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Relativistic distorted-wave impulse approximation analysis of 12C(e, e′ p) for Q2 < 2 (GeV/c)2
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We analyze data for 12C(e, e′p) with Q2 < 2 (GeV/c)2 using the relativistic distorted-wave impulse
approximation (RDWIA) based upon Dirac-Hartree wave functions. The 1p normalization extracted from data for
Q2 > 0.6 (GeV/c)2 is approximately 0.87, independent of Q2, which is consistent with the predicted depletion
of the 1p3/2 orbital by short-range correlations. The total 1p and 1s strength for Em < 80 MeV approaches
100% of IPSM (independent particle shell model), consistent with a continuum contribution for 30 < Em <

80 MeV of about 12% of IPSM. Similarly, a scale factor of 1.12 brings RDWIA calculations into good agreement
with 12C(e, e′p) data for transparency. We also analyzed low Q2 data from which a recent nonrelativistic RDWIA
analysis suggested that spectroscopic factors might depend strongly upon the resolution of the probe. We find
that the momentum distributions for their empirical Woods-Saxon wave functions fit to low Q2 data for parallel
kinematics are too narrow to reproduce data for quasiperpendicular kinematics, especially for larger Q2, and
are partly responsible for reducing fitted normalization factors. Although the RDWIA normalization factors for
Q2 < 0.2 (GeV/c)2 are also smaller than obtained for Q2 > 0.6 (GeV/c)2, the effect is smaller, and we argue
that it should be attributed to the effective single-nucleon current operator instead of to spectroscopic factors,
which are probe-independent properties of nuclear structure. However, remediation of the failure of RDWIA
calculations to reproduce low Q2 data for parallel kinematics will require a more sophisticated modification of
the current method than a simple multiplicative factor.
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I. INTRODUCTION

It is generally believed that single-nucleon electromagnetic
knockout provides unambiguous measurements of the mo-
mentum distributions and spectroscopic factors for single-hole
states near the Fermi surface. Reviews of analyses based
upon the nonrelativistic distorted-wave impulse approximation
(NRDWIA) can be found in Refs. [1–3], which show that
the momentum distributions are described well by mean-field
calculations, such as Skyrme-Hartree-Fock, while spectro-
scopic factors for low-lying states are reduced relative to the
independent particle shell model (IPSM) by an average factor
of about 65% over a broad range of A. Part of the depletion of
IPSM strength can be attributed to short-range correlations
that shift approximately 15% of the hole strength to very
large missing energies, beyond 100 MeV. Recently, a direct
measurement of the spectral function using 12C(e, e′p) in
parallel kinematics [4] observed approximately 0.6 protons in
a region with pm >∼ 240 MeV/c and Em >∼ 50 MeV attributable
to single-nucleon knockout from correlated clusters. This
finding is consistent with the 16% IPSM predicted by Frick
et al. [5] using the self-consistent Green’s function (SCGF)
method [6]. Similar estimates of the depletion of hole
states are also available from the correlated basis function
(CBF) theory [7] and other methods. Furthermore, SCGF
calculations [8,9] show that the momentum distributions for
low-lying quasihole states are hardly affected by short-range
correlations, remaining very similar to mean-field calculations,
while the momentum distributions for the large-Em continuum
are substantially broadened.

If the occupancy of IPSM orbitals is predicted to be
approximately 85% by theories that reproduce the correlated

strength at large (Em, pm), why is only 65% observed by
(e, e′p) experiments? Coupling to collective modes is expected
to produce significant fragmentation of the valence quasihole
strength spread over a range of perhaps 10 MeV, but the
extended random-phase-approximation (RPA) calculations
presently available do not yet reproduce those fragmentation
patterns well [6]. Thus, it is possible that many small
fragments are missed experimentally even if they lie within
the experimental acceptance. Alternatively, problems in the
reaction model may lead to systematic underestimation of
spectroscopic factors. Most of the data contributing to the
aforementioned estimate of 65% IPSM were limited to Tp <

100 MeV and were analyzed using NRDWIA calculations
based upon empirical Woods-Saxon wave functions. More
recent analyses based on the relativistic distorted-wave ap-
proximation (RDWIA) typically produce larger spectroscopic
factors [10] and describe interference response functions more
accurately [11–13]. The effects due to dynamical enhancement
of Dirac spinors by the nuclear mean field are actually stronger
at low Q2 than at higher energies [14].

While spectroscopic factors are of obvious importance to
theories of nuclear structure, they also affect analyses of
nuclear transparency that look for the onset of color trans-
parency [15,16]. Those experiments typically compare the
(e, e′p) yield integrated over wide but finite ranges of missing
momentum pm and missing energy Em with calculations
based upon a model spectral function. This spectral function
is usually based upon the IPSM with a correction factor
for the depletion by correlations of the single-hole strength
within the experimental acceptance. Therefore, the accuracy
of the depletion factor affects the accuracy of transparency
measurements.
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Recently Lapikás et al. [17] analyzed the data for
12C(e, e′p) with Q2 < 0.4 (GeV/c)2 using NRDWIA calcula-
tions with Woods-Saxon bound-state wave functions fit to the
NIKHEF data for Tp = 70 MeV in parallel kinematics [18]
and concluded that the normalization factors relative to IPSM
were N1p = 0.56 ± 0.02 and N1s = 0.59 ± 0.04 for Em <

80 MeV. They then argued that the transparency results based
upon an estimated depletion factor of f = 0.9 for the single-
hole spectral function with Em < 80 MeV should be increased
by a factor of approximately 1.25 using appropriately weighted
attenuation factors for the 1p and 1s shells. Finally, they
argued that the normalization factors for 12C vary strongly with
Q2 from the low values fitted to the NIKHEF data to values
approaching the IPSM limit for Q2 > 2 (GeV/c)2. Frankfurt
et al. [19] speculated that quenching of spectroscopic factors
for low Q2 might be caused by probing a dressed quasiparticle
using long wave lengths and that at higher resolution the
effective current operator for the (e, e′p) reaction approaches
more closely that for a free nucleon. However, although
the Q2 range was smaller, our recent relativistic analysis
showed no significant slope in the normalization factors fit
to 16O(e, e′p) data for Q2 < 0.8 (GeV/c)2 [20]. Furthermore,
we find that RDWIA calculations based upon the ordinary
single-nucleon current with dynamical enhancement of lower
components of Dirac spinors describe the left-right asymmetry
for quasiperpendicular kinematics very well [14]; it is not
obvious that one should describe quasiparticles for low Q2

using Dirac spinors in a similar mean field.
In this paper we use RDWIA calculations to analyze

the data for 12C(e, e′p) with Q2 <∼ 2 (GeV/c)2. In addition
to the data considered by Lapikás et al. [17], we include
recent data from Dutta et al. [15] for Q2 = 0.6, 1.2, and
1.8 (GeV/c)2. Our RDWIA fits produce systematically larger
normalization factors using Dirac-Hartree wave functions than
using the Woods-Saxon wave functions that were fit to the
NIKHEF data. The latter do not describe well the momentum
distributions for larger Q2; nor do they describe the data
for low Q2 with quasiperpendicular kinematics as well as
do Dirac-Hartree wave functions. Therefore, the fits to data
for parallel kinematics with small ejectile energies appear to
produce artificially narrow momentum distributions that result
in anomalously low spectroscopic factors.

The model and fitting procedures are described in Secs. II
and III. Section IV presents an analysis based upon an approxi-
mation that permits direct comparison between nonrelativistic
and relativistic bound-state wave functions. Section V presents
a more rigorous analysis of both spectroscopic factors and
transparency using RDWIA. Our conclusions are summarized
in Sec. VI.

II. REACTION MODELS

Detailed descriptions of RDWIA for (e, e′p) reactions have
been given in many recent papers. Here we briefly discuss
those aspects relevant to the current application and refer to
Refs. [14,20] for further details. In RDWIA, a nuclear matrix
element of the single-nucleon electromagnetic current for the

A(e, e′N )B reaction takes the form

J µ =
∫

d3r exp(i t·r)〈�(−)( p′, r)|γ 0�µ( p′, p′ − q)|�(r)〉,
(1)

where �µ is the vertex function, q is the momentum transfer,
p′ is the ejectile momentum, and t = EBq/W is the recoil-
corrected momentum transfer. The overlap � between initial
and final nuclear states, often called the bound-state wave
function, is approximated by a bound solution of a Dirac
equation with real scalar and vector potentials. Similarly, the
ejectile distorted wave �(−) is an incoming solution to a Dirac
equation with complex scalar and vector optical potentials. It
is convenient to express this matrix element in the form

J µ =
∫

d3r exp(i t·r)〈ψ (−)( p′, r)|Jµ|φ(r)〉, (2)

where

Jµ( p′, p) = �̃c( p′, r)γ 0�µ�b( p, r) (3)

is a 2 × 2 current operator that acts upon solutions of second-
order equations[∇2 + E2

c − m2 − 2Ec

(
UC

c + ULS
c L · σ

)]
ψ = 0, (4a)[∇2 + E2

b − m2 − 2Eb

(
UC

b + ULS
b L · σ

)]
φ = 0, (4b)

which now take the form of Pauli spinors. The subscripts b
and c refer to bound and continuum wave functions. These
equations feature central and spin-orbit Schrödinger potentials,
UC and ULS, obtained from the corresponding scalar and
vector Dirac potentials, S and V, using the well-known
formulas [21,22]

UC = V + m

E
S + S2 − V 2

2E
+ UD, (5a)

UD = 1

2E

[
− 1

2r2D

d

dr
(r2D′) + 3

4

(
D′

D

)2
]

, (5b)

ULS = − 1

2E

D′

rD
, (5c)

where V includes the Coulomb potential and where

D(r) = 1 + S(r) − V (r)

E + M
(6)

is known as the Darwin nonlocality factor. Often it is more
convenient to express the Darwin factor in terms of the spin-
orbit potential using [23]

D(r) = exp

[
2E

∫ ∞

r

dr ′r ′ ULS(r ′)
]
. (7)

The spinor-distortion operators are given by

�α( p, r) =

 1

σ · p

(E + m)Dα(r)


 D1/2

α (r), (8)

where α ∈ {b, c} and where the lower component uses the
momentum operator and the appropriate Darwin factor. These
representations of the RDWIA matrix element are completely
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equivalent, but the 2 × 2 representation facilitates approxima-
tions that are useful for comparing RDWIA and NRDWIA
calculations.

To understand the small spectroscopic factors obtained
by Lapikás et al. [17], it will be useful to present RDWIA
calculations based upon their Woods-Saxon wave functions.
For this purpose, we replace their Perey nonlocality factor by a
Darwin factor computed using Eq. (7) with the Woods-Saxon
spin-orbit potential. Such potentials are usually expressed in
the form

ULS(r) = 2

r

∂

∂r

VLS

1 + exp[(r − RLS)/aLS]
, (9)

where VLS, RLS, and aLS are strength, radius, and diffuseness
parameters and where VLS > 0. The corresponding Darwin
factor then takes the form

D(r) = exp

(
− 4mVLS

1 + exp[(r − RLS)/aLS]

)
(10)

and is used in Eq. (8) to produce the lower component needed
for RDWIA. However, because this Darwin factor is not the
same as the original Perey factor, this prescription alters the
momentum distribution.

To better simulate the momentum distribution for NRDWIA
calculations with Woods-Saxon wave functions, we will also
show EMA-noSV calculations using the Perey factor instead of
the Darwin factor. The EMA-noSV approximation to RDWIA
was introduced in Refs. [2,11], and its relationship to full
RDWIA is explored in more detail in Ref. [14]. The basic idea
is that the missing momentum distribution is determined by
the upper component of the bound-state wave function, while
the lower component is constructed using the relationship for
free Dirac spinors, such that

�( p, r) −→

 1

σ · p

E + m


D1/2(r), (11)

where the momentum for the lower component is based upon
asymptotic kinematics. Thus, for the bound state, we use
p = p′ − q and E =

√
m2 + p2. This approximation permits

use of the relativistic current operator without need of p/m

expansions to obtain a nonrelativistic limit and produces
a momentum distribution that is very similar to that for
a full RDWIA calculation, but it does not reproduce the
left-right asymmetry as well because it neglects the distortion
of the lower component by the mean field [11,14]. Also
note that the Darwin factor is retained because it affects the
momentum distribution and is computed according to Eq. (7)
for Dirac-Hartree wave functions. When using Woods-Saxon
wave functions, on the other hand, we replace the Darwin
factor for EMA-noSV with the customary Perey nonlocality
factor [24], such that

�b( p, r) −→

 1

σ · p

E + m


 P

1/2
b (r), (12)

where

Pb(r) =
[

1 − mβ2
NL

2
UC

b (r)

]−1

(13)

is based upon the central binding potential and where βNL ∼
0.85 fm. The reduced cross section is then practically identical
to the missing momentum distribution for the corresponding
traditional NRDWIA calculation using the same potentials
and nonlocality factors. Therefore, the EMA-noSV analysis
using various Dirac-Hartree or Woods-Saxon wave functions
evaluates the effects of differences in the momentum distribu-
tion, whereas the full RDWIA analysis with Dirac-Hartree
wave functions is more accurate because it also includes
the effects of distortion of lower components of Dirac spinors.

It is important to recognize that even though the Darwin
factor in Eq. (10) is similar to the Perey factor in Eq. (13),
they are not identical because nonrelativistic spin-orbit and
central potentials are adjusted independently and are not
derived from scalar and vector potentials in the same manner
as for relativistic calculations. This difference alters the
momentum distribution. For the particular case considered
here, the replacement P → D produces a somewhat narrower
momentum distribution for RDWIA than for EMA-noSV
using the same Woods-Saxon wave function; this difference
reduces the spectroscopic factor fitted to data.

Finally, all calculations treat electron distortion in the qeff

approximation [25] and use the CC2 current operator [26]

�µ = γ µF1(Q2) + iσµν q̄ν

2m
F2(Q2), (14)

with MMD form factors [27] in Coulomb gauge. The
momentum transfer is evaluated on-shell, such that
q̄ = (E′ − E, p′ − p) with p = p′ − qeff where qeff is the
effective momentum transfer, p′ is the ejectile asymptotic
momentum, and the energies E and E′ are on shell; the
form factors use Q2 = q2 − ω2 where (ω, q) are based upon
the electron-scattering kinematics. Optical potentials for the
ejectile were taken from the global analysis by Cooper
et al. [28]. We consider Dirac-Hartree wave functions from
the original Horowitz and Serot analysis (HS) [29] and
the nonlinear analysis from Sharma et al. (NSLH) [30]. In
addition, we consider the Woods-Saxon wave functions used
by Lapikás et al. [17] in their NRDWIA analysis of 12C(e, e′p).

III. DATA AND FITTING PROCEDURES

The data we consider are summarized in Table I. Reduced
cross sections for the Tokyo, Saclay, and SLAC data were
provided by Lapikás [17,31] and include small adjustments to
a common convention for reduced cross section. In addition,
radiative corrections were applied to the data from Ref. [32].
Only for the NIKHEF experiment [18] was it possible to
resolve the lowest three 1p fragments. Although there are small
differences between the missing momentum distributions for
these three fragments, the ground state represents about 81%
and the next 1p3/2 fragment an additional 9% of the total 1p

strength for Em < 25 MeV. Therefore, we represent the 1p

strength using either a single Dirac-Hartree wave function for
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TABLE I. Summary of data for 12C(e, e′p). E0 is the beam energy and Tp is the central proton kinetic energy. Quasiperpendicular
kinematics with constant (ω, q) were used unless a Q2 range is given.

Data set E0 �Em(1p) �Em(1s) Tp Q2 Notes
(MeV) (MeV) (MeV) (MeV) [(GeV/c)2]

Tokyo [34] 700 6–30 21–66 159 0.29
700 21–66 136

Saclay [35] 497 15–22 30–50 87 0.16
Saclay [32] 500 15–22 NA 99 0.18 Constant (ω, q)
Saclay [32] 500 15–22 NA 99 0.09–0.32 Parallel; 1s not available
NIKHEFa [18] 285–481 15–22 30–39 70 0.02–0.26 Parallel
SLACb [36] 2015 15–25 30–80 600 1.11 1s not radiatively unfolded
JLabc [15] 2445 15–25 30–50 350 0.64 Inclusive bin with 10 � Em � 80 MeV available

2445 700 1.28
3245 970 1.84

aNationaal Instituut voor Kernfysica en Hoge-Energiefysica, Netherlands.
bStanford Linear Accelerator Center.
cJefferson Laboratory (JLab) = Thomas Jefferson National Accelerator Facility.

1p3/2 or the NIKHEF fit to the ground state. That experiment
was also able to resolve several weak positive-parity states with
Em < 30 MeV, but their strength is small enough to neglect
in the present analysis [33]. For most other experiments,
the lowest missing energy bin contains a small contribution
from the low-energy tail of the 1s shell. Furthermore, for
all experiments the bin intended to emphasize the 1s shell
inevitably contains contributions from a broad continuum that
may include additional 1p strength. Therefore, each Em bin
will be fit as an incoherent mixture of 1p and 1s contributions
according to

σred = N1pσred(1p3/2) + N1sσred(1s1/2), (15)

where the overlap function for each shell is assumed to be
independent of missing energy and is normalized to full
occupancy. In addition, for the JLab data sets, we fit a
normalization factor for the independent particle shell model
(IPSM) to the inclusive data in the range 10 � Em � 80 MeV
according to

σred = NIPSM[σred(1p) + σred(1s)]. (16)

Calculations will be shown for the entire pm range measured
for each data set, but only data in the range |pm| � 200 MeV/c
will be used to fit the normalization factors because larger pm

may be susceptible to increasing corrections for effects not
contained in the RDWIA model based upon single-nucleon
current operators (such as short-range correlations, two-body
currents, or channel coupling in final-state interactions).

We also require a model of the 1s energy distribution
to obtain the spectroscopic factor from the normalization
N1s(Emin, Emax) fitted to limited and variable intervals of Em.
One often employs a Lorentzian distribution

L1s(Em) = 1

2π

�(Em)

(Em − E1s)2 + [�(Em)/2]2
, (17)

whose energy-dependent width is given by the Brown-Rho
parametrization [37]

�(Em) = a(Em − EF )2

(Em − EF )2 + b
, (18)

where EF is the Fermi energy and a, b are constants. For
now, it suffices to use the parameters a = 24 MeV and
b = 500 MeV2 originally proposed by Brown and Rho [37]
with EF = 15.96 MeV and E1s = 39 MeV for 12C. Lapikás
et al. obtained slightly different parameters for b and E1s by
fitting the Tokyo data, but the effect upon S1s was insignificant.
Thus, one would expect approximately 11% of the 1s strength
to be broadly distributed above the 80 MeV missing energy,
which is consistent with the depletion factor attributed to short-
range correlations. Therefore, in the absence of background,
the 1s spectroscopic factor deduced from a fitted normalization
factor would be

S1s = 2N1s(Emin, Emax)

∫ ∞
0 L1s(Em)dEm∫ Emax

Emin
L1s(Em)dEm

. (19)

IV. EMA-noSV ANALYSIS

Figure 1 compares momentum distributions for the rela-
tivistic HS and NLSH models with the Woods-Saxon models
used by Lapikás et al. [17] and by Dutta et al. [15]. The latter
were based upon a NRDWIA analysis of the Saclay data for
Tp = 99 MeV made by Bernheim et al. [32]. The differences
between the HS and NLSH wave functions are relatively small,
but the NIKHEF 1p wave function has a much stronger peak
and declines more rapidly with respect to pm. Similarly, the
NIKHEF 1s wave function starts higher and falls faster than
the relativistic wave functions. Interestingly, the Saclay wave
functions show similar behavior, but the effects, compared
with the NIKHEF wave functions, are smaller for the 1p

and larger for the 1s wave function. The large spread among
these momentum distributions will obviously be reflected in
the corresponding DWIA calculations.

To evaluate the effect of variations of ρ(pm) upon DWIA
calculations using both relativistic and nonrelativistic wave
functions, it is simplest to employ the EMA-noSV approach
[11]. Several previous papers have shown that the differ-
ences between EMA-noSV and full RDWIA calculations
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FIG. 1. (Color online) Momentum distribution for 12C(e, e′p).

are relatively small for cross sections [20,38]. Although
that approximation does not provide the best description of
the left-right asymmetry ALT, it has the advantage that the
nonrelativistic wave function can be used directly [11,14]. We
use Eqs. (11) and (7) for NLSH and HS wave functions or
Eqs. (12) and (13) for NIKHEF wave functions.

Figure 2 compares EMA-noSV calculations using NLSH,
HS, and NIKHEF wave functions with the JLab data for
Q2 = 0.6, 1.2, and 1.8 (GeV/c)2. For each kinematics, the
top set is semi-inclusive data for Em < 80 MeV, the second
set shows a bin 15 � Em � 25 MeV dominated by the 1p

shell, and the bottom set shows a bin 30 � Em � 50 MeV
dominated by the 1s shell. The curves were fitted to data
in the range |pm| � 200 MeV/c neglecting, at present, the
mixing between the shells. We will later find that filling of
the 1p minimum and broadening of the 1s distribution can be
described by mixing. These calculations employ the EDAD1
optical potential [28]; other choices of potentials from Cooper
et al. [28] produce small variations in the normalization factors
with little dependence upon the choice of overlap function and
practically no discernible effect upon the curves. The results
for the two relativistic wave functions, NLSH and HS, are very
similar but the fitted pm distributions for the NIKHEF wave
function tend to be too narrow, especially for the 1p shell.
Consequently, the 1p normalization factors listed in Table II
are systematically smaller for the NIKHEF wave function than
for the NLSH or HS wave functions. These normalization
factors are correlated well with the peak of the momentum
distribution, with the NLSH results largest, NIKHEF results
smallest, and HS in between.

Similar comparisons are shown in Figs. 3–5 for several
low Q2 experiments performed using quasiperpendicular
kinematics. Except when noted otherwise, a normalization
factor for each curve was obtained using a least-squares
fit to the data for |pm| � 200 MeV/c. Figure 3 shows that
the relativistic wave functions describe the data for the
Saclay experiment with Tp = 87 MeV in quasiperpendicular
kinematics better than the NIKHEF wave functions, which
fall too rapidly with increasing pm. The results shown in
Fig. 5 for the Tokyo experiment with Q2 = 0.29 (GeV/c)2

FIG. 2. EMA-noSV calculations for 12C(e, e′p) are compared with quasiperpendicular data for 0.6 < Q2 < 1.8 (GeV/c)2 from JLab [15].
In each panel, the top set of curves shows the inclusive 10 � Em � 80 MeV bin scaled by a factor of 20; the middle set, the p-shell bin with
15 � Em � 25 MeV; and the bottom set, the s-shell bin with 30 � Em � 50 MeV scaled by a factor of 0.1. Solid, dashed, and dash-dotted curves
are based upon NLSH, HS, and NIKHEF wave functions, respectively.
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TABLE II. Normalization factors for 12C(e, e′p)(1p)−1 fitted to quasiperpendicular data for the 1p bin using several overlap functions in
the EMA-noSV approximation. Possible 1s contributions were neglected. The first set uses the EDAD1 and the second the EDAIC optical
potential [28].

Experiment Q2 Em EDAD1 EDAIC

[(GeV/c)2] (MeV) NLSH HS NIKHEF NLSH HS NIKHEF

Saclay 0.16 15–22 0.637 0.599 0.483 0.572 0.542 0.444
Saclay 0.18 15–22 0.757 0.705 0.554 0.684 0.640 0.510
JLab 0.6 15–25 0.934 0.878 0.697 0.909 0.856 0.682
SLAC 1.1 15–25 0.852 0.791 0.613 0.887 0.822 0.633
JLab 1.2 15–25 0.904 0.849 0.671 0.950 0.890 0.699
JLab 1.8 15–25 0.901 0.854 0.689 0.886 0.841 0.679

are somewhat ambiguous: although the NLSH and HS wave
functions give better fits for pm >∼ 60 MeV/c, particularly for
the ground state, none of the calculations can describe the
enhancement at lower pm seen for the ground state or the
dip for the s state. The low pm bulge for the ground-state data
seems somewhat implausible, and there likely were difficulties
in cleanly separating the 1p and 1s contributions to the low pm

data. Therefore, the 1p normalization for this set was fitted to
50 � pm � 200 MeV/c. Similar calculations are also compared
with the SLAC data for Q2 = 1.1 (GeV/c)2 in Fig. 6. We again
find that the pm distribution for the NIKHEF wave function
is too narrow to fit the 1p data well. However, the 1s data
remain well above all of the calculations for large pm. Lapikás
et al. [17] attributed this problem to 1p contamination due to
inadequate radiative unfolding.

The normalization factors obtained for single-component
EMA-noSV fits are listed in Table II; improved two-
component RDWIA fits will be presented in the next section.

FIG. 3. EMA-noSV calculations for 12C(e, e′p) are compared
with quasiperpendicular data for Tp = 87 MeV from Saclay [35].
Solid, dashed, and dash-dotted curves are based upon NLSH, HS,
and NIKHEF wave functions, respectively.

The Tokyo result is omitted because the 1s admixture is
appreciable. We find that these factors are correlated well
with the peak value of the ρ(pm), such that the NIKHEF
wave functions produce the smallest and the NLSH wave
functions the largest normalization factors. Over a wide range
of Q2, including both early data at low Q2 and recent data
for Q2 ∼ 1 (GeV/c)2, the relativistic wave functions fit the
pm distributions relatively well, while the NIKHEF wave
functions are systematically narrower than the data. Thus,
the data for quasiperpendicular kinematics consistently prefer
the broader pm distributions and larger normalization factors
obtained with Dirac-Hartree wave functions.

The data for parallel kinematics, on the other hand, present
special problems. We omit the Mainz data [39] because
there appear to be significant normalization problems for that
experiment [17]. The NIKHEF and Saclay data for parallel
kinematics are compared with EMA-noSV calculations for
NLSH, HS, and NIKHEF wave functions in Figs. 7 and 8.
The results for both experiments are similar but none of these
calculations reproduce the data for the 1p shell. Because of
obvious difficulties for pm < 0, the normalization factors listed
in Table III were fitted to 0 < pm < 200 MeV/c. These factors
are also correlated with the peak values of ρ(pm) but these fits
underestimate the cross sections for pm < 0 and larger Q2.

To improve standard NRDWIA calculations for parallel
kinematics, van der Steenhoven et al. [18,40] resorted to
adjusting simultaneously the overlap function, the optical
model, and the current operator. The NIKHEF analysis used
the nonrelativistic expansion of the current operator in powers

FIG. 4. Same as Fig. 3, but for Tp = 99 MeV from Saclay [35].
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FIG. 5. Same as Fig. 3, but for Q2 = 0.29 (GeV/c)2 from Tokyo
[34].

of p/m proposed by McVoy and van Hove [41]; we verified
that at second order this expansion, denoted NR2, gives results
that are practically indistinguishable from our EMA-noSV
calculations. Their analysis also used a nonrelativistic optical
potential produced by Comfort and Karp [42], denoted CK,
and a Perey factor [24] for the ejectile with β = 0.85 fm.
Figure 9 compares several variations of the NR2 calculations
that are similar to those of van der Steenhoven et al. The
dashed curve uses this optical potential and current operator
with the upper component of the NLSH wave function and fails

FIG. 6. Same as Fig. 3, but for Q2 = 1.1 (GeV/c)2 from SLAC
[36].

FIG. 7. EMA-noSV calculations for 12C(e, e′p) are compared
with data from NIKHEF [18] using parallel kinematics for Tp =
70 MeV/c.

to reproduce the data for parallel kinematics with pm < 0; the
results are similar to those shown in Fig. 7 in the EMA-noSV
approach. The narrower NIKHEF momentum distribution
improves the fit to the data but appears to be shifted to the
left—a shift to the right was accomplished by modifying
the optical potential. This modified potential, denoted MCO
in Ref. [18], was intended to simulate channel coupling in
the final state but our more detailed analysis of channel
coupling [43] gave much smaller effects for this reaction;
hence, we regard this modification of the optical potential
to be somewhat ad hoc. Finally, van der Steenhoven et al.
inserted an enhancement factor for transverse components of
the current operator and adjusted that factor to fit the peak for
negative pm. Applying this factor without further adjustment
does provide a reasonably accurate fit to the reduced cross
section for parallel kinematics.

FIG. 8. Same as Fig. 7, but for data from Saclay [32] using parallel
kinematics for Tp = 99 MeV.
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TABLE III. Normalization factors for 12C(e, e′p)(1p)−1 fitted
to data for parallel kinematics using several overlap functions in
the EMA-noSV approximation. These results were extracted for the
15 � Em � 22 MeV bin using NLSH wave functions and the EDAD1
optical potential.

Experiment Tp NLSH HS NIKHEF

NIKHEF 70 0.635 0.616 0.541
Saclay 99 0.685 0.636 0.505

We have not attempted to tune this fit because we doubt
that it is really possible to distinguish between variations of
the overlap function, the current operator, and the final-state
interactions using these data. Nor does it appear possible to
fit the low Q2 data for both parallel and quasiperpendicular
kinematics simultaneously using unique overlap functions and
global optical potentials fitted to proton elastic scattering.
The relativistic wave functions provide goods fits to the pm

dependence of the data for quasiperpendicular kinematics
even if the normalization factors for Q2 � 0.6 (GeV/c)2 are
significantly larger than those for low Q2. On the other hand,
the normalization factors for the two Saclay experiments with
quasiperpendicular kinematics do not agree well with each
other either. Therefore, the failure of EMA-noSV calculations
with NLSH wave functions to reproduce the pm dependence
of data for parallel kinematics with Tp <∼ 100 MeV seems to
be a more serious problem than the variation of normalization
factors with Q2. Recognizing that off-shell ambiguities are

FIG. 9. (Color online) NR2 calculations for 12C(e, e′p) compared
with data from NIKHEF [18] using parallel kinematics for Tp =
70 MeV/c. WS refers to the NIKHEF Woods-Saxon wave function,
and η > 1 shows the effect of enhancing transverse components of
the current operator.

more serious for parallel kinematics because x = Q2/2mω

varies over a wide range and expecting the reaction mechanism
to be more reliable for large Q2, we believe that the reaction
mechanism for parallel kinematics with Tp <∼ 100 MeV is not
sufficiently reliable to justify fitting the bound-state wave
function. Furthermore, it is likely that in such analyses,
variations of the overlap function would tend to compensate
for deficiencies in the reaction model.

If one wants to fit the momentum distribution for a discrete
single-hole state to (e, e′p) data, it is probably best to use
quasifree kinematics where (ω, q) is constant and Q2 is as large
as possible. The reliability of the reaction mechanism should
improve as Q2 increases, and the use of quasifree kinematics
should minimize distortion of ρ(pm) due to variation of the
current operator off shell. It would then be of interest to test
the reaction mechanism by comparison with data for parallel
kinematics with large Tp. Ideally, such tests should have
sufficient resolution in Em to isolate discrete states without
the complications of incoherent mixtures. Unfortunately, no
high-resolution (e, e′p) data for parallel kinematics with Tp >

200 MeV and sufficient coverage in pm are available.

V. RDWIA ANALYSIS

In this section, we analyze the data using full RDWIA
calculations based upon Eq. (8) with Darwin nonlocality
factors from Eq. (6) for NLSH and HS wave functions or
Eq. (10) for NIKHEF wave functions.

A. Normalization factors

1. JLab

Full RDWIA fits to the JLab data [15] are shown in Fig. 10
using NLSH wave functions, EDAD1 optical potentials, and
the CC2 current operator in Coulomb gauge. For the inclusive
bin, these fits are slightly better than the corresponding EMA-
noSV fits shown in Fig. 2 because full RDWIA calculations
reproduce the left-right asymmetry better than the EMA-noSV
approximation [14]. These fits for the 1p and 1s bins are
significantly better than single-component fits because neither
bin represents a pure single-particle configuration. The 1s

contribution to the 1p bin fills in the minimum and rounds the
peaks. Similarly, the 1p contribution to the 1s bin broadens the
momentum distribution—the reduced 1s component provides
a better fit for small pm, while the 1p component improves
the fit to larger pm. However, for pm > 200 MeV/c the data
for both the s-shell and inclusive bins remain significantly
above these two-component fits. Similar data for 16O(e, e′p)
[20,44] covering a broad range of missing energy show that
for pm >∼ 150 MeV/c there is much more strength at large Em

than can be attributed to single-nucleon knockout from the
s shell. The continuum fraction increases with pm, which may
be simulated in the two-component model by a 1p admixture.
Assuming that the 1s quasihole momentum distribution is
similar to the Dirac-Hartree wave function, it would appear that
the continuum contribution to Em > 30 MeV has a broader
momentum distribution than the 1p3/2 wave function used
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FIG. 10. Contributions of 1p3/2 and 1s1/2 fitted to JLab data for 12C(e, e′p). In each panel, the sets of curves show the same bins as in Fig. 2.
The solid curves show the total fit; the dashed curves, the 1p contributions to the inclusive and p-shell bins; and the dash-dotted curves,
the 1s contributions to the inclusive and s-shell bins. In addition, scale-factor fits for the IPSM are shown as dotted curves for the inclusive
bin but are practically indistinguishable from the solid curves. All calculations use NLSH wave functions and EDAD1 optical potentials in full
RDWIA.

in these two-component fits. Although part of this may be
contributed by 1p fragmentation, much of the fitted 1p

strength is probably a surrogate for multinucleon continuum.
Recent SCGF estimates suggest that approximately 68% of
the correlated continuum is in partial waves with � � 1 [45].
No doubt higher partial waves begin to contribute to the
continuum as pm increases, and it is likely that the � = 1
continuum is also broader than the 1p3/2 quasihole momentum
distribution.

RDWIA fits to the JLab data using NLSH, HS, or
NIKHEF wave functions are compared in Fig. 11. The two
Dirac-Hartree wave functions provide very similar fits with
a slight preference for NLSH. Mixing between 1p and 1s

contributions improves fits to the 1s bin using NIKHEF wave
functions by flattening the small pm and lifting the large pm

regions. However, two-component fits using NIKHEF wave
functions were impossible for the 1p bin because the 1s

normalizations were negative; hence, the 1p NIKHEF fits

FIG. 11. RDWIA fits to the JLab data for JLab data for 12C(e, e′p) are compared for NLSH (solid), HS (dashed), and NIKHEF (dash-dot)
wave functions. In each panel, the sets of curves show the same bins as in Figs. 2 and 10.
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TABLE IV. Normalization factors for 12C(e, e′p) fit to JLab data for three bins of missing energy and three values of Q2 in (GeV/c)2. The
columns labeled Ave are averaged with respect to Q2. The first set uses NLSH and the second HS wave functions. Both sets use EDAD1 optical
potentials.

State Em (MeV) bin NLSH HS

Q2 = 0.6 Q2 = 1.2 Q2 = 1.8 Ave Q2 = 0.6 Q2 = 1.2 Q2 = 1.8 Ave

1p3/2 15–25 0.885 0.868 0.847 0.87 0.852 0.836 0.830 0.84
30–50 0.060 0.078 0.077 0.072 0.063 0.058 0.062 0.061
10–80 1.021 1.001 0.977 1.00 1.008 0.985 0.973 0.99

1s1/2 15–25 0.133 0.102 0.198 0.14 0.082 0.050 0.110 0.08
30–50 0.669 0.616 0.667 0.65 0.628 0.575 0.620 0.61
10–80 0.953 0.887 1.009 0.95 0.818 0.757 0.845 0.81

IPSM 10–80 0.981 0.991 0.984 0.985 0.949 0.914 0.940 0.934

shown here simply scale RDWIA calculations for 1p3/2.
Furthermore, the 1p NIKHEF fits are even worse, and their
normalization factors are even smaller in RDWIA than in
EMA-noSV: with EDAD1 those normalization factors are
0.66, 0.63, and 0.66 for RDWIA compared with 0.70, 0.67,
and 0.69 for EMA-noSV at the three Q2 settings. This reduc-
tion occurs because the RDWIA calculations for inherently
nonrelativistic Woods-Saxon wave functions were made by
replacing the Perey factor with the Darwin factor obtained
using the spin-orbit potential, which leads to a narrower
momentum distribution because the spin-orbit potential used
by van der Steenhoven et al. [18] is stronger than that for NLSH
or HS Dirac-Hartree wave functions. A narrower momentum
distribution then requires a smaller normalization factor to
reproduce the same peak cross section. The fits for the 1p bin
overshoot the peaks and then fall too rapidly as pm increases
and these problems carry over, in slightly diluted form, to the
inclusive bin. Therefore, we reject those parametrizations of
the 1p3/2 and 1s1/2 overlap functions.

RDWIA normalization factors fitted to the JLab reduced
cross section data for 12C(e, e′p) in three bins of missing
energy are collected in Table IV. These results were obtained
using EDAD1 optical potentials, but the corresponding results
for EDAD2, EDAD3, or EDAIC optical potentials differ by
less than ±5% with systematics similar to Table II. Similar
results were also obtained using more microscopic optical
potentials based upon an empirical effective interaction (EEI)
[46,47]. The differences between NLSH and HS results are
small for 1p3/2 and modest for 1s1/2. Most of the discussion
will be based upon the NLSH results because they provide
slightly better fits to the data.

A rather large fraction, approximately 87%, of the IPSM
1p strength is found in the lowest Em bin. If we assume that
fragmentation of the 1p strength by collective modes is largely
confined to excitation energies below 10 MeV, the 87% we
find for the 1p shell is consistent with SCGF estimates. The
additional 1p strength fitted to the reduced cross section for
larger Em probably represents continuum contributions with
� > 0 that should not be added to the valence 1p strength.

The 1s contribution to the p-shell bin is more than predicted
by Eqs. (17)–(18), but could arise either from resolution,

discrete 1
2

+
states, or a stronger low-Em tail. Approximately

65% of the 1s IPSM strength appears in the 30 < Em <

50 MeV bin and corresponds to a net occupancy of 94% when
scaled according to Eq. (19) to account for the spreading
width. However, this is probably an overestimate of the
1s spectroscopic factor because one would expect approxi-
mately 10% of the 1s strength to lie beyond the 80 MeV
missing energy; hence, if we scale N1s for the NLSH fitted to
the inclusive bin, we would obtain more than 100%. Although
the overestimation appears to be smaller for the HS fits,
neither accounts for continuum contributions from rescattering
or two-body currents that could artificially enhance N1s .
The difficulties in reproducing the cross sections for pm >

200 MeV/c in the Em > 30 MeV region also suggest additional
continuum contributions with broader momentum distribution
that are not described by these two-component fits. Therefore,
it is reasonable to assume that the depletion of the 1s shell
by short-range correlations is similar to that for the 1p shell
and to attribute the additional strength in the inclusive cross
section to continuum processes that are not related directly to
the single-hole spectral function.

The final line of Table IV lists IPSM scale factors fit to the
Em < 80 MeV data according to Eq. (16); these results are in
reasonable agreement with the weighted average of the 1p and
1s normalization factors. The corresponding fits are shown in
Fig. 10 as dotted curves that are practically indistinguishable
from the two-component fits to the inclusive data. Therefore,
we find approximately 98.5% of the IPSM strength in
Em < 80 MeV, which is considerably more than the 85%
one expects after accounting for short-range correlations.
It is likely that much of the extra strength observed for
Em > 30 MeV arises from processes other than single-nucleon
knockout from the 1s shell, such that the total single-
hole strength for Em < 80 MeV is overestimated by this
analysis.

Under these conditions, we consider N1p(15, 25) = 0.87
to be the most reliable estimate of the depletion of IPSM
orbitals in 12C by short-range correlations. This estimate
is consistent with the direct measurements of correlated
continuum made by Rohe et al. [4] using parallel kinematics
and the analysis of those data by Müther and Sick [45] based
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FIG. 12. RDWIA calculations for the left-right asymmetry in reduced cross section for quasiperpendicular kinematics with 0.6 � Q2 �
1.8 (GeV/c)2. NLSH wave functions, EDAD1 optical potentials, and the CC2 current operator were used. Dashed curves show single-component
calculations; solid curves, results for two-component 1p + 1s fits; dash-dotted curves, two-component fits in EMA-noSV.

upon SCGF. The extra yield observed by Dutta et al. [15]
in quasiperpendicular kinematics should then be attributed to
two-body currents and rescattering processes in which some
of the flux absorbed by the optical potential is distributed to
final states that remain within the experimental acceptance.
Several studies suggest that rescattering contributions to the
continuum are minimized for parallel kinematics [4,48,49].
These background contributions affect the interpretation of
nuclear transparency measurements, which will be considered
in Sec. V B.

For the sake of completeness, we also show in Fig. 12 the
left-right asymmetry in reduced cross section

aLT = σred(φ = 0) − σred(φ = π )

σred(φ = 0) + σred(φ = π )
, (20)

where the azimuthal angle φ = 0 corresponds to an ejectile
momentum in the electron scattering plane between the beam
direction and the momentum transfer. The sensitivity of this
quantity to spinor distortion was studied in some detail in
Ref. [14] for pure single-particle configurations. Figure 12
shows that the 1p3/2 admixture for the s-shell bin provides
slightly better fits to the data for pm <∼ 300 MeV/c. That
effect is small for the p-shell bin because the 1p admixture
is small, and it is also small for the inclusive bin because the
asymmetries for the two components are similar, depending
more upon the Dirac potentials than upon the details of the
bound-state wave functions. Two-component fits based upon
EMA-noSV calculations demonstrate that aLT ≈ 0 without
spinor distortion because the characteristic left-right asymme-
try for electron scattering by a moving free proton is removed

by using the reduced cross section. The remaining asymmetry
due to dynamical enhancement of lower components of Dirac
spinors is described very well by RDWIA calculations. As
argued in Ref. [14], the flattening of the pm distribution
for aLT in the s shell and inclusive bins for increasing Q2

is probably caused by continuum contributions that need
not share the characteristic asymmetry of single-nucleon
knockout.

2. Previous experiments

The RDWIA analysis of the JLab data presented in the
preceding section provides a satisfying degree of internal
consistency over a broad range of Q2. Unfortunately, similar
analyses for older data sets present a variety of consistency
problems that cannot be resolved simply by choosing the
best overlap functions or optical potentials. Therefore, in this
section we consider those data in chronological order using
only a single set of options, namely NLSH and EDAD1, in the
RDWIA framework.

The fits shown in Fig. 13 appear to describe the Tokyo
data [34] very well, but the 1s contribution to the p-shell
bin is implausibly large. With NLSH wave functions and
EDAD1 optical potential, we find (N1p,N1s) = (0.56, 0.42)
for 6 � Em � 30 MeV and (N1p,N1s) = (0.08, 0.69) for
21 � Em � 66 MeV. Apparently there was an experimental
problem in defining the p-shell or there is an unidentified
problem in the reaction mechanism that enhances the cross
section for small pm. Because this is the only quasiperpendic-
ular data set with severe problems in the p-shell bin for small
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FIG. 13. RDWIA fit to Tokyo data [34] using NLSH wave
functions. Solid curves show the fits; dashed and dash-dotted curves,
1p and 1s contributions.

pm, we believe that energy resolution is a more likely expla-
nation than reaction mechanism. The single-component fit to
pm > 50 MeV shown in Fig. 5 corresponds to N1p = 0.77,
which is more consistent with the other quasiperpendicular
data for this bin. The 1p contribution to the 1s bin, on the other
hand, is fairly small. Scaling the 1s fit for 21 � Em � 66 MeV
according to Eq. (19) gives a net occupancy of 80%, which is
reasonable but smaller than the corresponding JLab result.
Perhaps the continuum contamination was smaller for the
Tokyo experiment.

RDWIA provides no qualitative improvement over EMA-
noSV fits to NIKHEF or Saclay data for parallel kinematics.
As discussed before, we believe the severe variation of Bjorken
x in parallel kinematics distorts momentum distributions fit to
(e, e′p) data for low Q2 using familiar off-shell extrapolations
of the single-nucleon current operator. Therefore, we do not
consider those data further. Conversely, single-component
RDWIA fits to the Saclay data for quasiperpendicular kine-
matics are similar to those shown in Figs. 3 and 4. There is no
evidence for 1s contamination of the 15 � Em � 25 MeV bin,
and the 30 � Em � 50 MeV bin is too narrow and the range of
pm is too small to find significant 1p strength there. Further-
more, mixed fits sometimes produce negative contamination
factors with large uncertainties; hence, only single-component
fits are considered for the Saclay quasiperpendicular data. We
find 1p normalization factors of 0.63 for Ref. [35] or 0.75 for
Ref. [32] that are somewhat smaller than the JLab results
but are not in especially good agreement with each other
either. Similarly, N1s = 0.46 for 30–50 MeV corresponds to an
occupancy of 67%, which is also somewhat less than the JLab
result. Given that we believe the reaction mechanism is more
reliable at higher Q2 and that there are unresolved problems
in reproducing data in parallel kinematics at the same Q2, we

are not especially alarmed by a 10–20% discrepancy between
Q2 < 0.2 and Q2 > 0.6 (GeV/c)2.

Finally, the statistical quality of the 1p SLAC data for
Q2 = 1.1 (GeV/c)2 does not support extraction of a 1s

admixture either. Nor did we attempt to fit the 1p contribution
to the 30 � Em � 80 MeV bin because the enhancement for
large positive pm is probably an artifact of inadequate radiative
unfolding. Single-component fits using RDWIA calculations
are very similar to the EMA-noSV fits shown in Fig. 6, and the
figures are omitted. The SLAC 1p normalization factor for the
p-shell bin is 0.86 for NLSH and EDAD1, which is perfectly
consistent with the JLab results. However, N1s = 1.2 for
30–80 MeV is much larger than the JLab result and scaled up
to unrestricted Em would represent 140% of IPSM, suggesting
a rather substantial underlying continuum.

3. Q2 dependence of spectroscopic factors

Lapikás et al. [17] proposed that the Q2 variation seen
in their analysis of the spectroscopic factors for 12C could
be explained in terms of the resolution with which the
electromagnetic knockout reaction probes the structure of a
quasiparticle, such that the true spectroscopic factor would
be observed in the limit Q2 −→ ∞. Although this model was
expressed in terms of a scale-dependent renormalization of the
spectroscopic factor, it would be more appropriate to attribute
such an effect, if present, to the single-nucleon current operator
instead of to the spectroscopic factor. The overlap function for
single-nucleon knockout takes the form

〈
�(A−1)

α

∣∣�(A)
0

〉 =
∑

β

cαβφβ(r), (21)

where � is a many-body state of either the A or A − 1 nucleus,
α is a state label with 0 being the target ground state, cαβ is
a parentage coefficient, and φβ is a local overlap function
that is expected to resemble an orbital for the mean field. If
the expansion basis is orthonormal, the spectroscopic factors
become

Sβ =
∑

α

|cαβ |2. (22)

The parentage expansion depends upon the nuclear structure
and is independent of the probe; hence, the spectroscopic
factors should not depend upon Q2. However, the assumption
that the electromagnetic current operator is adequately approx-
imated by the free nucleon current with the energy transfer
placed on shell and with free form factors is questionable.
Such approximations violate current conservation, Lorentz
covariance, and unitarity. Furthermore, the current in a many-
body system becomes nonlocal when expressed in terms of
single-nucleon degrees of freedom; such nonlocality could
contribute to an apparent scale dependence. Nevertheless,
one must resort to simplified models of the current operator
because there is no practical method for performing rigorous
calculations for nucleon knockout from nuclei with A > 2.
Therefore, Q2 dependent modifications of the off-shell single-
nucleon current operator should not be surprising.
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The recent JLab data for 12C show no evidence for
systematic variations of the current operator within the range
0.6 � Q2 � 1.8 (GeV/c)2. Although the consistency among
previous experiments is not entirely satisfactory, our RDWIA
analysis shows much less variation with Q2 than suggested
by Lapikás et al. Because the continuum contamination for
Em > 30 MeV has not been modeled accurately, we consider
N1p for the p-shell bin to be the most reliable gauge of
possible Q2 dependencies. Comparing the average of the
two Saclay results for quasiperpendicular kinematics with
the average of the JLab results for NLSH and EDAD1, we
see an increase of 0.87/0.69 = 1.26 compared with a factor
of about 1.6 for S1p + S1s from Ref. [17]. There may still
be a small effect, which we would attribute to the current
instead of to spectroscopic factors, but until the failure of
RDWIA to reproduce low Q2 data for parallel kinematics is
understood, we are reluctant to interpret this as a simple scale
factor.

B. Transparency

The experimental definition of nuclear transparency

Texp =
∫
V

d3pmdEmd�eσe,e′p

f
∑

α

∫
V

d3pmdEmd�eKρα(pm)Sα(Em)σep

(23)

compares the measured semi-inclusive differential cross sec-
tion for proton knockout with a PWIA calculation based upon
factorization of a model spectral function and the free e-p cross
section. The phase-space volume is indicated by V, and we
leave possible correction factors for nonuniform acceptance
implicit, assuming that they are applied consistently in both
numerator and denominator. Here K is a kinematic factor,
ρα(pm) is the momentum distribution for orbital α, Sα(Em) is
the energy distribution for single-nucleon removal from orbital
α, and f is a correction factor describing the depletion of the
single-hole spectral function by correlations that shift strength
to large Em. Dutta et al. [15] assumed that f is independent
of α and obtained an estimate of 0.9 for 12C from [36] that
is consistent with the 1p normalization factor we extracted in
the preceding section.

Similarly, a theoretical definition of nuclear transparency
appropriate to quasiperpendicular kinematics takes the form

T⊥ =
∑

α

∫
dpmpm σRDWIA(pm,Eα)∑

α

∫
dpmpm σRPWIA(pm,Eα)

(24)

where the numerator integrates the RDWIA and the denom-
inator the RPWIA cross section for the same model of the
spectral function. For simplicity we neglect the spread of
electron kinematics and assume quasifree kinematics for the
ejectile, neglecting the small variation of transparency with
nucleon kinetic energy within the acceptance. Similarly, we
also neglect variations over the spreading widths of nuclear
orbitals and assume that the bound-nucleon kinematics can
be approximated by the IPSM. A more rigorous calculation
would use Monte Carlo integration over a realistic model of
the experimental acceptance, but the dependence of nuclear
transparency upon energy is very mild and the differences

FIG. 14. RDWIA calculations using several optical potentials
compared to transparency data for 12C(e, e′p). The solid curve has
been multiplied by 1.12 to provide a better fit to the data from MIT
(open circle), SLAC (open square), and JLab (filled circles). The
SLAC datum includes systematic uncertainties, but other error bars
are statistical only.

between transparencies for parallel and quasiperpendicular
kinematics are small [46].

Note that one should not include the correlation factor f in
the theoretical definition of transparency because any strength
that is removed from the numerator by correlations is also
removed from the denominator by using the same spectral
function for both. This factor is appropriate for Eq. (23)
because the numerator integrates experimental yield while the
denominator integrates a theoretical calculation based upon
a model spectral function. When the denominator uses the
IPSM, one requires a theoretical estimate for the fraction of
the spectral strength that is shifted out of the experimental
range of Em. Unfortunately, a recent comparison of the data
with RDWIA and Glauber calculations includes the correlation
factor in both theoretical and experimental definitions of
transparency [50], which we believe is incorrect.

RDWIA calculations using NLSH wave functions and
several optical potentials from Dirac phenomenology [28] are
compared in Fig. 14 with transparency data for 12C(e, e′p)
from MIT [51], SLAC [36,52], and JLab [15,53]. The present
results are very similar to those we previously obtained [46]
using the EMA-noSV approximation and a definition of
transparency that replaces the differential cross sections in
Eqs. (23) and (24) with the corresponding reduced cross sec-
tions. Neither change is more than a couple percent. Our results
are also similar to the RDWIA results of Lava et al. [50] after
removal of the correlation factor. Also note that Lava et al. used
a transparency definition based upon reduced cross section.
However, Meucci [54] obtained somewhat larger transparency
factors using an EMA-SV calculation based upon differential
cross section. The latter are the only RDWIA calculations,
of which we are aware, that overestimate the transparency
for 12C(e, e′p), but the origin of their enhancement is not
known.

The variation among A-independent global optical poten-
tials is small, but the A-dependent potential fit to data for
12C(p, p) provides the best description of the energy depen-
dence for Tp <∼ 400 MeV. However, all of these calculations
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systematically underestimate the experimental transparency.
Multiplying the EDAIC results by 1.12 provides a reasonable
description of the data over this range of ejectile energy.
Interestingly, this factor is very close to the inverse of the
correlation correction applied by Abbott et al. [53]. If we
assume that their correction factor is a reasonable estimate of
the fraction of the single-nucleon yield shifted by correlations
to large Em, this comparison suggests that the experimen-
tal yield is approximately 12% larger than single-nucleon
knockout. This is consistent with the fact that the RDWIA
normalization factors sum to the full IPSM strength without
depletion. Therefore, either the RDWIA is approximately 12%
too absorptive or there is a significant continuum arising
from multinucleon knockout that contributes approximately
12% of the strength for Em < 80 MeV. The rather strong
16O(e, e′p) continuum seen in Fig. 21 of Ref. [20] suggests
that the underlying continuum is probably responsible for
the large normalization factors and transparency values for
12C(e, e′p).

The consistency between the fitted 1p normalization factors
for Q2 > 0.6 (GeV/c)2 and the predicted IPSM depletion
factor supports the accuracy of (e, e′p) attenuation factors
calculated using RDWIA with global optical potentials.
The observation that the yield for 30 � Em � 80 MeV is
considerably larger than can be attributed to 1s knockout
demonstrates that there is significant background in the
numerator that is not described by the spectral function used
in the denominator of Eq. (23). The contribution to this
background from multinucleon currents artificially increases
the measured transparency insofar as that quantity is intended
to represent the loss of flux from the single-nucleon knockout
channel. However, the contribution to this background from
rescattering processes that simply redistribute that flux within
the experimental acceptance, instead of removing it entirely,
represents a limitation of the distorted wave approximation
which does not account for where flux “absorbed” by the
optical potential finally appears [46]. The background fraction
probably increases with A, but a more detailed model of the
continuum is needed to distinguish between the processes
that increase the experimental transparency with respect to
RDWIA.

VI. SUMMARY AND CONCLUSIONS

We used RDWIA calculations based upon Dirac-Hartree
bound-state wave functions to analyze data for 12C(e, e′p) for
Em < 80 MeV. Good fits are obtained for the recent JLab
data [15] for 0.6 � Q2 � 1.8 (GeV/c)2, with a slight preference
for NLSH over HS wave functions and practically no vari-
ation with any of the optical potentials provided by Cooper
et al. [28]. We find that the p-shell bin contains approximately
87% of the IPSM strength independent of Q2 over that range.
Although the s-shell bin appears to carry almost 100% of
IPSM, independent of Q2, there is evidence in the momen-
tum distribution for a significant continuum that artificially
increases the 1s normalization factor for two-component fits
mixing 1p3/2 and 1s1/2 contributions. Therefore, we consider
the 1p contribution to the 15 � Em � 25 MeV bin to be the

most reliable estimate of the depletion of IPSM orbitals by
short-range correlations; the occupancy of 87% is consistent
with estimates based upon the self-consistent Green’s function
method and with recent direct measurements of the correlated
continuum using parallel kinematics [4,45].

We also analyzed the same low Q2 data sets used by
Lapikás et al. [17] to study the Q2 dependence of normal-
ization factors for 12C(e, e′p). We found that the RDWIA
calculations for Dirac-Hartree wave functions reproduce the
low Q2 data for quasiperpendicular kinematics well, but with
somewhat smaller normalization factors. For example, the
1p normalization factors for two Saclay experiments were
0.63 and 0.75 using NLSH wave functions and EDAD1 optical
potentials, compared with 0.87 for the JLab data. However,
the same model fails to reproduce low Q2 data for parallel
kinematics, and remediation of this problem will require more
than a multiplicative factor. Similar problems in previous
NRDWIA analyses prompted van der Steenhoven et al. [18]
to simultaneously adjust the Woods-Saxon wave function,
the optical potential, and an empirical enhancement of the
transverse components of the current. Although a better fit
was achieved, this wave function does not reproduce the data
for quasiperpendicular kinematics for either early low Q2

experiments or the more recent high Q2 experiments. The
momentum distributions for the fitted Woods-Saxon wave
functions are too narrow, which artificially reduces the nor-
malization factors fit to data. Thus, Lapikás et al. [17] obtained
a 1p normalization factor of only 0.56 for Q2 < 0.2 (GeV/c)2

and suggested that spectroscopic factors might depend strongly
upon the resolution of the probe. We argue that spectroscopic
factors are properties of nuclear structure that are independent
of probe, but that the effective current operator for single-
nucleon knockout may include additional Q2 dependencies
beyond those in familiar off-shell extrapolations of the free
nucleon current operator. On the other hand, the additional
Q2 dependence is probably smaller than their estimate. Further
investigation is needed to explain the discrepancy between
parallel and quasiperpendicular kinematics at low Q2—we
believe that it is unwise to fit the momentum distribution to
data with a strong variation of x = Q2/2mω in the absence of
a more fundamental theory of the effective current operator.

Finally, we found that RDWIA calculations of nuclear
transparency need to be multiplied by approximately 1.12
to reproduce data for 12C and attribute much of this en-
hanced transparency to contributions to the continuum for
30 � Em � 80 MeV that are not directly related to single-
nucleon knockout, such as multinucleon electromagnetic
currents. However, a more detailed model of the continuum is
need to distinguish between contributions due to multinucleon
currents and those from rescattering processes.
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