a size of �η = 1. The time evolutions of observables
such as n(τ ), ε(τ ), T (τ ), and others will be extracted in this
central region in the two frames and will be compared. We will
present the results in Sec. V C.

Particles are initialized in the lab frame. At first we sample
η by its uniform distribution within η ∈ [−3 : 3] at the starting
time τ0. We then obtain the time and longitudinal position of
the particle

t0 = τ0 cosh η, z0 = τ0 sinh η. (51)

The transverse positions x0 and y0 are sampled uniformly
within the tube. Finally we determine the initial momentum
according to the thermal distribution (41) at τ0 for given η. The
initial positions and momenta of particles in the boosted frame
are obtained by Lorentz transformations from the lab frame.

B. Improved cell configuration

Before we concentrate on the further analysis, we have to
make sure that the cell configuration constructed in the last
section is really suitable for an expanding system simulated
by employing the stochastic method. To demonstrate this we
perform a one dimensional expansion in the lab frame with
the parameters set in the last section and extract dN/dη

distribution at time t. One expects that the distribution will
be constant over a large region, since this was the basis
motivation for the cell construction. Figure 20 shows the
dN/dη distribution within an interval of η ∈ [−0.3 : 0.3] at
time 0.11, 0.13, 0.16, and 0.2 fm/c. The dotted line depicts
the initial value dN/dη(τ0) = 1748. Astonishingly, at first
sight one notices a clear structure in the distribution within
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FIG. 20. Space-time rapidity distributions at different times
(t = 0.11, 0.13, 0.16, and 0.2 fm/c from histogram with smallest
amplitude to histogram with largest amplitude) from a simulation
of one dimensional expansion in a tube. We consider a thermal
and boost-invariant initial condition for evolving particles: Particles
are produced initially on a hyperbola of τ0 = 0.1 fm/c and are
distributed homogenously within a space-time rapidity interval η ∈
[−3 : 3], dN/dη(τ0) = 1748, which is depicted by the dotted straight
line. The initial temperature is set to be T (τ0) = 2.6 GeV. The radius
of the tube is R = 5 fm. We consider 2 ↔ 2 collisions with isotropic
cross section and a constant total cross section of σ22 = 10 mb. The
stochastic method is used in the simulation. The η bins of the cell
configuration are set to be �ηc = 0.2. No test particles (Ntest = 1) are
used in the simulation. The distributions are obtained by an average
over 104 independent realizations.

the η bins. (Remember that the size of the η bins is set to be
�ηc = 0.2.) One can also realize that this structure approaches
a characteristic final shape at late times. The meaning of
the structure is that particles in a cell are spatially centered.
This has no physical reason, but comes from a numerical
artifact due to the finite size of the cell structure, which
can be understood as follows: We concentrate on the central
η bin, η ∈ [−0.1 : 0.1], and assume that the expanding system
is in local thermal equilibrium. Any change of the dN/dη

distribution in the central η bin is caused from collisions among
the particles and from the ongoing particle diffusion. Even in
the central η bin the collective motion is still outwards in spite
of the small flow velocity. There are more particles moving
outwards than particles moving towards the center. Suppose
two extreme cases of collision occurring in the central η bin:
In case 1 two particles are moving towards the center and are
approaching each other. In case 2 two particles are moving
outwards and back-to-back. Due to the considered isotropic
scattering the momentum distribution of the particles after the
collision is same in both cases. Since, on average, the case
2 happens more frequently than the case 1, one can draw
the conclusion that collisions in an η bin tend to bring more
particles back into the center than to push them towards the
outside when the collective flow in an η bin is indeed directed
outwards. This is the reason for the artificial structure of the
dN/dη distribution in the small η bins. On the other hand,
since the distribution of dN/dη is no more constant, the

FIG. 21. Space-time rapidity distributions at time t = 0.2 fm/c
in tube calculations. The initial condition and collision cross section
are the same as in Fig. 20. The stochastic method is employed in
the simulations. The result showing structure with larger(smaller)
period is obtained from the simulation with �ηc = 0.2(0.1). In the
simulation with �ηc = 0.1 we use two test particles per real particle
in order to achieve the same statistics in each cell as that in the
simulation with �ηc = 0.2 and Ntest = 1. The histogram, which
is nearly constant, is obtained from the simulation with improved
moving cell configuration of �ηc = 0.2 and Ntest = 1. The dotted line
shows the initial distribution dN/dη = 1748. All the distributions are
received by an average over 104 independent realizations.

particle diffusion from the center outwards is now stronger
than the diffusion towards the center. The diffusion is thus
counterbalancing the particle centralization and the dN/dη

distribution will approach a final shape when the balance bet-
ween the diffusion and the centralization is fully established.

In Fig. 21 we compare the dN/dη distributions at time
t = 0.2 fm/c from the simulations with �ηc = 0.2 and with a
smaller size of �ηc = 0.1. In the simulation with �ηc = 0.1
we employ two test particles per real particle in order to
obtain the same statistics as in the case with �ηc = 0.2 and
Ntest = 1. We see a weaking in the structure of dN/dη, though
the structure does still exist. In the limit �ηc → 0, however,
the characteristic substructure in the dN/dη distribution will
vanish, since the velocity of the intrinsic collective flow in the
η bins goes to zero. Therefore decreasing the size of the η bins
and using more test particles would be a natural way to reduce
this numerical artifact. However, the more test particles, the
longer the computing time will be. A more elaborate way
which does not need further test particles is to move the
cell configuration randomly from time to time. For instance,
we move the central η bin η ∈ [−0.1 : 0.1] to [−0.1 + ξ :
0.1 + ξ ], where ξ is a random number distributed within
[0 : �ηc = 0.2]. Although particles in each η bin will be still
centered within each time step after collisions, but because of
the random shift of the cell configuration the associated center
of the bin for a particular particle is also moving, so that there
is no absolute center for the particle. Therefore, on average,
the effect of the centralization will be washed out. In Fig. 21
we depict the dN/dη distribution from simulations employing
the improved moving cell configuration with �ηc = 0.2.
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FIG. 22. Time evolution of the particle density, energy density,
and temperature extracted in the central space-time rapidity region
η ∈ [−0.5 : 0.5] from simulations of one dimensional expansion in
the lab and boosted frame of a tube. The geometrical method is
employed in the simulations. The initial condition and collision cross
section are the same as in Fig. 20. No test particles (Ntest = 1) are
used. Only 2 ↔ 2 processes are included. The results are obtained by
an anerage over 20 independent realizations. The thin lines indicate
time evolutions of the quantities in the hydrodynamical limit.

We see that the distribution is nearly constant and does not
show any unwanted substructure. In Fig. 21 we also notice a
tiny enhancement of the dN/dη distribution when compared
with the initial distribution dN/dη = 1748. We will come
back to this further artifact in the next subsection.

C. Results

1. 2 ↔ 2 processes without test particles

At first we present the results from simulations without test
particles. Figures 22 and 23 show the time evolution of the
particle density, energy density, and temperature in the central
space-time rapidity region in the two frames. The results are
extracted from the simulations employing the geometrical and
stochastic method respectively and are obtained by averag-
ing 20 independent realizations. The effective temperature
is defined as T = ε/3n and corresponds to the statistical

FIG. 23. Time evolution of the particle density, energy density
and temperature extracted in the central space-time rapidity region
η ∈ [−0.5 : 0.5] from simulations employing the stochastic method
in the lab and boosted frame of a tube. The initial condition
and collision cross section are the same as in Fig. 20. No test
particles (Ntest = 1) are used. Only 2 ↔ 2 processes are imple-
mented. We apply the moving cell configuration with �ηc = 0.2.
The results are obtained by an average over 20 independent
realizations.

temperature when the system is at local kinetic equilibrium.
Otherwise T can be regarded as the mean energy per particle.
In the simulation with the stochastic method we set the size of
the η bins to be �ηc = 0.2. The time scale in Figs. 22 and 23
denotes the time in the local frame of the central region. The
solid and dotted curves depict the results achieved in the lab and
boosted frame, respectively. The thin solid lines show the ideal
hydrodynamical limit calculated via a corresponding integral
of the thermal phase space distribution (41). Please note that
we have taken the size of the central region into account.
Therefore the hydrodynamical results (43), (44), and (45) are
modified by

n(t) = an n(τ = t) , an := �η

2 tanh(�η/2)
(52)

ε(t) = aε ε(τ = t) , aε := 1

6 tanh(�η/2)

∫ �η/2

−�η/2
dη′

× (3 + (tanh η′)2)(cosh η′)4/3 (53)
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FIG. 24. Collision rate in the central space-time rapidity region
for various particle densities experienced during the expansion. The
results are extracted from the same simulations performed for the
extractions of n(t) and ε(t) in Figs. 22 and 23. The solid line shows
the analytical expectation.

T (t) = aT T (τ = t) , aT := aε

an

∫ �η/2

−�η/2
dη′

× (3 + (tanh η′)2)(cosh η′)4/3. (54)

In the limit �η → 0 the additional factors go to 1.
From Figs. 22 and 23 we see that the frame dependence of

the considered quantities is quite noticeable in the simulation
when employing the geometrical method, while it is rather
weak in the simulation employing the stochastic method.
Moreover and astonishingly, the “temperature” in the simula-
tion with the geometrical method is increased at the beginning
of the expansion. This “reheating” [37] is unphysical, since
the isotropic initialization of the particle system does not give
any reason for an introversive pressure. The gradient of the
pressure is directed outward, so that in the further evolution
the longitudinal work done by the pressure should lead to a
cooling of the system. We also rule out any explanation based
on a possible viscous effect which might bring some effective
net energy flow into the local region, because there is no
reheating in the simulation with the stochastic method. From
the investigations within a static box we have realized that the
collision rate obtained in the simulation with the geometrical
method will be suppressed when the mean free path is in the
same order as (or even smaller than) the interaction length.
This is indeed the situation at the beginning of the expansion
in the tube. The suppression of collisions will obviously slow
down the cooling of the system, but this cannot lead to any
reheating. However, the fact that particles can interact with
each other over a larger distance than the mean free path makes
it reasonable that the pressure could be incorrectly built up.
The effect of the “antipressure” is thus a numerical artifact.
We extract the collision rate and the difference of space-time
rapidities of colliding particles per collision event 〈�η〉coll in
the central region from the simulations carried out in the lab
and boosted frame. The results are depicted in Figs. 24 and 25.
The collision rates are obtained by counting the collision events
in the central region within a time interval of 0.02 fm/c. It
is clearly seen that the collision rates in the simulation with

FIG. 25. Averaged difference in space-time rapidity of colliding
particles extracted in the central space-time rapidity region for various
particle densities experienced during the expansion. The results are
extracted from the same simulations performed for the extractions
of n(t) and ε(t) in Figs. 22 and 23. The labeling of the symbols is
identical to that of Fig. 24.

the stochastic method agree well with the expectation. The
slight discrepancy can be understood as the consequence of
the relative large size of the η bins (�ηc = 0.2). In contrast,
the collision rates in the simulation with the geometrical
method are strongly suppressed at high densities due to the
relativistic effect of the time spread of the two collision times,
as explained in Sec. II A. The results of the 〈�η〉coll show
that particles interact in fact over very large distance at high
densities in the simulation when employing the geometrical
method. The decrease of the 〈�η〉coll at the highest densities
corresponding to the very beginning of the expansion is due to
the fact that at the early times particles with large η are still not
formed. In the simulation employing the stochastic method the
interaction length is, however, controlled by the cell structure.
In summary, we suspect that the larger interaction distance
(compared with the mean free path) may be the reason for
the “reheating.”

Figure 26 shows the space-time rapidity distributions at
the proper time τ = 0.2 and 1.0 fm/c extracted from the
simulations in the lab and boosted frame with the geomet-
rical (upper panel) and the stochastic (lower panel) method,
respectively. The solid (dotted) curves depict the distributions
in the lab (boosted) frame. The thin solid lines show the initial
distribution dN/dη(τ0) = 1748 within η ∈ [−3 : 3]. We see
that the results obtained when employing the geometrical
method show a strong frame dependence. A clear hump exists
around the expansion center η = 0 in both frames and broadens
gradually. (Note that the expansion center in the boosted frame
is at η = −2 after the shift.) The humps indicate a net particle
diffusion towards the expansion center, which again can
be explained as a consequence of the “antipressure” effect: The
introversive pressure drives the particles back to the expansion
center. In the distributions obtained when using the stochastic
method we see a relative tiny hump at the expansion center
which disappears at the later time. The slight enhancement
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FIG. 26. Particle distributions versus space-time rapidity at the proper time τ = 0.2 and 1.0 fm/c extracted from simulations employing the
geometrical and stochastic method in the lab and boosted frame. The initial condition and collision cross section (and cell configuration) are the
same as in Fig. 22 (and in Fig. 23). In order to compare the distributions in the same physical regions directly, we have shifted the distributions
in the boosted frame by −η0 = −2. Except that the distributions extracted from the simulations in the boosted frame using the stochastic
method are obtained by an average over ten independent realizations, all other distributions are obtained from 20 independent realizations. The
thin solid lines indicate the initial distribution dN/dη(τ0) = 1748. The cut at η = 4 in the distributions at τ = 1.0 fm/c for the expansion in
the boosted frame is due to the fact that the end time of the simulation in the boosted frame is t ′ = 210 fm/c and thus particles with η being
greater than 6 (or 4 after the shift) have smaller proper time than 1 fm/c.

has been also noticed in Fig. 21. We recognize that the size of
the cell bins �ηc = 0.2 is not small enough to overcome the
numerical artifact completely.

In Fig. 27 we depict the momentum rapidity distributions
at proper times. The thin solid curves show the initial rapidity
distribution

dN

dy
(τ0) = R2T 3

0 τ0

π

sinh(2ηm)

cosh(2ηm) + cosh(2y)
, (55)

where ηm denotes the boundary of the initial system which
has been set to be 3. In the upper panel of Fig. 27 one also
recognizes the particle diffusion towards the expansion center,
though the effect is not strong. The disributions obtained
when using the stochastic method show perfect “no frame
dependence” and a collective flow outwards to the higher
rapidity at late times.

For an initially thermal system it seems reasonable that
the system will be still locally in or close to kinetic equi-
librium during the further expansion. On the other hand,
we have also realized that numerical artifacts make strong
effects at the beginning of the expansion, especially in the

simulations applying the geometrical algorithm. Therefore it
is essential to question whether the encountered numerical
problem does affect the maintenance of the kinetic equi-
librium in the cascade simulations of the one dimensional
expansion. For this we extract the transverse momentum
distributions at y = 0 within an interval y ∈ [−0.5 : 0.5] at
different proper times and compare them with the analytical
thermal distributions. In Figs. 28 and 29 the pT distribu-
tions extracted from the simulations in the lab frame are
depicted. Figure 28 shows the results at τ = 1.0 and 4.0 fm/c
in the simulations with the geometrical method and
Fig. 29 shows the results at τ = 0.2, 1.0 and 4.0 fm/c
in the simulations with the stochastic method. The ther-
mal distributions shown by the solid lines are obtained as

integral of the thermal particle distribution function (41) by
means of the Cooper-Frye formula

1

N

dN

pT dpT �y

∣∣∣∣
y=0

(τ ) = 1

N

2 π2R2

(2π )3

1

�y

∫ 3

−3
dη

∫ �y/2

−�y/2
dy pT

× τ cosh(y − η) e
− pT cosh(y−η)

T (τ ) , (56)
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FIG. 27. Particle distributions versus momentum rapidity at the proper time τ = 0.2 and 1.0 fm/c extracted from simulations employing
the geometrical and stochastic method in the lab and boosted frame. The results are obtained from the same simulations performed for the
extractions of dN/dη(τ ) in Fig. 26. The thin solid curves indicate the initial distribution at τ0 = 0.1 fm/c.

where �y = 1 and the temperature T (τ ) is read off from
Fig. 22 or Fig. 23 at t = τ . We see good agreements between

FIG. 28. Distributions of the transverse momentum per unit
rapidity at y = 0 at τ = 1.0 and 4.0 fm/c (from upper to lower
histogram) in a simulation employing the geometrical method in
the lab frame. The initial condition and collision cross section are
the same as in Fig. 22. The results are obtained by an average
over 20 independent realizations. The solid lines show the analytical
distributions (56) with the temperatures read off from Fig. 22.

the numerical and the analytical distributions, even for the case
of the geometrical method. The analogous pT distributions,

FIG. 29. Distributions of the transverse momentum per unit
rapidity at y = 0 at τ = 0.2, 1.0, and 4.0 fm/c (from upper to lowest
histogram) in a simulation employing the stochastic method in the
lab frame. The initial condition, collision cross section, and cell
configuration are the same as in Fig. 23. The results are obtained
by an average over 20 independent realizations. The solid lines show
the analytical distributions (56) with the temperatures read off from
Fig. 23.
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FIG. 30. Proper time evolution of the transverse energy per
unit momentum rapidity at y = 0 in the simulations employing the
geometrical and stochastic method in the lab and boosted frame. The
initial condition and collision cross section (and cell configuration)
are the same as in Fig. 22 (and in Fig. 23). The results are obtained
by an average over 20 independent realizations. The thin solid line
shows the analytical evolution in the hydrodynamical limit.

extracted from the simulations in the boosted frame (at y =
η0 = 2), are also compared with the analytical spectra (both
not shown in figures). The agreements are perfect as those
presented in Figs. 28 and 29. As a conclusion, although the
expansion does not proceed fully close to ideal hydrodynamics,
the expanding system is still kinetically equilibrated at least
until τ = 4 fm/c in the simulations with the stochastic
method as well as with the geometrical method, although
in the latter case the cooling of the system occurs much
slower.

As a last point, we show in Fig. 30 the proper time evolution
of the transverse energy extracted at y = 0 per unit rapidity
from both type of simulations in the lab and boosted frame,
respectively. The thin solid line depicts the result in the
hydrodynamical limit

dET

dy

∣∣∣∣
y=0

(τ ) = πR2

(2π )3

∫
dη d2pT p2

T τ cosh(y − η) e
− pT cosh(y−η)

T (τ )

= 3

4
R2 T 4 τ = 3

4
R2 T 4

0 τ
4/3
0 τ−1/3 . (57)

The time evolutions of the transverse energy have similar
shapes like that of the temperature shown in Figs. 22 and 23.
We also recognize the unphysical “reheating” occurring in the
simulations with the standard geometrical method.

Summarizing this section, we have studied the frame
dependence of a one dimensional expansion in a tube by
employing the two collision algorithms presented in this
paper. The comparisons show that quantities extracted in
the simulations with the geometrical method have a much
pronounced and unphysical frame dependence. Numerical
artifacts are very significant in these simulations, especially
at the beginning of the expansion when the system is very
dense. In contrast, the results obtained from the simulations

when employing the stochastic method show almost “no frame
dependence.”

2. 2 ↔ 2 processes with test particles

The time evolutions of the particle density, energy density
and temperature depicted in Figs. 22 and 23 demonstrate that
simulated dynamics does not undergo an ideal hydrodynamical
expansion. On the one hand, it is true that the ideal hydrody-
namics cannot be realized in simulations with finite collision
rate. One has to take the finite viscosity into account. Thus
it is interesting to make comparisons between the transport
results and those calculated from viscous hydrodynamics
[57–59]. This subject is, however, beyond the scope of this
paper. On the other hand, even the viscous expansion cannot
be solved exactly due to the limitation of the numerical
implementations. Especially, as observed in the simulations
with the geometrical method, the numerical artifacts make
strong unphysical effects. In this section we introduce the test
particle method into the dynamics to reduce this numerical
uncertainty and to study the convergency of the transport
solutions.

From the experiences in the box calculations, one realizes
that the computing becomes more time consuming when more
and more test particles are added into the simulations. One
way to reduce the computing time in the present case is to
consider a tube with a smaller radius. The (real) particle density
is however unchanged. In simulations with the geometrical
method we set the radius of the tube to be R′ = R/

√
Ntest with

R = 5 fm. However, in simulations with the stochastic method
we instead keep the radius of 5 fm, in order to be able to refine
the cell configuration.

Figure 31 depicts the relative frame dependence of the
particle density, energy density, and temperature extracted
in the central region in the simulations with the geometrical
method with Ntest = 1, 4, and 25, respectively. The simulations
are performed in the lab frame. We obtain the results by
averaging 20, 2, and 20 independent realizations, respectively.
Note that the simulation with Ntest = 4 is exceptionally carried
out with the default radius of R = 5 fm. We see that the
potential frame dependence is more and more reduced when
more and more test particles are considered. The reduction of
the frame dependence is also clearly demonstrated in Fig. 32.
Here the distribution of the space-time rapidity obtained with
Ntest = 25 is compared with the distribution without test
particles (or Ntest = 1) at τ = 0.2 fm/c. The hump, which
exists in the distribution without test particles due to the
artificial back diffusion, does not occur with Ntest = 25. For
the case employing the stochastic method it is not necessary
to study the reduction of the frame dependence with the test
particle method, since the frame dependence is actually very
weak even without test particles (see Fig. 23).

We also employ the test particle method to study the
convergency of the transport solutions. Figure 33 shows the
time evolution of the temperature extracted in the central
region in the simulations with increasing test particles in the
lab frame. The size of the η bins constructed in the simulations
with the stochastic method is refined to �ηc = 0.2/Ntest. There
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FIG. 31. Relative frame dependence of the particle density,
energy density, and temperature in the simulations employing the
geometrical method. The initial condition and collision cross section
are the same as in Fig. 22. The results are obtained by averaging
20, 2, and 20 independent realizations for increasing test particles
Ntest = 1, 4, and 25, respectively.

are on average 11 test particles in one cell. (We have also
performed simulations with doubled test particle number in
one cell to increase the statistics. The outcome shows almost
no changes.) From Fig. 33 we see the clear tendency of
convergency. The time evolution of the temperatures extracted
from the simulations with the geometrical and stochastic
method converge towards almost the same curve. However, it
is obvious that the solution obtained with the stochastic method
converges more efficiently than the solution obtained with the
geometrical method. Therefore, we do favor the stochastic
method to be applied in transport simulations of system with
high particle density. Furthermore, we see that the effect of
the artificial reheating, appearing in the simulation with the
geometrical method with Ntest = 1, reduces and vanishes in
the simulations when employing higher test particles.

In Fig. 34 we depict the collision rate and the mean
difference of the space-time rapidities of colliding particles
per collision 〈�η〉coll in the simulations with the geometrical

FIG. 32. Comparison of the space-time rapidity distribution with
Ntest = 25 with the distribution without test particles at τ = 0.2 fm/c.
The distributions are extracted from the simulations employing the
geometrical method in the lab frame by averaging 20 independent
realizations. The initial condition and the collision cross section
are the same as in Fig. 22. The thin solid line indicates the initial
distribution dN/dη(τ0) = 1748 within η ∈ [−3 : 3].

method with increasing test particles. We see that the collision
rate increases when using more test particles. However, even
for Ntest = 900 the collision rates at high densities are still
suppressed. The reason is that the interaction length decreases
only with 1/

√
Ntest. We also see that the 〈�η〉coll decreases

when the number of the test particles increases. Putting Fig. 34
in relation to Fig. 33 confirms our suspicion in the last
subsection that unwanted collisions over large distances may
lead to the buildup of “antipressure” which then influences the
particle diffusion. We mention that the same numerical artifact
has been found in the studies in Refs. [24,37].

3. Including 2 ↔ 3 processes

We now include the inelastic 2 ↔ 3 processes into the dy-
namics of the one dimensional expansion in the tube and study
the frame dependence for the new situation. The stochastic
method is applied to simulate the (in)elastic collisions whose
cross sections are set to be σ22 = 5 mb and σ23 = 2.5 mb. These
parameters lead to the same rate of the elastic and inelastic
transitions. We consider isotropic collisions and set the size of
the η bins to be �ηc = 0.2/Ntest.

In Fig. 35 we show the time evolutions of the particle
density, energy density, and temperature extracted in the
central space-time rapidity region from the simulations with
Ntest = 1 carried out in the lab and boosted frame. The
results are absolutely frame independent. Comparing to the
results with only two-body collisions shown in Fig. 23, we
notice that the particle density is slightly enhanced. This
enhancement is not due to any numerical artifacts, but the
consequence of the chemical equilibration: In the thermal
equilibrium the particle density is related with the temperature
by n = T 3/π2. Since during the expansion the temperature is
always higher compared to the ideal hydrodynamical limit due
to finite viscosity, therefore, there have to be more particles
being produced than annihilated in order to account for the
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FIG. 33. Convergency of temperature in the simulations in the
lab frame with increasing test particles. The initial condition and
collision cross section (and cell configuration) are the same as in
Fig. 22 (and in Fig. 23). The results in the simulations employing
the geometrical method are obtained by averaging 20, 2, 20, 5, 5, and
5 independent realizations for Ntest = 1, 4, 25, 100, 400, and 900,
respectively. The results in the simulations employing the stochastic
method are obtained by averaging 20, 10, 2, and 1 independent
realizations for Ntest = 1, 2, 4, and 8, respectively.

undersaturated system and to achieve a new balance. To
address the chemical equilibration we concentrate on the
time evolution of the fugacity which is defined as λ(t) =
n(t)/neq(t), where

neq(t) = an neq(τ ) = an

T 3(τ )

π2
= an

a3
T

T 3(t)

π2
. (58)

an and aT are factors given in Eqs. (52) and (54) taking
the size of the central region into account. The T (t) in
Eq. (58) is just the extracted temperature from the simulation.
Figure 36 depicts the time evolution of the fugacity. We see that
the chemical equilibrium is almost achieved and maintained
during the expansion in both frames. We have also extracted
the pT distributions and compared with the analytical spectra
at different times. The results show that the kinetic equilibrium
is also maintained during the expansion.

The collision rates of 2 ↔ 2, 2 → 3, and 3 → 2 processes,
extracted from the simulation in the lab frame, are depicted in
Fig. 37. We see perfect agreements of the extracted collision
rates with the expectations. Furthermore, the collision rates
of 2 → 3 and 3 → 2 processes are almost identical, which

FIG. 34. Collision rate and averaged difference in space-time
rapidity of colliding particles. The results are extracted in the central
space-time rapidity region η ∈ [−0.5 : 0.5] for various particle
densities experienced during the expansion. The simulations are the
same as performed in the upper panel of Fig. 33 when discussing the
convergency of the temperature.

demonstrates once more the maintenance of the chemical
equilibrium in the expanding system.

We show in Fig. 38 the particle distributions versus the
space-time rapidity η and versus the momentum rapidity y
at τ = 0.2 and 1.0 fm/c, obtained from the simulations with
Ntest = 1 in the lab and boosted frame. The frame dependence
is not noticeable and lies within the statistical errors. In Fig. 38
we also see the enhancement in the particle number over a
large range due to the slight particle production in the ongoing
chemical equilibration.

Finally, though the results from the simulations above
are largely frame independent, convergence to the correct
Boltzmann solutions requires using more test particles. Due
to the settings of σ22 = 5 mb and σ23 = 2.5 mb one would
expect that the total collision rate including elastic and inelastic
processes is the same as that in the simulation with purely
elastic collisions and σ22 = 10 mb. Therefore, the convergence
with increasing test particles would be exactly the same
in both cases. Still, as realized from the above comparison
between Figs. 35 and 23, the temperatures (and the number
densities as well) in the central space-time rapidity region are
slightly different due to the new balancing as explained above.
Therefore, the convergence of the temperature, for instance,
will not be the same as that shown in the lower panel of Fig. 33.
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FIG. 35. Time evolution of the particle density, energy density,
and temperature extracted in the central space-time rapidity region
η ∈ [−0.5 : 0.5] from the simulations employing the stochastic
method in the lab and boosted frame. The initial condition and cell
configuration are the same as in Fig. 23. No test particles (Ntest = 1)
are used. 2 ↔ 2 as well as 2 ↔ 3 processes are included in the
simulations. We consider isotropic collisions with constant cross
sections of σ22 = 5 mb and σ23 = 2.5 mb. The results are obtained
by an average over ten independent realizations. The thin solid lines
indicate time evolutions in the hydrodynamical limit.

On the other hand, the new balancing should not affect the
time evolution of the energy density. (This quantity is shown
in Fig. 39 for the pure 2 ↔ 2 and the 2 ↔ 2 + 2 ↔ 3 case
with increasing Ntest.) We see the exactly same convergence
of the energy density in the central region.

After this exhaustive discussion of testing the operation
of the cascade, we now proceed to describe real heavy ion
collisions.

VI. FULL 3 + 1 DIMENSIONAL OPERATION OF THE
PARTON CASCADE FOR CENTRAL AU+AU

COLLISIONS AT RHIC: KINETIC AND CHEMICAL
EQUILIBRATION

In this section we take the step to simulate the space time
evolution of partons produced in a central Au+Au collision
at maximal RHIC energy

√
s = 200 GeV by means of the

FIG. 36. Time evolution of fugacity extracted from the same
simulations performed for the extraction of n(t) and ε(t) in
Fig. 35.

well-tested stochastic collision algorithm. The simulation is
performed in the center-of-mass frame of the colliding nuclei.
For the present and first exploratory study we include only
the pQCD motivated gluonic interactions gg ↔ gg and gg ↔
ggg in the dynamical evolution. Simulations with all parton
degrees of freedom will be postponed to a sequent paper.

A. The initial conditions

The initial conditions for the parton cascade are assumed
to be generated by minijet production in a central Au+Au
collision modeled via multiple, binary nucleon-nucleon
collisions [43,44]. Of course, this is a strong assumption. The
picture of the very early stage of the collision, when potentialy
the partons are freed from the two nuclear wave functions and
do become on-shell particles, is crucial for all kinetic cascades

FIG. 37. Collision rate in the central region for various particle
densities experienced during the expansion. The results are extracted
from the same simulations performed for the extractions of n(t) and
ε(t) in the lab frame in Fig. 35. The solid squares, solid circles, and
open circles depict, respectively, the collision rates for 2 ↔ 2, 2 → 3,
and 3 → 2 transitions. The solid and dotted line show the analytical
expectations.
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FIG. 38. Particle distributions versus space-time rapidity and momentum rapidity at the proper time τ = 0.2 and 1.0 fm/c, extracted from the
simulations employing the stochastic method in the lab and boosted frame. The initial condition, collision cross section, and cell configuration
are the same as in Fig. 35. The distributions extracted in the lab(boosted) frame are obtained by averaging 20(6) independent realizations. The
thin solid lines indicate the initial distributions at τ0 = 0.1 fm/c.

which can only describe the further evolution. Hence, one
has to incorporate a physical model for describing the very
initial phase of liberated partons serving as initial condition for
cascades. One such physical picture is based on the idea of a
free superposition of minijets being produced in the individual
semihard nucleon-nucleon interactions. Another and much
celebrated picture is the so-called McLerran-Venugopalan
model or color glass condensate [45], which is based on
the idea of gluon saturation of the QCD structure function
of the nuclei at sufficiently low x. The so-called bottom
up scenario [30] of thermalization relies on these initial
conditions, where in the leading order of the coupling constant
αs the various time scales of kinetic evolution is parametrically
estimated. We will leave this as an important task for future
investigation. At present, we choose the liberation of minijets
as the initial conditions. Minijets denote the on-shell partons
with transverse momentum being larger than a centain cutoff
value of p0 ∼ 2 GeV. Since no nuclear effects like shadowing
at small x are considered in the present study, the averaged
number of produced partons is then just proportional to the
number of binary nucleon-nucleon collisions

〈Nparton〉= 2 σjet TAA(b = 0). (59)

TAA(b = 0) denotes the nuclear overlap function for a central
nucleus-nucleus collision. The overlap function is given by

TAB(b) =
∫

d2xT 1dz1 d2xT 2dz2 nA(r1)

× nB(r2) δ2(b − (xT 1 − xT 2)). (60)

nA/B(r) is the nuclear density. In physical terms, σTAB(b),
where σ denotes the total nucleon-nucleon cross section,
gives roughly the number of binary semihard nucleon-nucleon
collisions in a A + B collision at impact parameter b [44].
The total jet cross section σjet in a nucleon-nucleon collision
at

√
s = 200 GeV is calculated by integrating the differential

jet cross section (28). The factor 2 in Eq. (59) indicates that
minijets are produced in pair. Employing the Woods-Saxon
distribution for the nuclear density of a Lorentz contracted
nucleus

nA(xT 1, z1) = γ n0

1 + Exp
[(√

x2
T 1 + (γ z1)2 − RA

)/
d
] ,

(61)
where d = 0.54 fm, RA = 1.12A1/3 − 0.86A−1/3 fm, and n0

is determined from the normalization
∫

d3r1 nA = A, one
estimates that with a cutoff p0 = 2 GeV about 1200 minijets
will be produced in a central Au+Au collision at maximal
RHIC energy, in which 70% are gluons. We note that this
number does crucially depend on the cutoff p0, which makes
the minijet picture not so much promising. On the other
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FIG. 39. Convergence of energy density in the simulations in the lab frame with increasing test particles. The cascade simulations are
performed employing the stochastic algorithm. The dotted lines depict the results with σ22 = 5 mb and σ23 = 2.5 mb, while the thin solid lines
depict the results with purely elastic collisions and σ22 = 10 mb. The results are obtained by averaging 20, 10, 2, and 1 independent realizations
for Ntest = 1, 2, 4, and 8, respectively. The thin dashed lines show the hydrodynamical limit.

hand, one might improve this by choosing some self-consistent
relation for this crucial parameter [60].

The initializations of the individual produced partons
in space-time and in momentum space are then realized
statistically as follows: The momenta are sampled according
to the differential jet cross section (28). This sampling has
already been performed in Sec. IV when the thermalization of
a parton system was studied within a fixed box. The space-time
coordinates of the partons are obtained by a simple geometrical
picture when the two Lorentz contracted nuclei do overlap.
For convenience for the moment, we set the zero point of the
time scale to be the moment of the full overlap. Then the
longitudinal positions of the two nucleus centers are then at
± v t , respectively, where v is the velocity of the nuclei. One
now identifies the intrinsic coordinates z1 and z2 in Eq. (60)
with the global space and time coordinate

z1 = z − v t and z2 = z + v t. (62)

Changing from z1 and z2 to z and t yields for Eq. (60) for b = 0
and A = B

TAA(b = 0) =
∫

d2xT 1 d2xT 2 2 v dt dz nA(xT 1, z − v t)

× nA(xT 2, z + v t) δ2(xT 1 − xT 2)

=
∫

d2xT 1 2 v dt dz nA(xT 1, z − v t)

× nA(xT 1, z + v t).

(63)

One thus receives the statistical distribution for sampling the
space-time coordinates of the individual produced partons

d〈Nparton〉
d2xT 1 dz dt

∼ nA(xT 1, z − v t) nA(xT 1, z + v t). (64)

The probability for producing a parton at (r, t) is thus
proportional to the convolution of the nuclear densities of
the two overlapping nuclei at the individual space-time point.
Due to the choice of the zero point in time, about half of the
produced partons are liberated at negative times. Therefore,
with this convention of the zero point in time the space-time
rapidity η (42) is not a well-defined quantity. In order to
correct this, we shift all the times to be larger than the
absolute values of the corresponding longitudinal positions,
i.e., t → t + ts > |z|, with a uniquely chosen ts . This actually
implies that ts ∼ 0.5RA/γ , i.e., half of the overlapping time.
Since we apply Woods-Saxon distribution (61) for the nuclear
density, we cannot exactly specify when the first touch of the
two colliding nuclei occurs. ts is thus—strictly speaking—a
parameter in our simulation. For a larger ts particles pile up
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in the central space-time rapidity region and for a smaller ts
particles distribute within a wider rapidity range during the
very early evolution. On the other hand, independently on the
chosen ts , most of the partons are in fact produced in the central
rapidity region due to the geometry of the overlapping nuclei.
In the simulations we determine ts with the assumption that
the initial partons are distributed within a space-time rapidity
range of η ∈ [−5 : 5].

In the above picture concerning the implementation of
the space-time production of minijets, it is assumed that
partons become immediately on-shell when the (semi)hard
nucleon-nucleon collisions occur. Alternatively, one may
introduce an additional formation time for every minijet,
�tf = cosh y �τf ≈ cosh y · 1/pT , which models the off-
shell propagation of the freed partons. Within that time span,
one assumes, for simplicity, that the still virtual parton does not
interact and moves with speed of light. We realize, confirmed
by numerical simulations, that the introduction of such a
formation time does not affect our main findings too much.
A further brief discussion will follow in Sec. VI D. We note
that the consideration of the initial conditions of partons is a
reasonable description of the minijet production in space-time
according to the overlapping of two heavy ions. These are
different from the Bjorken-type initial conditions as considered
in Refs. [24,28]. Therefore, the initial correlation between the
space-time and momentum rapidity, η − y correlation, cannot
be expected as the simple η = y. Detailed analysis will be
shown in Sec. VI D.

B. Cell configuration

To be able to apply the stochastic method to simulate the
full collision sequences, we divide the space into appropriate
cells. The individual cell structure has to be considered self-
consistently to be well suited to the details of the dynamical
evolution of the parton system. Since it is not clear whether
the parton evolution is invariant under the Bjorken boost, a
configuration with constant division in space-time rapidity,
�η = constant, as chosen in Sec. V when simulating one
dimensional expansion of a thermal system in a tube, is here not
really reliable. Cell structure should be refreshed every time
step to adapt to the dynamical parton evolution. In principle,
one dimensional expansion is still a good approximation for
the whole parton evolution for the first few fm/c after a
nucleus-nucleus collision. We thus still employ a static cell
configuration in the transverse plan: Cells are transversely set
as squares with a length of 0.5 fm. Longitudinally, space is
divided into �z bins, where each bin contains about the same
number of test particles. This ensures the same statistics for
each bin and automatically adapts to the density profile of the
evolving parton system. This dynamical structuring begins at
the center of the fireball and then proceeds to the very outside.
Test particles from the far outside are not included into the
cell configuration, because there the density distribution is
too inhomogeneous. Instead, we then consider only elastic
scatterings among these partons treated via the geometrical
method. To obtain sufficient statistics, one has to tune the test
particle number in each bin to be large enough: It turns out

that a number of 20 test particles on average in each cell is
sufficient during first 4 ∼ 5 fm/c. However, in the region with
lower particle density, especially in the transversal surface,
there are not enough test particles. If the test particle number
in a cell is less than a certain cutoff, which is set to be 4 in
the simulations, we treat test particles in this cell again only
by means of elastic scatterings with the geometrical method.
How fine the longitudinal bins would be, depends on Ntest, the
number of test particles per real particle. We set Ntest = 60 in
the simulations. In total, this leads to an equivalent division
of roughly equally sized bins in space-time rapidity with
�η = 0.1 ∼ 0.2. Furthermore, in order to avoid that particles
belong to the same cell for too long time, as discussed in
Sec. V, we randomly shift the cell structure by a small amount
in the longitudinal as well as transversal direction after every
time step.

Besides this fine mesh of cells we also have to choose a
sufficiently small time step to prevent a too strong change of
the spatial configuration in each local cell. In the simulations,
this time step is time dependent and is determined to be the
one-fifth of the smallest occurring cell length. For the case
that a collision probability turns out to be greater than 1, all
operations done within the current time step are redone with
an appropriately chosen smaller time step.

C. Assumptions

We calculate the dynamical screening mass m2
D in a similar

way as done for the box calculations in Sec. IV [20]

m2
D = 16παs

∫
d3p

(2π )3 p
Nc fg ≈ 16παsNc

1

V

∑
i

1

pi

.

(65)

The evaluation is carried out (quasi)locally. V denotes the
volume of a local region and the sum runs over all test
particles in the region. The presence of the cell structure
makes it reasonable to calculate the screening mass in each
cell. However, the statistical uncertainty due to fluctuations is
still large, since there are at maximum 20 ∼ 30 test particles
in one individual cell, and thus an extraction of the particle
phase space density f is not precise. If one assumes that the
expansion in the first few fm/c is mainly longitudinal, and
further, that the transverse parton distribution is homogeneous
over a large transversal area, one can extend the sum in Eq. (65)
over a more broader region compared to the individual cell. In
the simulations we consider a volume V as a cylinder with a
radius of 6 fm in the individual �z bin. Within each bin m2

D/αs

is assumed to be transversely constant. This approximation will
lead to an underestimate of m2

D/αs in the very central area and
an overestimate in the outside area when the transverse flow
builds up, since within the same �z bin the particles moving
with larger transverse velocity have larger energy and thus
make a smaller contribution to the sum in Eq. (65) than the
particles moving with smaller transverse velocity. The radius
is a parameter which we set to be roughly equal to the radius of
a Au nucleus. It turns out that the influence of this parameter
on the screening mass is still quite sensitive at least for late
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times. A future improvement will be to simulate the parton
evolution within a parallel ensemble technique, which will
give the possibility to extract the particle phase space density
locally more precise.

The coupling αs is assumed to be

αs(Q
2) = αs(s) = 12 π

(33 − 2 nf ) ln
(
s
/
�2

QCD

) (66)

for individual collisions, where s denotes the invariant mass
of a particular colliding system of two or three particles. We
set the quark flavor nf to be 3 and �QCD to be 200 MeV. In
general, Q2 in Eq. (66) stands for the momentum transfer in
collision such as in deep inelastic scattering. For many-body
collisions, however, the scale Q2 is not unambiguous.

The gluon collision rate Rg , which will be employed to
determine the effectively incorporated Landau-Pomeranchuk
suppression in the gg ↔ ggg processes by means of a low-
momentum cutoff, is evaluated locally in cells

Rg = Rgg→gg + Rgg→ggg + Rggg→gg,

where

Rgg→f =
∑

iP
gg→f

i

1
2Ng�τ

, f = gg, ggg, and (67)

Rggg→gg =
∑

iP
ggg→gg

i

1
2Ng�τ

. (68)

The Pis denote the respective individual collision probabilities.
The sum over Pi gives the mean number of collisions
occurring during a time step �t in a cell with Ng gluons.
�τ denotes the corresponding time interval in the comoving
frame �τ = �t/γ , where γ = 1/

√
1 − v2/c2 and v is the

collective velocity of the moving cell. For a cell with about
20 gluons there are totally 200 individual possible gg → gg

and gg → ggg collisions each and 1200 possible ggg → gg

collisions. The statistics is high enough to ensure evaluations
of the collision rates in local cells to be sufficiently precise,
in contrast to the calculation of the screening mass. Still a
problem remains, which is that the calculation of the collision
probability for a ggg → gg process by a two dimensional
integral is time consuming. To reduce the computing time
we have to take the following approximation, which has
already been applied for the box calculations in Sec. IV:
We randomly choose about 20 gluon triplets instead of the
total 1200 combinations and compute the amplified collision
probabilities (27). Therefore the statistical fluctuation of the
collision rate Rggg→gg is stronger than that of the others. Also,
when extracting the velocity of an individual space element
we encounter the same difficulty of insufficient statistics as
explained by calculating the screening mass. We assume that
all the cells in a �z bin have the same longitudinal velocity

v =
V

∫
d3p

(2π)3
pz

E
f

V
∫

d3p

(2π)3 f
≈ 1

Ng

∑
i

piz

Ei

, (69)

where the sum runs over the test particles within a cylinder
with a radius of 6 fm in the considered �z bin, and Ng denotes
the gluon number in the cylinder. The transverse component of
the velocity is set to be zero. In principle, this assumption can

FIG. 40. Gluon number distribution versus space-time rapidity at
the time t = 0.2, 0.5, 1.0, 2.0, 3.0, and 4.0 fm/c during the expansion
in a real, fully 3D central Au+Au collision at the maximal RHIC
energy.

be corrected when a parallel computing device is employed
for achieving much higher statistics. Then one is able to look
for and calculate transverse flow of each individual cell more
accurately.

D. Results

1. Rapidity distributions

We now present first numerical results obtained for the time
evolution of the gluons produced in a central Au+Au collision
at RHIC energy

√
s = 200A GeV. In the simulations the

number of the test particles is set to be Ntest = 60. All results
are obtained by an average over 30 independent realizations.
Figures 40 and 41 show the particle number distributions per
unit rapidity versus the space-time rapidity and the momentum
rapidity at the times 0.2, 0.5, 1.0, 2.0, 3.0, and 4.0 fm/c,
respectively. The time interval of the overlapping for the two

FIG. 41. Gluon number distribution versus momentum rapidity at
the time t = 0.2, 0.5, 1.0, 2.0, 3.0, and 4.0 fm/c during the expansion.
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Au nuclei is about 0.17 fm/c. Therefore, the first extraction
at 0.2 fm/c is just after the end of the production of the
primary partons (or minijets). In Fig. 40 one sees a noticeable
spreading of the dN/dη distribution with progressing time.
The reason is that the initially produced partons are distributed
within a very small longitudinal region due to the Lorentz
contraction of the Au nuclei. Their momentum rapidities,
however, have a wider distribution, as can be seen in Fig. 41.
The spreading of the space-time rapidity distribution continues
until its width reaches a comparable magnitude with that of
the momentum rapidity distribution. For the special case of
a simple noninteracting free streaming system, the dN/dη

distribution will then have exactly the same shape as the
dN/dy distribution at late times. In the present case we see
that at 4 fm/c the width of space-time rapidity distribution is
about 4.2 and approaches nearly the width of the distribution
of the momentum rapidity being about 5. It can be clearly
seen that the spreading of the dN/dη distribution indeed
slows down at late times. In the central space-time rapidity
region the gluon density first decreases due to this spreading,
and then increases because of the ongoing gluon production
via the gg → ggg process. The gluon multiplication is most
clearly demonstrated by inspecting the momentum rapidity
distributions in Fig. 41, where for instance at y = 0 the gluon
number is double amplified until 4 fm/c. Moreover, at late
times the net gluon production slows down, which implies the
completion of the ongoing chemical equilibration. Of course,
from the momentum rapidity distributions it is difficult to
recognize any evidences for kinetic equilibrium. To investigate
whether the system indeed does thermalize or not, one needs
more detailed analyses in sufficiently local regions. We will
present the results in next subsection.

Figure 42 shows the momentum rapidity distributions of
the transverse energy (upper panel) and the total energy (lower
panel) at the different times during the expansion. While the
distributions would not change during an evolution like free
streaming, we see in Fig. 42 the decrease of the transverse
energy and the energy transport from the center towards
the higher rapidity due to the longitudinal work done by the
pressure. This gives first significant indications of collective
behavior. In addition, we note that when comparing Fig. 41
with the upper panel of Fig. 42, the shape of the latter clearly
looks more alike one dimensional Bjorken expansion than
that for the particle number distribution. Hence, one cannot
really conclude that the simple Bjorken expansion of constant
dET /dy and dN/dy manifests.

2. Thermalization

In the following we study possible gluon thermalization
in the “central region” being defined as a longitudinally
expanding cylinder located in the middle of the expanding
system. The radius of the cylinder is fixed to be 1.5 fm and its
length is �η = 1.0 from −0.5 to 0.5. In view of the possible
buildup of transverse flow, one could consider a cylinder
with varying radius which is comparable with the longitudinal
length. On the other hand, however, the statistics within such
cylinder would be very low at early times. Since the analysis
of transverse flow, which we want to address in a further paper,

FIG. 42. Momentum rapidity distributions of the transverse en-
ergy (upper panel) and the total energy (lower panel) of gluons at the
time t = 0.2, 0.5, 1.0, 2.0, 3.0, and 4.0 fm/c during the expansion.

shows that the transverse flow velocity is not large close to the
central region even at time of 4 fm/c, the above choice with
fixed radius is a reasonable compromise.

In Fig. 43 we depict the time evolution of the gluon density
and energy density in the central region. The densities are
very high at early times. Alternatively, an implementation of
the formation time for gluons, as briefly outlined at the end
of Sec. VI A, strongly reduces the densities at early times:
n ∼ 20 fm−3 and ε ∼ 50 GeV fm−3 before 0.3 fm/c. After
that time the results for the particle and energy density with
and without the formation time are nearly identical throughout
the subsequent evolution. It shows that even if the densities
are very high at very early times with no formation time, the
gluons rather stream freely within the first 0.3 − 0.4 fm/c. At
4 fm/c the energy density is still 1 GeV fm−3. Thus the parton
picture of particle interactions is valid for the first 4 fm/c in
a central Au+Au collision at RHIC. After that hadronization
should occur and the system is then in a parton-hadron “mixed
phase.”

Figure 44 shows the spectra of transverse momentum in
the central region at different times during the expansion. The
bold-folded histogram, which has a lower cutoff at 2 GeV,
depicts the initial distribution of the primary gluons (minijets).
The spectrum possesses a typical power-law behavior. Already
at 0.2 to 0.5 fm/c a tremendous population of the soft gluons
below 2 GeV has taken place. However, still a remedy of the
edge at 2 GeV in spectra is visible. The “edge” vanishes at
about 1 fm/c and the distributions become nearly exponential
and progressingly steepen at the later times 2, 3, and 4 fm/c.
The ongoing steepening of the spectra in time represents a fur-
ther strong indication of a (quasi)hydrodynamical expansion
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FIG. 43. Time evolution of the gluon density and energy density
in the central region: radial transverse extension xT < 1.5 fm and
η ∈ [−0.5 : 0.5] for a central Au+Au collision at the maximal RHIC
energy. The dotted curves denote the ideal hydrodynamical limit with
a fixed intercept at time t = 0.5 fm/c.

of an almost kinetically equilibrated system with decreasing
temperature.

To study kinetic equilibration in more detail, we first
concentrate on the momentum anisotropy 〈p2

T 〉/2〈p2
z 〉. For

an ideal, one dimensional boost-invariant hydrodynamical
expansion the value of the anisotropy extracted within a region

FIG. 44. Transverse momentum spectrum in the central region at
different times (t = 0.2, 0.5, 1, 2, 3, and 4 fm/c from second upper to
lowest histogram) during the expansion. The most-upper and bold-
folded histogram with a lower cutoff at pT = 2 GeV denotes the
spectrum of the primary gluons (minijets).

FIG. 45. Time evolution of the momentum anisotropy extracted
in the central region. The solid curve shows the result from the
simulation with full dynamics, while the dashed curve shows the
result from the simulation with only elastic scatterings. The dotted
curve depicts the result from the simulation with isotropic elastic
collisions and with (unrealistic) large cross section of σ = 30 mb.

η ∈ [−�η/2,�η/2] is given by〈
p2

T

〉
2
〈
p2

z

〉 =
∫ z̃

−z̃
dz

∫
d2pT dy Ep2

T e
− p⊥ cosh(y−η)

T (τ )

2
∫ z̃

−z̃
dz

∫
d2pT dy Ep2

z e
− p⊥ cosh(y−η)

T (τ )

=
∫ �η/2

0 dη (cosh η)2/3

6
∫ �η/2

0 dη (cosh η)8/3 − 5
∫ �η/2

0 dη (cosh η)2/3
,

(70)

where z̃ = t tanh(�η/2). The expression (70) depends only
on the longitudinal length of the local region where the
momentum anisotropy is extracted, and goes to 1 in the limit
�η → 0. In the central region with �η = 1, the anisotropy
is equal to 0.65 for an ideal expansion. In Fig. 45 the time
evolution of the momentum anisotropy extracted from the
present simulations is depicted by the solid curve. Compared
with the thermal value (0.65), the curve in Fig. 45 shows
first a significant increase during a short time 0.6 fm/c and
then a smooth relaxation to that thermal value. The early
increase of the momentum anisotropy is due to the initial pT

cutoff, pT > 2 GeV, and the fact that the primary gluons with
large longitudinal momentum also have large rapidity and thus
move rapidly out of the central space-time rapidity region. The
following decrease of the anisotropy unambiguously implies
the ongoing persistance of kinetic equilibration. The reason
why the anisotropy is still larger than the thermal value
is due to the fact that particles with larger pT equilibrate
later, as also seen from the pT spectra in Fig. 44. From that
particular analysis, quantitatively, the gluon system becomes
approximately fully equilibrated at 2.5 fm/c. On the other hand,
as just stated, the clear bending over at a time of 0.75 fm/c
signals that the strong thermalization has already started at
that time, as one also notices from the onset of the pronounced
exponential behavior at a similar time as seen in Fig. 44.

The rapid streaming of the high-energy particles out of
the central region at the beginning of the expansion also
explains the dramatic decrease of the gluon density, energy
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FIG. 46. Time evolution of the effective temperature (upper
panel) and the exponent describing the cooling of the system (lower
panel) in the central region. The curves are arranged in the same way
as in Fig. 45.

density (both shown in Fig. 43) and the effective temperature
T = ε/3n at early times, which is shown in the upper panel
of Fig. 46 by the solid curve. The further decrease of the
temperature until 200 MeV at 4 fm/c is due to the fact that
work is done by the pressure and also due to the ongoing
production of gluons. In case of simple free streaming the
effective temperature would be constant over the whole time.
To characterize the time dependence of the temperature we
assume that the temperature behaves like T ∼ 1/tα with a
time dependent exponent. α(t) is shown in the lower panel of
Fig. 46. We see that the exponent is almost constant, about
0.6, at late times and is roughly double the size of 1/3, which
one expects for an ideal, one dimensional boost-invariant
expansion. This might indicate the buildup of transverse flow,
but is mainly due to the further production of gluons. For this
we also extract the gluon fugacity from the simulations and
depict its time evolution in Fig. 47 in a way similar as in
Sec. IV [see Eq. (38)]. Until 4 fm/c the chemical equilibration
is still not fully achieved. Inspecting again Fig. 43, we
have also plotted there for comparison the standard Bjorken
behavior n ∼ 1/t and ε ∼ 1/t4/3 with a fixed intercept at
time t = 0.5 fm/c. One clearly recognizes that the particle
number density decreases more slowly (with an exponent of
about −0.7) due to the particle production. On the other hand,
most interestingly, the energy density more or less exactly
follows the form which one would expect from ideal Bjorken
hydrodynamics. Indeed, the standard relation P = ε/3 is all
what enters into ideal hydrodynamical evolution for massless
constituents, irrespective whether the system is chemically

FIG. 47. Time evolution of the gluon fugacity extracted in the
central region.

saturated or not. This finding gives another evidence that
the system in the central region behaves nearly as an ideal
fluid. We conclude that starting from the special, yet highly
nonthermal initial condition a gluon plasma, even not fully
thermalized, may form at 1 fm/c in a central Au+Au collision
at RHIC energy and its ongoing evolution in bulk behaves
(quasi)hydrodynamically.

We have to note here that, of course, this reasoning will
depend crucially on the initial conditions chosen. If we would
only double the number of initial gluons, thermalization should
roughly occur twice as fast. Indeed, our initial gluon number
is lower compared to other studies in the literature [28,60],
where a factor of 2−4 more initial gluons is assumed. This
will then clearly imply that full gluon equilibration within a
consistent pQCD approach can have a full realization at RHIC.
A detailed study, addressing various initial conditions for the
gluon number, i.e., different forms of minijet productions or
color glass condensate initial conditions, has to and will be
done in a further publication.

Figure 48 shows the time evolution of the cross sections
which are first calculated as ensemble averages over all the
possible collisions in a cell and then averaged over all the cells
within the central region. As 〈vrel〉 ≈ 1 in the central region, the
collision rates of the gg ↔ gg and gg → ggg are obtained by
R = n〈vrelσ 〉 ≈ n〈σ 〉, respectively. We have compared these
collision rates with those counted directly from the simulation
and have seen nice agreements. The increase in time of the
two cross sections is due to the fact that the cross sections are
inversely proportional to the screening mass squared and the
latter is proportional to the temperature squared. One sees that
σgg→gg is always larger than σgg→ggg . For kinetic equilibration,
however, not only a large total cross section but also large
scattering angle are essential for a possible fast thermalization.
In other words, the transport cross section

σt =
∫

dσ sin2 θc.m. =
∫

dθc.m.

dσ

dθc.m.

sin2 θc.m. (71)

is the key quantity controlling the ongoing of the equilibration
by given particle density n. θc.m. denotes the scattering angle in
the center of mass frame of the colliding particles. For a gg →
ggg process each outgoing particle has its own scattering
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FIG. 48. Time evolution of the averaged cross section and the
averaged transport cross section in the central region. The solid and
dashed (short-dashed and short-dotted) curves depict the averaged
cross sections (transport cross sections) for the gg → gg and gg →
ggg processes, respectively.

angle. In this case we modify Eq. (71) by (sin2 θ1 + sin2 θ2 +
sin2 θ3)/3 instead of sin2 θc.m.. The averaged transport cross
sections are shown in Fig. 48 by the short dashed and short
dotted curves. Taking into account that at late times the
collision rate of the ggg → gg is comparable with the rate
of the gg → ggg process, one realizes that the inelastic
processes are actually the dominant processes driving the
system to kinetic equilibrium. The ensemble averaged running
coupling 〈αs〉 is also extracted within the central region during
the gluon evolution. It turns out that 〈αs〉 increases almost
logarithmically in time from 0.2 at 0.2 fm/c to 0.5 ∼ 0.7
at 4 fm/c. We note that when comparing the cross sections
calculated in thermal equilibrium (see Fig. 11), the cross
sections σgg→gg and σgg→ggg extracted from the dynamical
runs are 4 ∼ 5 times larger at later times. This is because
first αs had been fixed to 0.3 in Fig. 11 and is thus smaller.
Second, the screening mass is appreciably smaller in the
dynamical calculation as the gluons are not fully saturated in
its occupation number. Both effects add up to the difference.

Following the expression of the differential cross section
one knows that the gluon elastic collisions favor small angle
scatterings. The transport cross sections in Fig. 48 indicate
that the angular distribution of the inelastic collisions is more
moderate than that of the elastic collisions. As can be realized
from the differential cross sections expressed in Appendices C
and D, the angular distribution of the elastic scatterings
depends on m2

D/s, while it depends on m2
D/s and λg

√
s

for the inelastic collisions. In Fig. 49 we depict the angular
distributions of the gg → gg and gg → ggg scatterings for the
parameters m2

D/s = 0.05 and λg

√
s = 4. The distributions are

calculated according to the differential cross sections. The two
parameters are chosen from an intermediate situation within
the simulation. We see that while the angular distribution
of the elastic collisions clearly shows forward scatterings as
expected, the angular distribution of the inelastic collisions is
surprisingly almost isotropic. The reason for this behavior is
due to the effective Landau-Pomeranchuk cutoff being imple-

FIG. 49. Angular distribution of the scattering processes gg →
gg (solid curve) and gg → ggg for a representative situation during
the gluon evolution. θ3 denotes the scattering angle of the radiated
gluon and its radiation partner has the angle θ2. The distributions are
computed with the parameters m2

D/s = 0.05 and λg

√
s = 4 extracted

in the central region at an intermediate time during the evolution.

mented. For a larger λg

√
s the gg ↔ ggg processes would

also favor the more the small angle scatterings. Notice that
θ3 denotes the angle of the radiated gluon and thus possesses
also a cutoff in its distribution due to the incorporation of the
Landau-Pomeranchuk suppression of low momentum gluon
emissions.

In Fig. 50 we present the pT spectra at different times in
the central momentum rapidity integrated now over the whole
transverse region. The spectra are arranged in the same way
as in Fig. 44. Comparing the spectra in Fig. 50 with those in
Fig. 44, we see that there is no full global thermalization over
whole transverse region until 4 fm/c. At least for the lower
momenta we see a nearly exponential population and a clear
steepening at the later stages. Part of the minijet spectra, of
course, survives as those gluons might escape directly from

FIG. 50. Transverse momentum spectrum in the central space-
time rapidity slice (η ∈ [−0.5 : 0.5] and all gluons in the transverse
plan are counted for) at different times (t = 0.2, 0.5, 1.0, 2.0, 3.0, and
4.0 fm/c from second upper to lowest histogram). The most-upper and
bold-folded histogram with a lower cutoff at pT = 2 GeV denotes the
spectrum of the primary gluons (minijets).
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FIG. 51. Transverse momentum spectrum in the central region
extracted from the simulation with only elastic collisions at different
times. The most-upper and bold-folded histogram with a lower
cutoff at pT = 2 GeV denotes the spectrum of the primary gluons
(minijets). According to the increase of the population of the soft
gluons below 2 GeV, the other histrograms present the spectrum at
times 0.2, 0.5, 1.0, 2.0, 3.0, and 4.0 fm/c, respectively.

the outer region without interactions. In addition, Fig. 50 also
demonstrates the potential energy loss of gluons due to the
Bremsstrahlung process. The new developed parton cascade
offers an alternative possibility to investigate the phenomenon
of the jet quenching in a more quantitative way based on a full
3 + 1 dimensional treatment of the geometry. To be able to
compare the numerical results with the experimental data one
has to model the mechanism of the hadronization and include
further hadronic interactions. A detailed analysis is again one
of possible future projects.

3. Simulation only with elastic scatterings

In order to further focus on the importance of the inelastic
channels to the evolution, to the thermalization and to the
potential onset of nearly ideal hydrodynamical behavior of the
partonic system, we now perform simulations, for comparison,
only with pure elastic scatterings among the gluons. Since in
this case no gluons will be produced during the evolution,
more test particles are needed to build for a fine cell structure.
We set Ntest = 240. Figure 51 depicts the spectra of the
transverse momentum in the central region at different times.
The population of the soft gluons below 2 GeV is rather low and
the distributions at large pT are only slightly altered. Indeed
gluons with highest momenta get more populated. It is obvious
that the gluon system is not thermalized during the expansion.
This can also be realized from the time evolution of the
momentum anisotropy presented in Fig. 45 by the dashed
curve, where the anisotropy saturates at much higher value
than 1 at late times. Furthermore, the constant temperature
shown in Fig. 46 indicates that the evolution of the gluons is
almost close to free streaming. (Please note that the abrupt
decrease before 0.5 fm/c is also due to the free streaming
of the energetic gluons out of the central space-time rapidity
region.) We remark that in the full dynamics with the inelastic
channel, the contribution of the elastic scatterings to kinetic

FIG. 52. Transverse momentum spectrum in the central region
extracted from the simulation with isotropic elastic scatterings
and a large cross section of σ = 30 mb at different times (t =
0.2, 0.5, 1.0, 2.0, 3.0, and 4.0 fm/c from second upper to lowest
histogram). The most-upper and bold-folded histogram with a lower
cutoff at pT = 2 GeV denotes the spectrum of the primary gluons
(minijets).

equilibration is actually significantly larger than that shown
here, because in the full dynamics we have more gluons due
to the radiation and the transport cross section also becomes
larger compared to a nonequilibrated system.

In principle, kinetic equilibration can be achieved by elastic
scatterings alone, if ad hoc the transport cross section is chosen
sufficiently large. To demonstrate this we carry out simulations
with isotropic collisions and a large and constant total cross
section of σ22 = 30 mb. The corresponding transport cross
section is thus 20 mb. Such extreme conditions of an assumed
large opacity in 2 ↔ 2 reactions have been used in Ref. [28] to
study the possible buildup of elliptic flow. Figure 52 shows the
pT spectra in the central region at different times. Indeed we
observe fast equilibration. The spectrum at 0.5 fm/c is almost
thermal. At the later times the distributions become more and
more steeper, which indicates the cooling down of the system
due to (quasi)hydrodynamical expansion. The time evolution
of the momentum anisotropy, the dotted curve in Fig. 45,
shows that from 1.0 fm/c the anisotropy is almost constant and
slightly higher than the value of the ideal, one dimensional
boost-invariant expansion, 0.65. Moreover, also the exponent
describing the cooling of the temperature (see Fig. 46), α(t), is
nearly constant from 1 to 3 fm/c and only slightly greater than
the value of the ideal expansion, 1/3. All this demonstrates that
for the given extreme conditions the gluon system equilibrates
indeed rapidly and then expands nearly hydrodynamically
according to the ideal Bjorken scenario. However, of course,
the constant and isotropic cross section cannot be further
motivated. In addition, following that particular evolution, the
system would stay for a rather long time in a hot, but very dilute
and undersaturated (in its gluon number) deconfined state (see
upper Fig. 46). Contrary, in the more realistic situation with
inelastic collisions included, the temperature drops much more
dramatically and the system would stay only until t ≈ 4 fm/c
in a pure deconfined state, being then (nearly) fully saturated
in the gluonic degrees of freedom, and will then hadronize.
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FIG. 53. Time evolution of the transverse energy per unit mo-
mentum rapidity at midrapidity. The curves are arranged in the same
way as in Fig. 45.

Figure 53 shows the time evolution of the transverse energy
per unit momentum rapidity at midrapidity for the three cases
compared also in Figs. 45 and 46. We see that the transverse
energy decreases in the simulation including pQCD elastic
and inelastic interactions and in the simulation employing
an isotropic, large cross section. In contrast to the cooling
of the temperature, to which the production of gluons also
contributes, the decrease of the transverse energy within a unit
rapidity is purely due to the longitudinal work done by the
pressure. In the simulation employing large and constant cross
section, energetic gluons are extremely stopped during their
formation period, so that the transverse energy is very large
at very early times and pressure seems to be already built up
during the overlap of two nuclei. This leads to the following
(unrealistic) strong explosion with drastical cooling. The
unaltered behavior of the transverse energy in the simulation
including only pQCD elastic scatterings indicates again that
in this case the parton evolution resembles a free streaming.
One observes that from times t ≈ 0.5 fm/c both the full
pQCD (including gg ↔ ggg) and the “strongly coupled” (with
isotropic σ22 = 30 mb) evolution show almost the identical
value and the same decrease in time for the total transverse
energy per rapidity. This again manifests that both pathes
resemble (quasi)hydrodynamical behavior by performing a
significant amount of (longitudinal) work.

VII. SUMMARY AND OUTLOOK

We have developed a new 3 + 1 dimensional relativis-
tic transport model solving the kinetic on-shell Boltzmann
equations. Besides binary 2 ↔ 2 scatterings, inelastic 2 ↔ 3
processes are also implemented in the cascade. The numerical
emphasis is put on the extension of the stochastic collision
algorithm for the back reaction 3 → 2 which is treated—for
the first time—fully consistently within this scheme. Although
the development specifically aims at a simulation of the
parton evolution in an ultrarelativistic heavy ion collision,
the presented algorithm will certainly have more potential
applications beyond the scope of this paper. Also the standard
geometrical collision algorithm (based on the geometrical

intepretation of cross section) has been discussed in detail.
In particular, we find out that for the case that the mean free
path of particles is in the same order as or comes below the
interaction length, which is always true in a very energetic
(and dense) high-energy heavy ion collision, the results from
the simulations employing the geometrical method have shown
several unphysical numerical artifacts. The convergency of the
numerical solution in this scheme for Ntest → ∞ turns out to
be not as efficient as it does in the simulations when employing
the stochastic method.

The operation of the newly developed cascade has been
demonstated by investigating gluon thermalization for a central
Au+Au collision at RHIC energy. The numerical results
show that starting initially from a nonthermal system made
up of minijets (with cutoff pT > p0 = 2 GeV), the gluons
in the expanding center equilibrate kinetically on a scale of
1 fm/c and evolve further according to (quasi)hydrodynamics.
The system cools down due to the hydrodynamical expansion
and ongoing gluon multiplication. Full chemical equilibration
follows on a longer time scale of about 3 fm/c. We have
studied the contribution of the elastic and inelastic collisions to
kinetic equilibration. It turns out that the inelastic scatterings
are the main responsible processes driving the system to
equilibrium. Without any inelastic collision channel, the
collective behavior observed nowadays at RHIC cannot be
generated, unless one uses an unrealistic large cross section
(or equivalently a large gluon density) to mimic a strongly
interactive gluon system [28]. We have also realized that
the angular distribution of the gg ↔ ggg processes is almost
isotropic during the expansion. This leads to larger transport
cross section compared with the elastic scatterings.

Even in the simulations applying the stochastic algorithm,
particles do collide at nonzero distance due to the nonzero
spatial subvolume. Therefore, one may worry about acausal
effects due to larger signal velocity than c in the cells [24,37].
In principle, the spatial cell length should resolve the spatial
inhomogeneities in the dynamical system. For the situation
when using a 30 mb cross section for mimicking a strongly
interacting system, the mean free path of the particles is
initially smaller than the transverse cell length. To explore
whether any potential acausal effect makes some numerical
artifact, we now show a simulation employing half of the
default transverse cell length and four times enhanced number
of test particles (to keep the same statistics in cells). In Fig. 54
we depict the time evolutions of the number and energy density
of gluons extracted in the central region from the simulation
with dx = dy = 0.25 fm and Ntest = 960 by the dotted lines.
Comparing the results with those obtained with the default
settings, depicted by the solid lines, we do not recognize any
visible difference. This indicates that acausal effects seem to
be not sensitive to the cell length when the system is rather
uniformly distributed in space.

Moreover, we note once more that the two timescales
for kinetic and chemical equilibration depend crucially on
the initial gluon number. The one chosen here is rather low
compared to other studies in the literature [28,60], where a
factor of 2−4 more initial gluons is assumed. This will clearly
imply that the timescales for gluon equilibration within the
present pQCD approach significantly shorten. Hence, In the
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FIG. 54. Time evolution of the number (left panel) and energy (right panel) density extracted in the central region from the simulation with
dx = dy = 0.25 fm and Ntest = 960 by the dotted lines, compared with the results with the default settings dx = dy = 0.5 fm and Ntest = 240,
depicted by the solid lines.

future a lot of details have to be explored: Thermalization
(also of the light and heavy quarks degrees of freedom)
has to be investigated with various initial conditions like
minijets, with a detailed comparison to data, or the color
glass condensate, serving as input for the so-called bottom
up scenario of thermalization. How likely is the latter picture
for true coupling constants and not parametrically small ones?
Furthermore, the indication of the hydrodynamical behavior
during the expansion, which is one of the main findings from
our first and exploratory study concerning RHIC physics,
gives strong motivation for exploring transverse and elliptic
flow using this new kinetic parton cascade. Can the inelastic
interactions generate the seen elliptic flow v2? Furthermore,
one can also compare the present calculations with some fixed
and specified hydrodynamical initial conditions directly with
calculations based on viscous relativistic hydrodynamics [59],
either assuming Bjorken boost invariance within an expanding
tube or for full 3 + 1 dimensions. Such a comparison can
tell how viscous the QGP really turns out to be. More
practically, also the phenomenon of the jet quenching or
electromagnetic radiation can be studied systematically within
the new transport scheme.

Finally, the technique of the parallel programing is needed
to improve the practical operation of the cascade. With this
technique quantities like the screening mass can be calculated
and incorporated more precisely and quantum effects like
the Pauli-blocking and gluon enhancement can be then
implemented straightforwardly.
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APPENDIX A: COLLISION TIMES IN THE
GEOMETRICAL METHOD

Within the algorithm implementing the geometrical picture
collisions occur if the considered particles approach each
other and their closest distance is less than the interaction
length

√
σ/π . This criterion will be inspected in the center-

of-mass frame of the colliding particles. Suppose that r̂i =
(ti , ri), p̂i = (Ei, pi) and r̂ ′

i = (t ′i , r′i), p̂′
i = (E′

i , p′
i), i = 1, 2,

are the space-time coordinates and four momenta of two
particles in the lab frame and in their c.m. frame, respectively.
Defining H = (r̂2 − r̂1) · (p̂1 + p̂2), one has in the c.m. frame:
t ′1 > t ′2 if H < 0 and t ′1 � t ′2 if H � 0. For the case t ′1 > t ′2
(otherwise we change the indices of the particles) the two
particles will approach each other if p̂2

2 [p̂1 · (r̂2 − r̂1)] − (p̂1 ·
p̂2) [p̂2 · (r̂2 − r̂1)] < 0. The closest distance of the colliding
particles in the c.m. frame is

�r ′
s =

√
−f − a2d + b2c − 2abe

e2 − cd
, (A1)

where

a = (r̂2 − r̂1) · p̂1, b = (r̂2 − r̂1) · p̂2,

c = p̂2
1, d = p̂2

2, e = p̂1 · p̂2, (A2)

f = (r̂2 − r̂1)2.

If �r ′
s <

√
σ/π , the particles will collide at the same

time t ′c1 = t ′c2 at the closest distance in the c.m. frame.
Making Lorentz transformation back to the lab frame
gives

tc1 = t1 − E1
ad − be

e2 − cd
, tc2 = t2 + E2

bc − ae

e2 − cd
. (A3)

We call tc1 and tc2 the collision times. Due to the spatial separa-
tion, the two collision times have, in general, different values,
tc1 
= tc2. This means that one of the particles reacts later within
the same collision. The transformed space coordinates at the
collision times are correspondingly denoted by rc1 and rc2.
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The new momenta of the particles are sampled in the c.m.
frame according to the given differential cross section and then
transformed to the lab frame, which are denoted by pc1 and
pc2. We thus label the particles with (tci, rci) and (Eci, pci),
(i = 1, 2), and keep the labels until their next respective
collisions. For example, t1 denotes the time when the last
collision of particle 1 occurs. It is kinematically possible that
the case t1 < tc1 < t2 < tc2 occurs. Such a collision sequence
is not causal, because at tc1 when the particle 1 experiences the
collision with the particle 2, the particle 2 is just on the way
to its last collision with some other particle. To forbid those
collisions we add an additional criterion: The collision times
tc1 and tc2 should be greater than t1 as well as t2. Illustratively,
the additional criterion means that during the time interval
|t1 − t2|, the particle, which will change its trajectory later (it
is the particle 2 in the example), is not considered for dynamics
for that particular interval.

In the following we are interested in the probability distri-
bution of the difference of collision times, �tc := |tc1 − tc2|,
in a thermal system of massless particles. In this case we have
c = d = 0. If t1 
= t2 (e.g., t1 < t2), the particle with smaller
time (t1) can propagate freely to the larger time (t2), which
does not give any effect on the whole evolution due to the
additional criterion. Thus we obtain

�tc = r12

∣∣∣∣u1 + u2

1 − ũ

∣∣∣∣ . (A4)

r12 denotes |r2 − r1| and ui = cos αi , ũ = cos θ , where
αi is the angle between pi and r2 − r1 and θ is the
angle between p1 and p2. Since ũ relates ui accord-
ing to ũ =

√
1 − u2

1

√
1 − u2

2 cos(φ1 − φ2) + u1 u2, where
φi is the polar angle of pi around r2 − r1, (A4) can be
now expressed by �tc = r12 F (u1, u2, φ) with φ := φ1 −
φ2. One obtains the probability distribution of �tc by the
integral

P (�tc) =
∫ 1

−1
du1

∫ 1

−1
du2

∫ 2π

0
dφ

∫ R

0
dr12 P (r12, u1, u2, φ)

× δ(�tc − r12F ) 
(
√

σ/π − �r ′
s)

=
∫ 1

−1
du1

∫ 1

−1
du2

∫ 2π

0
dφ P (r12, u1, u2, φ)|r12=�tc/F

× 1

F (u1, u2, φ)



(√
σ/π − �r ′

s

)
, (A5)

where P (r12, u1, u2, φ) is the multiple probability distribu-
tion. Note that it is easy to realize that �r ′

s can also be
expressed as a function of r12, u1, u2 and φ. Since r12, u1, u2

and φ are independent variables, P (r12, u1, u2, φ) can be
factorized, P (r12, u1, u2, φ) = P (r12)P (u1)P (u2)P (φ). For a
thermal system we have P (ui) = 1/2, P (φ) = 1/2π and
P (r12) = 3r2

12/R
3, where R serves as a normalization factor

and is set to be much larger than the interaction length. We
realize that the probability distribution (A5) depends only on
the size of the total cross section. For a constant cross section
we calculate the integral in (A5) numerically. Figure 55 shows
the results for σ = 10 mb and σ = 30 mb. The distribution
has a larger width for larger cross section. We also calculate

FIG. 55. Probability distribution of difference in “collision times”
within the geometrical collision algorithm. In the calculations a
thermal system is assumed and the cross section is set to be a constant.

the mean value of �tc and obtain 〈�tc〉 = 0.24 fm/c for
σ = 10 mb and 〈�tc〉 = 0.41 fm/c for σ = 30 mb.

APPENDIX B: OPTIMIZATION OF THE COMPUTING
TIME WITHIN THE GEOMETRICAL METHOD

Consider a system with N particles in total. To get the
next collision, N (N − 1)/2 operations have to be carried
out to get all the ordering times for each particle pair and
N (N − 1)/2 − 1 comparisons have to be made to obtain the
particle pair which collides next. Then these two particular
particles propagate freely until the two respective collision
times when the respective momenta will be sampled according
to the differential cross section. The same procedure will be
repeated as long as needed. Since the operation number in
each step is proportional to N2, the computing time increases
strongly with increasing particle number and increasing
collision number. However, a large amount of operations are
obviously futile, because after the update of two colliding
particles only the ordering times of particle pairs which involve
one of the two updated particles are indeed needed. Therefore
only 2(N − 2), but not N (N − 1)/2, operations are necessary
if one, in principle, wants to save all the ordering times from
the last step. This, of course, reduce the computing time
enormously. On the other hand, however, a large storage for
those ordering times would be required. For an optimization
we thus do not store all the ordering times, but only do
store for each particle the informations of its possible next
collision: the ordering time and the collision partner. We need
therefore 2N , instead of N (N − 1)/2, memory places. The
next collision will be obtained by comparing the marked and
stored ordering times. In a next step we compute only the
ordering times of the last colliding particles with the other
particles [2(N − 2) operations] and compare them with the
other stored times, respectively, to obtain the new informations
of the next collision for each particle. The “worst” case then
occurs when the next collision partner of a particle is one of the
last colliding particles. In this case the stored informations for
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this particle are out of use and one has to compute the ordering
times of the considered particle with all the other particles
(additional N − 3 operations). Fortunately those cases do not
happen frequently in practice. We note that our prescription is
different from the optimization used by Zhang in his parton
cascade [23], which follows the fact that particles which are
far away from each other most probably do not collide as next
pair. In this algorithm the space was divided into cells and
only particles from the same cell and the neighboring cells
may collide next within the geometrical method.

APPENDIX C: PARTON-PARTON SCATTERING
CROSS SECTIONS

Differential pQCD parton-parton cross sections in leading
order of αs have been calculated in Ref. [48]. For elastic gluon
scattering the differential cross section reads

dσgg→gg

dt
= 9πα2

s

2s2

(
3 − tu

s2
− su

t2
− st

u2

)
, (C1)

where s, t , and u are the Mandelstam variables. −t is equal to
the momentum transfer squared

−t = q2 = s

2
(1 − cos θ ), (C2)

where θ denotes the scattering angle in the c.m. frame of
colliding partons. For small angle scatterings the momentum
transfer is approximately equal to its transverse component
q⊥. Therefore we have −t ≈ q2

⊥. Since the differential cross
section (C1) diverges at small t (and also at small u due to the
symmetry of identical particles), Eq. (C1) can be expressed
approximately as

dσgg→gg

dq2
⊥

≈ 9πα2
s(

q2
⊥
)2 . (C3)

We regularize the infrared sigularity in Eq. (C3) employing
the Debye mass and obtain

dσgg→gg

dq2
⊥

= 9πα2
s(

q2
⊥ + m2

D

)2 . (C4)

The other approximate differential cross sections are achieved
in the same way and read as follows:

dσgq→gq

dq2
⊥

= 2πα2
s(

q2
⊥ + m2

D

)2 , (C5)

dσgg→qq̄

dq2
⊥

= πα2
s

3s
(
q2

⊥ + m2
q

) , (C6)

dσqq→qq

dq2
⊥

= 16πα2
s

9
(
q2

⊥ + m2
D

)2 , (C7)

dσqq ′→qq ′

dq2
⊥

= dσqq̄→qq̄

dq2
⊥

= 8πα2
s

9
(
q2

⊥ + m2
D

)2 , (C8)

dσqq̄→gg

dq2
⊥

= 64πα2
s

27s
(
q2

⊥ + m2
q

) , (C9)

dσqq̄→q ′q̄ ′

dt
= 4πα2

s

9s2

t2 + u2(
s + 4m2

q

)2 , (C10)

where m2
D and m2

q denote, respectively, the Debye mass
for gluons and for quarks. In the last expression −t is not
replaced by q2

⊥, since qq̄ → q ′q̄ ′ processes do not favor small
angle scatterings. Employing the fomulas (C4)–(C10) the total
cross sections can be obtained analytically by integration.
Equations (C4)–(C10) also then dictate how to sample new
momenta for particles after an occurring collision.

APPENDIX D: CROSS SECTION FOR
gg ↔ ggg PROCESSES

For the multiplication process gg → ggg, the Gunion-
Bertsch formula [49] is used for the matrix element squared
in leading order of pQCD, and modified by implementing the
Debye screening mass. This is

|Mgg→ggg|2 =
(

9g4

2

s2(
q2

⊥ + m2
D

)2

)

×
(

12g2q2
⊥

k2
⊥[(k⊥ − q⊥)2 + m2

D]

)
, (D1)

where g2 = 4παs , and q⊥ and k⊥ are, respectively, the
transverse component of the momentum transfer and that of the
momentum of radiated gluon in the c.m. frame of the colliding
gluons. In this section we will give the derivations of the cross
section σgg→ggg and Iggg→gg defined in Sec. III by an integral
of the scattering amplitude given in Eq. (D1) over momentum
space.

Employing usual convention, the total cross section for a
gg → ggg process is defined as

σgg→ggg = 1

2s

∫
d3p′

1

(2π )32E′
1

d3p′
2

(2π )32E′
2

d3p′
3

(2π )32E′
3

|M12→1′2′3′ |2

× (2π )4δ(4)(p1 + p2 − p′
1 − p′

2 − p′
3), (D2)

where p1, p2, p
′
1, p

′
2, and p′

3 are the four momenta and
all momenta are expressed in the c.m. frame of the two
colliding gluons. We assume that 3′ denotes the radiated gluon.
Integrating over d3p′

2 gives

σgg→ggg = 1

256π5s

∫
d3p′

1

E′
1

d3p′
3

E′
3

|M12→1′2′3′ |2

× δ((p1 + p2 − p′
1 − p′

3)2)

= 1

256π5s

∫
d2q⊥dy ′

1d
2k⊥dy |M12→1′2′3′ |2 δ(F ),

(D3)

where y ′
1 and y denote the momentum rapidity of 1′ and 3′,

respectively, and

F = (p1 + p2 − p′
1 − p′

3)2

= s − 2
√

sq⊥ cosh y ′
1 − 2

√
sk⊥ cosh y + 2q⊥k⊥ cosh y ′

1

× cosh y + 2q⊥ · k⊥ − 2q⊥k⊥ sinh y ′
1 sinh y. (D4)
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Further integration over y ′
1 gives

σgg→ggg = 1

256π5s

∫
d2q⊥d2k⊥dy

× |M12→1′2′3′ |2
∑ 1∣∣∣ ∂F

∂y ′
1

∣∣∣
F=0

, (D5)

where all the solutions of F = 0 contribute to the sum. The
corresponding differential cross section has the form

dσgg→ggg

d2q⊥d2k⊥dy
= 1

256π5s
|M12→1′2′3′ |2

∑ 1∣∣∣ ∂F
∂y ′

1

∣∣∣
F=0

. (D6)

This is different than in Ref. [31], where the authors ignored
the factor

∑
1/| ∂F

∂y ′
1
|F=0. However, to make the correct imple-

mentation of the detailed balance for gg ↔ ggg processes, one
should take the exact formula of the cross section. Expressing
d2q⊥ and d2k⊥ in polar coordinates and integrating one of the
two angles, one obtains∫

d2q⊥d2k⊥dy → π

∫
dq2

⊥dk2
⊥dy

∫ π

0
dφ, (D7)

where φ denotes the angle between q⊥ and k⊥.
We now turn to determine the integral boundaries for

Eq. (D7). At first, the energies of the three particles in
the final state cannot be greater than

√
s/2 because of the

energy conservation. (Note that the total energy is equal
to

√
s.) We then have the upper boundaries for q2

⊥ and
k2
⊥: q2

⊥ < s/4 and k2
⊥ < s/4. Secondly, k⊥ and y will be

further constrained by 
(k⊥�g − cosh y) due to the Laudau-
Pomeranchuk suppression (compare Sec. IV). This leads to
a lower cutoff for k⊥: k⊥ > 1/�g . For given q⊥ and k⊥, the
constraints for cosh y are

cosh y � k⊥�g and cosh y = E′
3

k⊥
�

√
s

2k⊥
. (D8)

Thus the upper boundary of y, denoted by ym, is the smaller
one among Arcosh(k⊥�g) and Arcosh(

√
s/2k⊥). Finally we

have

σgg→ggg ∼
∫ s/4

0
dq2

⊥

∫ s/4

1/�2
g

dk2
⊥

∫ ym

−ym

dy

∫ π

0
dφ · · · . (D9)

This integral actually scales with s, σgg→ggg = σ̄ /s, where

σ̄ ∼
∫ 1/4

0
dq̄2

⊥

∫ 1/4

1/�̄2
g

dk̄2
⊥

∫ ym

−ym

dy

∫ π

0
dφ · · · (D10)

with q̄2
⊥ = q2

⊥/s, k̄2
⊥ = k2

⊥/s, �̄g = �g

√
s, and m̄2

D = m2
D/s.

σ̄ depends on two parameters: �̄g and m̄2
D . We evaluate the

above integral numerically using the Monte Carlo integration
routine VEGAS [50]. For any sampled point (q̄2

⊥, k̄2
⊥, y, φ) one

has to solve y ′
1 for F = 0 in Eq. (D4). If there is no solution,

then the chosen point is out of the kinematic region and thus has
no contribution to the integral. Thus the equation F = 0 serves
as a further constraint for the kinematic region of collisions.

For the annihilation process ggg → gg, the analogous
quantity as σgg→ggg , which sums all the possible final states,

is Iggg→gg defined via

Iggg→gg = 1

2

∫
d3p′

1

(2π )32E′
1

d3p′
2

(2π )32E′
2

|M123→1′2′ |2(2π )4

× δ(4)(p1 + p2 + p3 − p′
1 − p′

2), (D11)

where the factor 1/2 takes the identical gluons 1′ and 2′ into
account and

|M123→1′2′ |2 = 1

νg

|M1′2′→123|2, (D12)

where νg = 2 × 8 is the gluon degeneracy factor. Since
Iggg→gg is invariant under Lorentz transformations, we evalu-
ate the integral in the rest frame of the three incoming particles.
Therefore it is p1 + p2 + p3 = (

√
s, 0). Integrating over d3p′

2
in Eq. (D11) we find

Iggg→gg = 1

16π2

∫
d3p′

1

E′
1

|M123→1′2′ |2

× δ((p1 + p2 + p3 − p′
1)2)

= 1

16π2

∫
dE′

1 d cos θ dφ E′
1|M123→1′2′ |2

× δ(s − 2
√

s E′
1)

= 1

64π2

∫ 1

−1
d cos θ

∫ 2π

0
dφ |M123→1′2′ |2, (D13)

where the solid angle (cos θ, φ) defines the orientation of p′
1

(p′
2 = −p′

1 because of the energy-momentum conservation).
We now express q⊥, k⊥ and q⊥ · k⊥ in |M123→1′2′ |2 with the
solid angle and momenta of the incoming gluons. To do that
one has to specify the fussion process 2 → 1. There are in total
six combinations. Each combination contributes to Iggg→gg .
One of them is

123 → 1′2′ =̂ (a) 23 → 2∗ and (b) 12∗ → 1′2′

and p3 corresponds to (k⊥, y). In this particular case one can
establish a coordinate system in momentum space whose Z
axis coincides with the orientation of p1. We find out (after a
direct but lengthy calculation)

q⊥ = E1 sin θ, (D14)

k⊥ = E3

√
1 − (sin γ sin θ cos φ + cos γ cos θ )2,

(D15)

q⊥ · k⊥ = E1E3 (sin γ sin θ cos θ cos φ − cos γ sin2 θ ),

(D16)

where γ denotes the angle between p1 and p3, and (cos θ, φ)
is, as defined before, the solid angle of p′

1. Due to the Laudau-
Pomeranchuk suppression 
(k⊥�g − cosh y) and cosh y =
E3/k⊥ we obtain the kinematic region for the ggg → gg

process

k⊥ �

√
E3

�g

. (D17)

In analogy to σgg→ggg, Iggg→gg also scales with s, Iggg→gg ∼
Ī /s, where Ī depends on five parameters, namely, E1/

√
s,

E3/
√

s, γ,�g

√
s, and m2

D/s.
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APPENDIX E: MONTE CARLO SAMPLING OF MOMENTA
FOR OUTGOING PARTICLES

Momenta of outgoing particles are sampled in the rest frame
of the incoming particles. Their momentum in the lab frame is
obtained by Lorentz transformations.

1. 2 ↔ 2 processes

In the rest frame the energy of each particle is
√

s/2. The
only to be sampled quantity is the solid angle (cos θ, φ). The
scattering angle θ is sampled according to the differential cross
section and the polar angle φ is sampled uniformly within
[0, 2π ].

Since the pQCD differential cross sections (C4)–(C10) can
be integrated analytically, we can perform samplings for q⊥ (or
cos θ ) using the “transformation method” [50] from a uniform
probability distribution. For isotropic collisions we sample the
scattering angle θ according to the uniform distribution of
cos θ .

2. gg ↔ ggg processes

As shown in Appendix D, the differential cross section for
a gg → ggg process has the form

dσgg→ggg

dq2
⊥dk2

⊥dydφ
∼ 1(

q2
⊥ + m2

D

)2

q2
⊥

k2
⊥
[
(k⊥ − q⊥)2 + m2

D

]
×

∑ 1∣∣∣ ∂F
∂y ′

1

∣∣∣
F=0

, (E1)

where φ denotes the angle between q⊥ and k⊥. We then
first sample q⊥, k⊥, y, and φ according to Eq. (E1). Since
the differential cross section cannot be integrated analytically,
one cannot make samplings by means of the transformation
method, as done for 2 → 2 processes. Instead, we employ the
“rejection method” [50].

To make enough efficient samplings, we want to find out a
special function of q⊥, k⊥, y and φ, which should be always
greater than the right hand side of Eq. (E1) at every point set
(q⊥, k⊥, y, φ) in the kinematic region and, more important,
can be integrated out analytically over q⊥, k⊥, y, and φ. Such
a function is called as a “comparison function.” If one has
the comparison function, one can first use the transformation
method to generate the random numbers according to the
comparison function. Then one needs a further uniform
sampling between zero and the value of the comparison
function at the particular sampled point. If this random number
is less than the value of the real distribution [right hand side of
Eq. (E1)] at the sampled point, then we accept this sampling, if
not, we reject this sampling and start a next trial. One possible
choice of the comparison function is

1

q2
⊥ + m2

D

1

k2
⊥

1

m2
D

m, (E2)

where m denotes a constant with a sufficient large value, which
is greater than

∑
1/| ∂F

∂y ′
1
|F=0 in Eq. (E1) at every point in the

possible kinematic region. Since, unfortunately, one cannot
obtain the upper limit for

∑
1/| ∂F

∂y ′
1
|F=0, the value of m is an

empirical number.
We have to note that for an individual sampling one has to

solve the equation F = 0, Eq. (D4). Therefore one also obtains
y ′

1, the momentum rapidity of the particle 1′, at the same time
when q⊥, k⊥, y, and φ are sampled. One sampling remains:
The direction of q⊥ is sampled uniformly in the transverse plan
being perpendicular to the scattering axis. Finally we obtain
the momenta of the outgoing particles

p′
1⊥ = −q⊥, p′

1z = q⊥ sinh y ′
1, (E3)

p′
3⊥ = k⊥, p′

3z = k⊥ sinh y, (E4)

p′
2 = −(p′

1 + p′
3). (E5)

For a ggg → gg process the solid angle (cos θ, φ) is
sampled again by using the rejection method. We find

dIggg→gg

d cos θ dφ
∼ 1(

q2
⊥ + m2

D

)2

q2
⊥

k2
⊥
[
(k⊥ − q⊥)2 + m2

D

]
<

1

q2
⊥ + m2

D

�g

E3

1

m2
D

= 1

E2
1(1 − cos2 θ ) + m2

D

�g

E3

1

m2
D

, (E6)

where we have employed the constraint (D17) and the iden-
tity (D14) for the particular example presented in Appendix D.

3. Isotropic 2 ↔ 3 processes

A 2 → 3 process, 12 → 1′2′3′, is assumed to be composed
of a two-body scattering 12 → 1′2∗ and a decay 2∗ → 2′3′,
where 2∗ denotes an intermediate state with an invariant mass
of m∗ = √

E2∗ − p2∗. We employ the formula for the phase
space integrations of [61] and obtain the differential cross
section of an isotropic collision

dσ23

d�1dm2∗d�2
∼ λ

1
2 (s, 0,m2

∗)
∫

dE′
2

E′
2

E∗ − E′
2

δ(f (E′
2)) ,

(E7)
where �1 = (cos θ1, φ1) denotes the solid angle of p′1 with
respect to the collision axis, and �2 = (cos θ2, φ2) denotes the
solid angle of p′2 with respect to p∗, and

f (E′
2) = E∗ − E′

2 −
√

p2∗ + E′2
2 − 2p∗E′

2 cos θ2 , (E8)

λ
(
s,m2

1,m
2
2

) = s2 − 2s
(
m2

1 + m2
2

) + (
m2

1 − m2
2

)2
. (E9)

The integral over E′
2 in Eq. (E7) gives

dσ23

d�1dm2∗d�2
∼ (s − m2

∗)m2
∗

(E∗ − p∗ cos θ2)2
. (E10)

�1,m
2
∗ and �2 are the to be sampled quantities. From Eq. (E10)

we realize that the differential cross section does not depend
on �1 and φ2. Thus they are sampled uniformly. Integral over
�1 and �2 gives the probability distribution for m2

∗. It is
simply proportional to s − m2

∗. We sample m2
∗ by employing

the transformation method. For given �1 and m2
∗ the momenta

of 1′ and 2∗ are fully determined due to the energy-momentum
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conservation. Now Eq. (E10) just represents the probability
distribution of cos θ2 for a given �1 and m2

∗. Its numerical
sampling is straightforward.

Sampling for an isotropic 3 → 2 process is more trivial,
since just one solid angle is to be sampled and its probability
distribution is uniform.
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