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Fusion of heavy ions by means of the Langevin equation
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The Langevin equation was used to describe fusion dynamics in two systems, 64Ni+100Mo and 64Ni+96Zr. The
corresponding fusion cross sections were calculated for different energies, and the mean angular momentum and
its dependence on energy were also obtained. We were able to reproduce experimental fusion cross sections at
high energies with the one-body dissipation mechanism. Attention was focused on the fusion barrier calculated
with the Yukawa-plus-exponential method.
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I. INTRODUCTION

The application of nonequilibrium statistical approaches
(transport equations) to describe heavy ion collisions starts
with the discovery of relaxation phenomena and diffusion
processes in deep-inelastic collisions (DIC). The concepts of
friction and diffusion were incorporated into the equations of
motion to estimate statistically the role of the intrinsic degrees
of freedom involved in the reaction. It is also assumed that
those degrees of freedom equilibrate faster than the collective
ones. This allows us to handle them as a heat bath of a
temperature T function of time. Fission [1], fusion [2], and DIC
[3] were treated at the same level by means of the Langevin or
Fokker-Planck equations. In the case of fusion, the presence
of friction forces explain why the system needs an extra push
of energy to overcome the static fusion barrier. A trajectory
with friction forces loses energy and has a smaller probability
of entering into the nuclear pocket, which leads to a reduction
of the fusion cross section contrary to the prediction of the
classical model.

The purpose of this work is to account for the experimental
cross sections and mean angular momentum of the fused
system for medium nuclei over a wide range of energy. We
have calculated the ingredients from realistic models. This
allows us to determine the origin of the discrepancy between
theoretical calculations and experimental data.

II. INPUT PARAMETERS OF THE MODEL

A. Shape parametrization

Since the two colliding nuclei show in general asymmetry,
we need a parametrization that accounts for the asymmetry
parameter. In previous works, we find the Blocki and Swiatecki
[4] parametrization was often considered. In this work we have
opted for the funny-hills parametrization [5] or the so-called
(c, h, α) parametrization because of its simplicity. For axially
symmetric shapes in cylindrical coordinates

z = C (u − ū) , � = Cvs, (1)
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u and vs are the corresponding dimensionless coordinates, ū

is the position of the center of mass of the system, and C
is a scaling factor determined by the volume conservation
condition.

The shape function vs is given by

v2
s =

{
(1 − u2)(A + Bu2 + αu), B > 0,

(1 − u2)(A + αu)e−qu2
, B < 0,

(2)

q = −Bc3, (3)

where c = C/R0, R0 is the nuclear radius of the compound
system, and A,B, α are the independent deformation param-
eters.

For connected shapes and from volume conservation, we
have

q = − 5B

5A + B
, B > 0, (4)

and

−4B

3A
= e−q + √

πq

(
1 − 1

2q

)
erf(

√
q), B < 0, (5)

where erf(x) is the error function.
However, it is useful to use the parameters c, h, α where h

is defined for the two cases by

B = 2h + (c − 1)

2
, (6)

where c is the half length of the longer axis of the nucleus
in units of R0, h describes the variation of the thickness of
the neck radius, and α denotes the right-left asymmetry of the
nucleus.

We define the collective relative coordinate, which is the
distance between the centers of mass of the two colliding
nuclei (independent of α), as

�c.m. = 2c

(
A
2 + B

6

)
4
3

(
A+B

5

) , B > 0, (7)

�c.m. = 2c
e−q + 1

q
(e−q − 1)

e−q + √
πq erf(

√
q)

(
1 − 1

2q

) , B < 0. (8)
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B. Potential energy

The conservation energy equation can be expressed as

M1(0)c2 + M2(0)c2 + Ec.m. = M(r)c2 + P 2
r

2µ
+ (L/r)2

2µ
+ E∗.

(9)

Mi(0) denotes the nuclear mass of the spherical nucleus i,M(r)
is the nuclear mass of the whole system at distance r, Ec.m. is
the center-of-mass energy, Pr is the relative momentum, L is
the relative angular momentum, E∗ is the excitation energy
of the system, and µ is the reduced mass parameter.

Mi(0) = MLD
i (0) + Mshell,i(0), (10)

where MLD
i is the liquid drop part and Mshell,i is the shell

correction to the liquid drop part.

MLD
i (0)c2 = NiMnc

2 + ZiMpc2 + ECoul,i(0) + EN,i(0),
(11)

where Ni, Zi, c, ECoul,i , and EN,i are the neutron number,
atomic number, light celerity, Coulomb energy, and nuclear
energy of the nucleus i, respectively.

M(r)c2 = NMnc
2 + ZMpc2 + ECoul(r) + EN (r) + Mshell(r),

(12)
from (9) we can get

Ec.m. = EN (r) − EN,1(0) − EN,2(0) + ECoul(r)

− ECoul,1(0) − ECoul,2(0) + Mshell(r)

− Mshell,1(0) − Mshell,2(0) + P 2
r

2µ
+ (l/r)2

2µ
+ E∗

= VN + VCoul + Vshell + P 2
r

2µ
+ (l/r)2

2µ
+ E∗, (13)

where we defined from the above equation the nuclear,
Coulomb, and shell interaction potentials.

The nuclear potential energy is the short-range force
surface energy using a Yukawa-plus-exponential (YE) form
of interaction [6], that is,

EYE(r) = E0
s,YE

8π2a4R2
0

∫
d3 �r ′′

∫
d3 �r ′

×
(

2 − | �r ′′ − �r ′|
a

)
exp

(−| �r ′′−�r ′ |
a

)
| �r ′′−�r ′ |

a

, (14)

where the integration is taken for the configuration de-
fined by r or ρc.m.. R0 = r0A

1/3
c , E0

s,YE = CsA
2/3
c , Cs =

as[1 − ks(N−Z
Ac

)2], as = 21.7 MeV, ks = 3, r0 = 1.18 fm, a =
0.65 fm, Ac is the mass of the compound nucleus, and
the subscript N in the nuclear potential energy is replaced
by YE.

The Coulomb part of energy is evaluated by the introduction
of a charge distribution �ch assumed uniform.

ECoul(r) = �ch

2

∫
d3 �r ′′

∫
d3 �r ′| �r ′′ − �r ′|−1. (15)
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FIG. 1. Potential energy as function of c.m. dimensionless rela-
tive distance for 64Ni+100Mo with and without shell effects and for
64Ni+96Zr with shell effects. Trajectory (a) (solid line) corresponds
to weak friction and leads to scattering; trajectory (b) (dashed line) is
a fusion event.

We can see from the above definitions that VN, VCoul −→ 0,
when r −→ ∞ as it would be.

The shell potential Vshell must tend to Mshell,1(0) +
Mshell,2(0) when r −→ ∞, i.e, when the neck radius between
the two nuclei is zero. We define a variable 0 � β � 1
proportional to the neck radius as in Ref. [7] such as

Mshell(r) = βMshell(r) + (1 − β)[Mshell,1(0) + Mshell,2(0)],

(16)

and the potential shell correction energy becomes

Vshell = β[Mshell(r) − Mshell,1(0) − Mshell,2(0)]. (17)

The shell correction Mshell is due to Myers and Swiatecki and
taken from Ref. [8]. The potential energy for the two systems
we studied is shown in Fig. 1. The spikes in the potential are
due to the shell correction of Meyers-Swiatecki. They show
the double well structure of the potential energy.

C. The transport parameters

Several authors use for the evaluation of the inertia tensor,
the Werner-Wheeler [9] approximation of an incompressible
fluid whose hydrodynamic flow is irrotational. In the presence
of viscosity, the flow is no longer irrotational; only at high
temperatures, when the viscosity decreases, is the flow nearly
irrotational. This is the case, for example, for fission of highly
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FIG. 2. 64Ni+96Zr system. (a) Radial friction parameter as func-
tion of c.m. dimensionless relative distance; (b) tangential friction
parameter as function of c.m. dimensionless relative distance.

excited nuclei when the temperature is T > 2 MeV. In our
case, i.e, fusion, the temperature increases from 0 to 0.96 MeV
at Ec.m. = 127.8 MeV and from 0 to 1.27 MeV at Ec.m. =
141.8 MeV for the system 64Ni+100Mo approximately, which
means that the above approximation is not valid. For that we
take the reduced mass parameter as a first approximation to
the collective mass.

We calculated the friction tensor assuming the one-body
dissipation mechanism, i.e., the wall and wall+window for-
mula [10], and we extracted from it the radial (tangential)
friction shown in Fig. 2(a) [Fig. 2(b)]. We obtained good
results at high energies, and we also used the friction
treated by the surface friction model (SFM), but we were
not able to reproduce the experimental fusion cross sections
simultaneously.

Let us now write the specific wall+ window for the dinuclear
regime as

Q̇ww = 3

4
vF ρ∗

m

∫
�A

dσ (ṅ − DA)2

+ 3

4
vF ρ∗

m

∫
�B

dσ (ṅ − DB)2

+ 3

16
vF ρ∗

m�σ (2u2
r + u2

t ) + 4

3
ρ∗

m

vF

�σ
V̇ 2

A, (18)

in which DA (DB) is the drift velocity of the fragment A (B),
�σ the window area, ρ∗

m the nuclear mass density, VA the
volume of fragment A, ur and ut the velocity components
with respect to relative motion of the fragments, vF the Fermi
velocity, and ṅ the surface velocity; the dot denotes the time
derivative.

The radial part of the rate energy is

Q̇r = 3

4
vF ρ∗

m

∫
�A

dσ (ṅ − DA)2

+ 3

4
vF ρ∗

m

∫
�B

dσ (ṅ − DB)2

+ 3

16
vF ρ∗

m�σ2u2
r + 4

3
ρ∗

m

vF

�σ
V̇ 2

A

= γr ṙ
2, (19)

while the tangential part of the rate energy reads as

Q̇t = 3
16vF ρ∗

m�σu2
t = γt r

2θ̇2. (20)

III. DYNAMICAL EVOLUTION OF THE SYSTEM

The two ions in the touching configuration move toward
the equilibrium configuration in an opposite way to fission.
In the course of the approaching phase, energy and angular mo-
mentum dissipate from collective relative motion into intrinsic
degrees of freedom (intrinsic excitation energy and intrinsic
angular momentum of the colliding ions). We have two equa-
tions of motion: for the radial momentum and for the relative
angular momentum. Once the sticking limit is attained (Lst =
5L0/7), there is no longer dissipation of angular momentum,
and only dissipation of relative momentum occurs. Since dis-
sipation is followed by fluctuations, we use the Langevin equa-
tions, to examine the evolution of our system. We begin with
the Lagrange-Hamilton equations, and the classical equations
of motion can be derived. The kinetic energy of our system is
written as

T = P 2
r

2µ
+ 1

2
µr2θ̇2, (21)

where r is the relative distance between the ions, and θ is the
polar angle connected with the tangential motion of the system.
Hence, the Rayleigh dissipation function is formulated as

R = 1
2γr ṙ

2 + 1
2γt r

2θ̇2, (22)
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the equations of motion read as


dr

dt
= Pr

µ
,

dPr

dt
= −dV

dr
− γr

µ
Pr + l2

µr3
+ Lr (t),

dθ

dt
= l

µr2
,

dl

dt
= −γt

µ
l + Lt (t),

(23)

l is the relative angular momentum, and the forces Lr (t) and
Lt (t) are fluctuating forces defined by their first and second
moments

〈Li〉 = 0,
(24)

〈Li(t)Li(t
′)〉 = 2Diδ(t − t ′),

where the subscript i denotes r or t, and Di is the diffusion
parameter related to the friction parameter via the Einstein
relation such that

Dr = γrT ,
(25)

Dt = r2γtT ,

where T is the nuclear temperature.
The total cross section is calculated by using the Monte

Carlo integral procedure [2] with the relations

(1) l = l>
√

x, this implies 2ldl = l2
>dx, and

(2) σF = ∑
l σl = ∑

l
π
k2 (2l + 1)Tl , that is,

σF =
∑

l

σl = π

k2

∑
l

(2l + 1)Tl
∼= π

k2

∫ l>

0
2lTldl

= π

k2
l2
>

∫ 1

0
T (x)dx = π

k2
l2
>

∑
i

Ti

N

= π

k2
l2
>

NF

N
, (26)

where NF is the number of trajectories that lead to fusion for
all waves, N is the total number of trajectories, and l> is the
grazing angular momentum.

The spin distributions describing the partial differential
cross sections are expressed by

σli = π

k2
(2li + 1) Tli = π

k2
(2li + 1)

NiF

Ni

, (27)

where li , NiF , and Ni are the angular momentum, the number
of fusing, and the total number of trajectories with angular
momentum li , respectively.

IV. NUMERICAL PROCEDURE

A. Initial conditions

The initial conditions of the problem are the mass numbers
Ai , the atomic numbers Zi , the center-of-mass energy Ec.m.,
the initial angular momentum l, the initial relative momentum
P0, and the touching point distance rsc. The touching point

distance is chosen as the point when the neck is zero. we find
rsc = 2.53 in units of R0. The initial angular momentum is
chosen according to l = l>

√
x, where x is a random number

from a uniform distribution (0 � x � 1), and l> is the grazing
angular momentum calculated by the conservation energy
relation when the kinetic energy is set equal to zero.

l> = rsc

√
2µ[Ec.m. − V (rsc)], (28)

the initial relative momentum is deduced from the conservation
energy equation as

P0 = −
√

2µ

[
Ec.m. − V (rsc) − (l/rsc)2

2µ

]
. (29)

B. Integration of the equations of motion

We follow the system along the fusion path by using the
time-step integration method. The time step τ is chosen to
satisfy the following approximations:

rn+1 = rn + Pn

µ
τ,

Pn+1 = Pn −
[(

dV

dr

)
r=rn

+ βrPn − l2
n

µr3
n

]
τ

+
√

Dr (rn)τωr, (30)

θn+1 = θn + ln

µr2
n

τ,

ln+1 = ln − βt lnτ +
√

Dt (rn)τωt ,

where ωt and ωr are Gaussian-distributed random
numbers.

Moreover, the angular momentum dissipated possesses
a maximum value calculated by the sticking limit �L =
2
5Li , and the energy dissipated is entirely transformed into
intrinsic excitation energy provided by the Fermi gas model
E∗ = A

8 T 2.

V. RESULTS AND CONCLUSIONS

The results for the systems 64Ni+96Zr and 64Ni+100Mo are
presented in Figs. 3(a) and 3(b), respectively. The experimental
data are from [11] and [12], respectively. Fusion cross sections
were calculated for 1000 trajectories including all partial
waves. We performed the calculations for 5000 trajectories
for one energy and confirmed that the result is almost the same
as that obtained using 1000 trajectories. Figures 4(a) and 4(b)
report the mean angular momentum vs energy. We can see
that while going toward high energies the agreement is very
good, especially for fusion cross sections. At low energies, our
model overestimated the fusion cross sections and the mean
angular momentum, contrary to the case of no fluctuations
(D = 0) where it underestimated them. We also reduced the
value of the diffusion parameter D by a factor of 5 to see
the role of fluctuations. The result is again zero events for the
energy 132.8 MeV. In our calculations, we used the standard
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FIG. 3. Fusion cross sections as function of c.m. energy: Compar-
ison with the present theory (one-body dissipation), the SFM theory,
and the experiment. (a) For 64Ni+96Zr system with experiment from
[11]; (b) for 64Ni+100Mo system with experiment from [12].

parameter (r0 = 1.18 fm). In Ref. [13], it was shown that a
little change in r0 has a drastic effects on the results. Our
results were done with the standard Einstein relation.

We have proposed a Langevin equation for the descrip-
tion of heavy ion collisions. Contrary to the approach in
Ref. [13], we were quite able to reproduce fusion cross sections
at high energies and partially reproduce the mean angular
momentum. The temperature is set to be zero at the initial
position. The system evolves toward smaller r. The energy
is transferred from the relative motion to the intrinsic one.
If the energy loss from the relative motion exceeds Ec.m. − Bf

(Bf being the fusion barrier), when the system comes back
to the fusion barrier, it is considered a fusion event. For
s-wave scattering between 64Ni and 100Mo, the temperature
T is 0.96 and 1.27 MeV for Ec.m. = 127.8 and 141.8 MeV,
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FIG. 4. Same as Fig 3, but for mean angular momentum.

respectively. T is given by T =
√

Ec.m.−Bf

a
with a = A

8 the level
density parameter. One may expect the collective parameters
and their dependence on the temperature [14] to be the origin
of the disagreement, but this cannot explain why we obtain
good results for certain energies and bad ones for others;
this question must be carefully examined. Alternatively, we
were not able to reproduce both fusion cross sections with
the standard parameters of SFM. Besides, the crucial quantity
which is beyond the disagreement is a lower fusion barrier
calculated with the Yukawa-plus-exponential method. We
underline the fact that this potential must be revised. We note
that the experimental fusion barrier corresponds to Ec.m. for
which σF = 0; for the energies 127.8 and 121.6 MeV, the
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fusion cross sections are very weak compared to all other
energies. If you diminish these energies by a few MeV, you
will find σF = 0 [15–17]. We note that for Ec.m. = 120 MeV,
σF is sensibly zero. We can see from the experimental cross
sections (σF = 0.26 mb at Ec.m. = 121.6 MeV for 64Ni+96Zr)
and (σF = 0.38 mb at Ec.m. = 127.8 MeV for 64Ni+100Mo)
that the saddle potential Vf is around these values because
σF is weak. We can give a rough estimate for Vf =
120 MeV. The Yukawa-plus by exponential potential gives
for the saddle potential Vf = 102 MeV for 64Ni+96Zr and
Vf = 109 MeV for 64Ni+100Mo, which we find lower than
the expected saddle potential. This explains why we find large
cross sections at low energies. Also, if the fusion barrier is

higher than the Yukawa-plus-exponential barrier, the critical
angular momentum lcrit becomes lower and the mean fusion
angular momentum diminishes for all energies, contrary to our
finding.
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