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Reaction mechanism for natural parity ( p, p′) transitions in 10B
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We report angular distribution measurements of the cross section, analyzing power, induced polarization,
and all polarization transfer coefficients for the natural parity transitions in 10B( �p, �p′)10B at 197 MeV. All of
the transitions closely follow the pattern for spin-1/2 scattering from spin-0, namely A = P,DSS′ = DLL′ , and
DSL′ = −DLS′ . Small deviations from DNN ′ = 1 reflect spin-flip contributions to these transitions. Distorted
wave impulse approximation calculations were generally successful, supporting the use of an empirical effective
nucleon-nucleon interaction, the inclusion of channel-coupling in the ground state and the 3+ ↔ 4+ transition,
and the procedure of increasing the L = 2 strength of shell-model particle-hole matrix elements to match the
collective contribution to these transitions.
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I. INTRODUCTION

Proton inelastic scattering near 200 MeV bombarding
energy has been successfully described within a distorted
wave impulse approximation (DWIA) framework in which the
transition potential is the amplitude for nucleon-nucleon (NN)
scattering. The quality of agreement with data can be improved
if the NN interaction is allowed to change with the local nuclear
density inside the target. These effects arise, for example, from
the Pauli blocking created by the nucleons that surround the
struck nucleon, preventing scattering from taking place at low
momentum transfer into already occupied intermediate states.
A number of authors have investigated such phenomena, and
a quantitative picture of Pauli blocking and nuclear binding
effects has emerged [1–6].

Pauli blocking and nuclear binding alone do not repro-
duce the saturation properties of nuclear matter [7]. Better
agreement is obtained when relativistic medium effects [8–11]
are also included. Pauli, nuclear binding, and relativistic
effects have been examined together for (p,p′) reactions near
200 MeV [12,13]. It was found that the inclusion of relativistic
effects produced better agreement with inelastic scattering
analyzing power data but still left some systematic problems,
such as the normalization of the cross section, unaddressed.

∗Presently employed by BITSystems, Inc., Herndon, VA.
∗∗Deceased.

To have the best possible effective interaction for DWIA
calculations, Kelly and coworkers chose to use an empirically
adjusted density-dependent interaction that did not have
the problems of the theoretically derived interactions. They
parametrized the Pauli blocking density dependence and
adjusted those parameters, as well as the strength of the
interaction, to reproduce a large body of (p,p′) data ranging
in energy from 100 to 500 MeV on N = Z targets from 16O
through 40Ca [14–16]. These data contain measurements of
cross section and analyzing power angular distributions for
natural parity transitions, most of which are usually regarded
as collective. While the form of the density dependence is
modeled after Pauli blocking, the adjustment of the model
parameters to match data is successful and would thus
incorporate relativistic changes as well as other effects present
in the nuclear medium such as � excitations of the nucleon [17]
and many-body forces.

In this paper, we wish to achieve the highest quality theoret-
ical description of the data for 10B( �p, �p′)10B at 197 MeV. We
will use the Kelly empirical effective interaction as the best
phenomenological model that we have. Its parametrization
has been optimized to do an excellent job with many natural
parity transitions, although not on targets with the mass this
small. While the empirical effective interaction that we will
use has been adjusted primarily to reproduce measurements of
the cross section and analyzing powers, Liu et al. [18] pointed
out that the resulting phenomenological effective interaction
also describes measurements of polarization transfer. In this
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work, we will substantiate this conclusion with a larger body of
data.

As part of a study of polarization observables in (p,p′)
reactions, we have measured a complete set of single- and
double-spin observables involving polarized proton beams and
the observation of the polarization of the outgoing proton in
a suitable polarimeter. Data now exist for the excited states
of 10B over a wide range of scattering angles. In this paper,
we present the measurements for the natural parity states
and discuss what they tell us about the quality of calcula-
tions for proton inelastic scattering in the neighborhood of
200 MeV.

The 10B nucleus is deformed and has a 3+ ground state spin
and parity. This introduces the complication that the inelastic
scattering, and especially the elastic scattering, may be affected
by channel-coupling effects beyond the scope of a one-step
distorted wave calculation. Fortunately, a coupled-channel
DWIA calculational capability is available [19], and we will
apply it to this case since the channel-coupling effects for the
elastic channel appear to be large. A similar investigation has
been described by Kelly for 9Be [20].

Perhaps the weakest point in the understanding of these
transitions lies in our ability to describe the structure appropri-
ately in a particle-hole basis. Various shell-model calculations
are now available that can provide us with single-particle
matrix elements. When comparing results from several gener-
ally accepted interactions, we see little variation among the
shell-model predictions. So the question becomes whether
these results are adequate to the task of describing what
is very likely to be a set of collective transitions. Things
are more complicated for 10B since the nonzero spin of the
ground state makes it possible to have both non-spin-flip and
spin-flip amplitudes contributing to these reactions. Part of our
investigation will be to see whether this balance is correctly
handled in the shell model.

Problems with the shell-model structure for 10B are evident
from its failure to reproduce the form factors measured
in inelastic electron scattering. For this analysis, we will
attempt to remedy this by increasing the collectivity of
the shell-model matrix elements by hand. This means that,
whatever else may be wrong, the structure that we use for
the (p,p′) reaction does reproduce the electron scattering
results.

The large number of polarization observables allows us
to explore some questions that cannot be addressed with
just measurements of cross section and analyzing power
alone. Liu [18] and Flanders [21] have pointed out that
when the transitions are collective, the polarization transfer
measurements often show an approximate adherence to the
relationships that exist for spin-1/2 scattering from a spin-0
target with no parity change. The degree to which these
relationships hold can be arranged into a hierarchy. The quality
of the agreement, or lack of it, thus becomes a measure
of the collective nature of the transitions. One observable
in particular, DNN ′ , would remain equal to 1 were it not
for the presence of spin flip. Thus the polarization transfer
measurements, along with the magnetic electron scattering,
can become a special test of the description of the spin-flip
amplitudes.

In Sec. II, we will review the experimental considerations
that lie behind these measurements. Section III will present
the analysis and conclusions.

II. EXPERIMENTAL CONSIDERATIONS

The measurements reported in this paper were performed
at the Indiana University Cyclotron Facility using the high-
resolution K600 spectrometer with its focal plane polarimeter.
The polarized proton beam from the cyclotrons was acceler-
ated to 197 MeV. Data on the transition to the second excited
(0+) state at 1.74 MeV in 10B were published earlier [22].
These data included the cross section σ , analyzing power A,
induced polarization P, and normal component polarization
transfer coefficient DNN ′ .

The polarized proton beam was produced in an atomic
beam polarized ion source [23]. The spin direction of the beam
was reversed every 20 s by alternating operation between the
strong and weak RF transition units. The polarization was first
measured following acceleration in the injector cyclotron to
an energy of about 15 MeV. There the beam was occasionally
interrupted by the insertion of a helium gas cell and Faraday
cup assembly into the path of the beam. Protons scattered to the
left and right at θlab = 112◦ from the helium went into plastic
scintillation detectors with thin reflective front windows. The
analyzing power at this angle is larger than 0.99 [24]. This
measurement mainly provided a separate determination of the
polarization from each RF transition unit so that corrections
could be made in the analysis for unequal polarizations in
the two spin directions from the polarized ion source. This
required a correction based on a separate measurement of the
instrumental left-right asymmetry by running this polarimeter
with the atomic beam valve on the polarized ion source closed.
The much weaker beam that was accelerated to the polarimeter
arose only from the molecular background in the polarized ion
source and was therefore unpolarized. Corrections were also
made to the instrumental asymmetry for calculated differences
in the transmission of the two allowed hyperfine states through
the atomic beam source. The polarization difference between
the forward and reversed directions was typically small,
p+ − p− � 0.006 ± 0.006.

For the measurement of polarization transfer coefficients
using a beam with the spin aligned in the horizontal plane
(the reaction plane for the K600 spectrometer system), it is
sufficient to precess the beam after acceleration in the main
stage cyclotron. This was achieved by two superconducting
solenoids located on either side of a 45◦ energy analysis
magnet located in the beam transport line. The data were
taken with three different spin orientations located roughly
60◦ apart in order to provide an internal consistency check.
The 45◦ bending magnet rendered the effects of the two
solenoids nearly orthogonal with regard to the direction of final
polarization. This spin precession scheme allowed corrections
to compensate for polarization directions at extraction from
the cyclotron that were not vertical. The spin orientation on
target was calculated from the known bending angles of the
magnet system between the two solenoids and in the beam line
to the K600 target [25].
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The polarization of the precessed beam was measured
using two polarimeters, one located just after each of the
two precession solenoids. These polarimeters observed p + d

elastic scattering from a CD2 foil target whose thickness
was varied between 0.2 and 1.2 mg/cm2 depending on the
beam current and count rate needed. The scattering angle was
determined by a collimated stopping scintillator that observed
the recoil deuteron at θlab = 42.6◦. The scattered protons were
observed in coincidence in a passing scintillator 0.64 cm
thick. Elastic events were selected on the basis of detector
pulse height and the relative time of flight to the detectors.
The analyzing power was calibrated against proton scattering
from carbon [26]. The analyzing power value used for this
analysis at 197 MeV was 0.507 ± 0.005. Beam polarization
measurements were made concurrently with data taking at the
K600 spectrometer.

The targets were made from a pressed powder of the
separated 10B isotope enriched to better than 99% purity.
The main contaminants were 11B and 12C. Avoiding contam-
inant peaks caused the original plan of polarization transfer
measurements every 10◦ in the laboratory to be altered so
that measurements were made at 20◦, 31◦, 40◦, 48◦, and 60◦.
After passing through the target, the beam continued on into a
Faraday cup that was recessed to reduce the loss of secondary
electrons. The current from this cup was integrated during the
course of all of the measurements.

Scattered protons from the target were analyzed by the a
horizontal-bend K600 magnetic spectrometer system consist-
ing of a vertically focusing entrance quadrupole magnet and
two separately adjustable dipole magnets with edge focusing.
Hexapole correction coils were also used. The smaller angle
measurements used a slit with a 1◦ polar angle acceptance and
a solid angle of 0.64 msr. Larger angle measurements used a
4◦ acceptance with a solid angle of 2.60 msr.

The resolution of the K600 spectrometer was based on an
image created by a pair of beam-defining slits located ahead
of a 130◦ analyzing magnet system that dispersed the beam
on target. The opening of these slits was varied depending
on the desired transmission and resolution. The width of the
image at the spectrometer focal plane was corrected for a
number of optical effects in order to obtain the best resolution.
The kinematic displacement of the horizontal (bend plane)
focus ahead or behind the focal plane detectors was corrected
using a triangular coil located inside the dipole magnet. A
significant variation in the scattered particle energy across the
spectrometer acceptance (kinematic defocusing) required that
the strength of the quadrupole triplet between the analysis
magnet and the target be reduced to move the beam focus
downstream. Matching the dispersion of the spectrometer
dipole to the dispersion of the beam on target required adjusting
the horizontal magnification of the last quadrupole triplet by
changing the ratio of the currents in the first and last magnets
of the set. The angle information available from the focal
plane detectors was used to improve resolution to take out
additional optical aberrations in the data replay. The resulting
resolution varied with scattering angle and was typically less
than 100 keV.

The positions and angles of protons passing through the
K600 focal plane were measured with a pair of x and y

wire chambers. The wire chambers ran with a half-and-half
mixture of argon and isobutane. The horizontal (focal) plane
measurements used the vertical-drift technique described by
Bertozzi et al. [27] while the vertical measurements used
the technique described by Walenta et al. [28]. Triggering
and particle identification were provided by a series of two
passing scintillators. In polarimeter mode, the second of these
was situated directly in front of the carbon analyzer target,
which was mounted to be perpendicular to the focal plane
proton trajectories. The polarimeter consisted of a thick carbon
analyzing target, two sets of x-y proportional chambers for
tracking, and two scintillators whose pulse heights were used
to select events that scattered elastically in the carbon analyzer
target. The carbon analyzer was 5.1 cm thick with a density of
1.79 g/cm3. The two scintillators were 0.64 and 7.62 cm thick.
The first of these scintillators was included in the event trigger
when polarization transfer measurements were in progress.
Secondary levels of the event trigger checked that there was a
good signal in the focal plane wire chambers and that the proton
had scattered beyond some minimum angle (∼4◦) in the carbon
analyzer. This second requirement eliminated a large fraction
of the events that were not useful for a polarization transfer
measurement. Unfortunately, this selection, which was based
on horizontal plane angles, could not be used with the wide
spectrometer entrance slit associated with the largest angle
measurements.

The acceptance of an event as useful required that it
have the correct energy loss in all scintillators. The correct
energy deposition in the last two polarimeter scintillators was
calculated on an event-by-event basis using the scattering angle
in the analyzer and the assumption that the scattering there was
elastic.

To obtain information on both the sideways and longitudinal
outgoing polarization components, measurements were made
with the focal plane detectors and polarimeter at two locations
behind the spectrometer. For these two setups, the ratio
of the currents in the two K600 dipoles was changed so that
the bending angle of the protons was different by about 22◦.
The absolute bending angle was measured for each setup
geometrically.

The analyzing power of the carbon polarimeter target
was a function of energy, and thus it changed across the
angular distributions reported here. It was calibrated at a
number of energies by using protons elastically scattered
from carbon at an angle where the analyzing power crossed
through zero (close to 24◦). At this angle, the magnitude
of the polarization remains fixed in the scattering, and a
set of in-plane polarization transfer measurements will yield
enough information to deduce the analyzing power. This
compared well with the analyzing power deduced for vertical
polarization, which is transmitted unchanged through the
scattering. The analyzing power varied from 0.40 to 0.53 for
the measurements reported here.

III. ANALYSIS

In our theoretical description of the (p,p′) reaction, we will
constrain as much as possible the ingredients in the calculation
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then evaluate the results. This presents two issues for special
consideration.

First, the presence of a nonvanishing ground state spin
allows for spin-flip contributions to the transition. Thus, we
need a more general description of the transition than was
used for many of the states previously considered with the
Kelly empirical interaction [16]. Rather than use an empirical
fit to longitudinal electron scattering to define the transition
density, we turned to an expansion in terms of particle and
hole shell-model orbitals, in particular p3/2 and p1/2. This gives
us the flexibility to describe both non-spin-flip and spin-flip
amplitudes. Because of the large number of matrix elements
now involved, we cannot determine them all from the transition
form factor data. So we begin with estimates from a shell
model. But such matrix elements underestimate the strength
of the collective (L = 2) part of the transition. So we will
adjust this component to obtain agreement with the scale of
the (e, e′) electric and magnetic form factors.

Second, the ground state of 10B is deformed and its rotation
easily couples into the scattering process. So we will include
two-way channel coupling to the 4+ excited state at 6.02 MeV
and L = 2 self-coupling for the ground state. Since this has a
large effect on the elastic scattering observables, we will need
to adjust the optical potential for a best fit in the presence of
the channel coupling.

We will use the empirical effective interaction without
further adjustment. With all of these ingredients in place
(distorted waves, interaction, and structure) and constrained
by other data, we will make calculations for the natural parity
transitions in 10B and evaluate the results. The 4+ state at
6.02 MeV will be considered first because of its large cross
section and highly collective nature. There is also some L = 2
strength leading to lower-excitation natural parity states with
almost an order of magnitude smaller cross section. These
transitions will be considered last.

A. Transition form factors

In the DWIA calculations to be described later, we will
be using microscopic form factors made of particle-hole
amplitudes to describe the structure for the transitions to
the inelastic states and the rotational coupling present in the
elastic scattering. In all cases, there are measurements of
longitudinal and transverse electron scattering form factors
that are sensitive to the same structure components. Since the
electron scattering offers the advantage of a known probe,
these data can be used as one check on the correctness of the
structure amplitudes. Unfortunately, each electron scattering
form factor contains contributions from a number of possible
particle-hole combinations, and it is not possible to separately
determine each one from a comparison to the (e, e′) data.
So some additional information is needed. One source for
the individual coefficients for each particle-hole component
would be shell-model calculations. However, we find that
these calculations do not provide satisfactory agreement
with the (e, e′) data, and we need a strategy for making
improvements. One way to proceed is to note that shell-model
calculations often fail to describe the collectivity of simple,
natural parity states since this is not a natural degree of

freedom within the model. So we will adopt the scheme of
increasing the size of the amplitudes with the correct angular
momentum transfer for a collective transition until the size
of the total amplitude agrees with the electron scattering
data.

Since the shell model provides only particle-hole matrix
elements and we need wave functions for the DWIA transition
density, we must also choose a radial form for the wave func-
tion. This allows additional degrees of freedom in matching
the (e, e′) data. For this purpose, we will be using harmonic
oscillator wave functions where the only adjustable parameter
is the radius. Between this and the changes to the size of
the collective amplitudes, we have enough latitude in making
adjustments to match the electron data. It is important to
realize that these changes to the shell-model matrix elements
do not guarantee that we have a correct description of the
transition. The DWIA calculations are sensitive to the size
of each component since it has a unique spin coupling, so
whatever problems remain with the matrix elements may
be reflected in poorer agreement with the proton inelastic
data.

Transitions from the ground state to the natural parity states
of 10B have been observed in inelastic electron scattering,
and a paper by Cichocki et al. [29] reports measurements of
the longitudinal and transverse form factors. These new data
extend earlier measurements that presented only the elastic
data [30], or concentrated on the transverse form factors with
an emphasis on unnatural parity excitations [31].

A set of single particle-hole amplitudes has been compiled
for transitions in 10B by Lee and Kurath [32] based on the
(8–16)POT interaction of Cohen and Kurath [33]. This interac-
tion involves only rearrangements and excitations within the 1p
shell. Since the lower of these two shells, the 1p3/2, is not filled
for 10B, this space should account for the most important pieces
of the transition densities to low-excitation states. Calculations
within a larger shell-model basis [34] that included 1s, 2s
and 1d shells and a newer interaction [35] did not reveal any
significant changes in the individual particle-hole amplitudes
from the earlier Lee and Kurath results. In particular, there
were no new amplitudes whose contributions to the transition
densities were more than a few percent. Given that we would
change these amplitudes later by even larger amounts in order
to match the inelastic electron scattering data, we decided to
begin with the Lee and Kurath values, which involved only the
p3/2 and p1/2 orbitals.

Calculations of the electron scattering form factors were
made with the program LEA [19]. Harmonic oscillator forms
scaled by a single length parameter b described each particle
and hole wave function. Center-of-mass corrections were
included.

Calculations based just on the Lee and Kurath amplitudes
underestimate the inelastic electron scattering form factors
typically by as much as a factor of 2. We interpreted this to
mean that the transitions in 10B have more collective character
than is present in the shell model. Most of the collective
excitation in this nucleus proceeds through L = 2 transfer.
So to model this collectivity, we scaled upward the L = 2
components of the particle-hole amplitudes. This involved a
transformation of the shell-model matrix elements from the jj
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FIG. 1. Measurements of the longitudinal and transverse form factors for five transitions in 10B from Ref. [29]. Each is labeled with spin,
parity, and excitation energy. Solid lines indicate the total form factor. Contributions for different �J are indicated by long dash lines for M1,
short dash lines for E2, and dot-dash lines for M3.

representation of Lee and Kurath to the LS representation, a
rescaling of the L = 2 terms, and a transformation back again.
To improve agreement with the q dependence of the electron
data, we also adjusted the harmonic oscillator parameter b.
The final results are shown in Fig. 1 for the inelastic natural
parity transitions in 10B.

For these transitions, the dominant contribution to the
longitudinal form factor F 2

T comes from �J = 2 (C2) as
shown by the solid lines in the upper panels. In each case,
the data cover a wide enough span in momentum transfer to
determine a value for b rather precisely. This is not the case
for the transverse form factor. For most of the transitions, only
a rough normalization is possible. In most of these cases, we
used a value for b in the �J = 3 part of the calculations that
matched the more extensive measurements for the 3+ → 0+
transition at 1.74 MeV [31]. This is shown by the dot-dash

curves. The M1 contribution (long dash) was large only for the
transition to the 4+ state at 6.02 MeV, and a rough value
of the �J = 1 b parameter was obtained there; the same
value was used for the M1 part of the transition to the 2+
state at 3.59 MeV. The E2 contribution (short dash) to the
transverse form factor was calculated with the parameters
found for the C2 longitudinal form factor. Because of the
poor internal consistency of some of these measurements, we
chose a normalization that matched the average size of the data
rather than one that minimized the chi square. Table I contains
the harmonic oscillator parameter for each �J component of
the transition density. It also includes the ratio by which the
L = 2 amplitudes were increased. In the case of most �J = 2
terms, this adjustment was applied only to the L = 2 part,
which is indicated by an asterisk in the table. Table II gives
the final values of the particle-hole amplitudes as used in our

TABLE I. Form factor parameters. Each entry contains b and R, the rescaling ratio.

State (MeV) g.s. 0.72 2.15 3.59 4.77 6.02
J π 3+ 1+ 1+ 2+ 3+ 4+
�J

b R b R b R b R b R b R

1 1.45 1.0 1.5 1.0 1.85 1.0 1.51 1.7
2 1.75 1.79 1.75 1.1∗ 1.67 1.6∗ 1.67 1.0 2.08 0.6∗ 1.77 1.68∗

3 1.61 1.0 1.53 1.8 1.53 1.0 1.53 4.0 1.53 0.7 1.53 1.0

∗Adjusted value; see text for explanation.
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TABLE II. Structure coefficients scaled to Raynal Z convention.

State (MeV) g.s. 0.72 2.15 3.59 4.77 6.02
J π 3+ 1+ 1+ 2+ 3+ 4+

�l = 1
(1p3/2,1p−1

3/2) 0.4833 −0.0057 0.0028 −0.0646
(1p3/2,1p−1

1/2) 0.0878 0.0827 0.0362 −0.1321
(1p1/2,1p−1

3/2) −0.0878 −0.0855 0.0251 0.0
(1p1/2,1p−1

1/2) −0.1159 −0.0170 −0.0100 −0.3150

�l = 2
(1p3/2,1p−1

3/2) −0.3553 −0.837 0.1342 0.0183 −0.0870 0.1817
(1p3/2,1p−1

1/2) −0.3498 0.0335 −0.0652 −0.0199 0.0665 0.2442
(1p1/2,1p−1

3/2) 0.3498 0.2015 −0.0906 −0.1842 −0.1451 −0.5552

�l = 3
(1p3/2,1p−1

3/2) 0.0500 −0.1970 −0.2160 0.1468 0.1048 −0.0647

calculation. For the transition to the 3+ state at 4.77 MeV, it is
also possible to obtain a �J = 0 component. This component
was small and not visible on the scale of Fig. 1, so it was
omitted from Tables I and II.
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FIG. 2. Measurements of the longitudinal and transverse form
factors for scattering from the ground state in 10B from Refs. [29–31].
Solid lines indicate the total form factor; broken lines, contributions
for different �J .

Figure 2 shows the transition densities for elastic scattering.
Here there is a large �J = 0 component that arises from
scattering from the nuclear charge distribution. In the (p,p′)
calculations, this component is represented by the optical
potential, which will be adjusted for a best representation of
the elastic proton scattering data. For the comparison in Fig. 2,
the �J = 0 component is given by a harmonic oscillator
wave function with b = 1.65 fm, including corrections for the
center-of-mass motion and the form factor of the proton. This
serves to set the scale against which the size of the quadrupole
term is estimated. Because only a short range in momentum
transfer is available where the quadrupole term dominates,
the harmonic oscillator parameter and normalization are not
uniquely determined. Following the work of Lewis [36], we
have simply increased the �J = 2 part by a factor of 1.79.
The transverse electron scattering is well matched using the
Lee and Kurath amplitudes in their original form.

B. Elastic proton scattering

For the calculation of inelastic proton scattering, it is
important to have distortions that describe well at least the
low momentum transfer data for elastic scattering. Inelastic
scattering that proceeds through the effective NN interaction
has a large scattering amplitude across a large momentum
transfer range. At the same time, the distortions have ampli-
tudes that fall quickly with momentum transfer. Thus, for the
large momentum transfer regions explored in this experiment,
the dominant contributions pair a large momentum transfer in
the NN interaction together with a small momentum transfer
in the distorted waves.

Typical reproductions of elastic scattering usually weigh
the data rather evenly across momentum transfer and thus may
sacrifice a high-quality fit at small scattering angles to obtain a
more generally satisfactory description across the full angular
distribution. For 10B, this problem is especially severe since the
3+ spin of the ground state makes possible a large quadrupole
coupling through a reorientation of the target spin direction.
This can be seen as the large C2 component in Fig. 2. Such
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TABLE III. Optical model parameters (strengths in MeV; lengths
in fm).

Term Vi ri ai

Real central −8.9951 1.481 0.5808
Real Gaussian central 9.0615 0.5378 0.8549
Volume imaginary −28.0739 0.8582 0.685
Real spin orbit −3.862 0.9323 0.644
Imaginary spin orbit 0.65145 0.951 0.705

contributions are beyond the scope of a simple optical model
calculation containing only central and spin-orbit terms. Any
attempt to address the elastic scattering data with only optical
model techniques would lead to significant problems with the
quality of the agreement to any particular portion of the data.

In a similar study of 9Be [20], these issues were addressed
through the inclusion of microscopic channel coupling. We
took a similar approach, including M1, C2, E2, and M3
components for the ground state as well as the excitation of
the 4+ state at 6.02 MeV, by far the largest discrete collective
state in 10B. The expectation was that these additional
components would help agreement with the cross section and
spin dependence at larger momentum transfer, thus freeing
the optical potential to describe well the scattering at small
momentum transfer.

Based on the experience with elastic scattering from nuclei
in this mass region [36,37], we chose an optical potential with
a Gaussian repulsive core in the real, central component. This
potential is

V (r) = VCoul(r) + VCfV (r) + VGg(r) + iWfW (r)

+ 2

[
VSL

1

r

d

dr
fSOR(r) + WSL

1

r

d

dr
fSOI(r)

]
�L · �σ

where

fi(r) = 1/{1 + exp[(r − riA
1/3)/ai]},

g(r) = exp

[
−

(
r − rGA1/3

aG

)2
]

,

and VCoul(r) is the Coulomb potential generated by a uniformly
charged sphere of radius r = 1.46 fm. The optical potential
parameters were varied to reproduce a set of fictitious data.
These were generated from the real cross-section data by
subtracting the difference between the coupled channel and the
optical model calculation. Analyzing power data out through
25◦ were also included, since this angle range is dominated
by the optical model contribution. The new optical potential
was then placed in the coupled-channel calculation to generate
a new cross-section difference, and the process iterated. The
optical model program used for this search was CUPID [38].

The final optical model parameters are given in Table III.
The resulting cross section and analyzing power are given
in Fig. 3 by the solid curves. The dashed curves show the
contribution from the optical model alone. Beyond about 25◦,
the channel coupling contributes significantly to the cross
section, diminishing the oscillatory behavior in the analyzing
power inside 60◦. Even with the good description of the
electron data for elastic electron scattering, we still appear
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(mb/sr)
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(deg)c.m.
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FIG. 3. Measurements of the cross section (ratio to Rutherford)
and analyzing power for elastic proton scattering from 10B. Solid lines
represent the coupled-channel calculation; dashed lines, the optical
model component only.

to be far from a completely satisfactory description of the
analyzing power. A similar result was reported for 9Be by
Kelly [20].

Figure 4 shows a prediction for the DNN ′ polarization
transfer in elastic scattering, which should directly check

D
NN

c.m.

elastic

(deg)θ
806040200

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FIG. 4. Measurements of the polarization transfer coefficient
DNN ′ for elastic proton scattering from 10B. Solid line represents
the coupled-channel calculation.
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the spin-flip contributions coming from the M1 and M3
components shown in Fig. 2. The coupled-channel prediction
is well above these data for almost all of the angles covered,
indicating that it contains only a tiny fraction of the spin-flip
strength it appears to need.

In the forward angle region, these calculations appear to
work well, and that is the region most crucial for a good
test of the inelastic scattering calculations. It is clear that
there are contributions missing from the elastic scattering that
increase the spin-flip and dampen the angular oscillations in
the analyzing power.

C. Effective interaction

Inelastic scattering to natural parity, collective states
proceeds predominantly through the central and spin-orbit
parts of the effective isoscalar NN interaction. Inside the
nuclear medium, these parts are the most sensitive to density-
dependent changes. The Pauli blocking part suppresses scatter-
ing in which there is a small momentum transfer to the struck
nucleon, thus lowering the observed cross section at forward
angles. Attempts to estimate this change theoretically [1–6]
are in general agreement. However, these estimates are not
sufficient to reproduce (p,p′) data accurately.

Instead we will use an empirical interaction that starts
with the interaction of von Geramb [1]. The strength of the
isoscalar central and spin-orbit parts are adjusted, and a density
dependence is added in an amount chosen to match a body of
(p,p′) inelastic scattering data on N = Z nuclei. In the work
by Seifert et al. [16], a parametrization (PH3) was obtained for
200 MeV protons on 16O and 40Ca. By applying this interaction
here, we will be testing it for masses lighter than those used to
determine the parametrization.

We have chosen to first examine the 4+ transition to the
state at 6.02 MeV since this transition has the most collective
properties of any of the 10B transitions and is therefore most
like the states used to determine the empirical interaction. In
Fig. 5, we show calculations made with LEA using the free von
Geramb interaction (dashed lines) and the density-dependent
empirical interaction of Seifert (solid lines). As expected,
the cross section is reduced at forward angles, bringing the
calculation into accord with the data there. The size of the
oscillation pattern in the analyzing power is increased and
moved slightly forward in angle. Both these changes are
helpful for the agreement with the data. In the work of Seifert,
the data for 16O and 40Ca scattering did not extend to angles
larger than about 60◦, so our comparison beyond those angles
is an extrapolation. At these larger angles, the agreement with
the calculations is clearly worse. The calculated cross section
falls too rapidly with angle, and the oscillation pattern in the
analyzing power begins to get out of phase with that in the
data. Otherwise, these calculations appear to be successful.
The density-dependent feature of the effective interaction is
needed for a good description of the data. These results also
depend on the quality of the reproduction of the form factor
[the same normalization is used for both (e, e′) and (p,p′)
cases] and the treatment of the optical model distortions.
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FIG. 5. Measurements of the cross section and analyzing power
angular distributions for the 4+ transition to the state at 6.02 MeV
in 10B. Dashed (solid) curves are calculations with a free (density-
dependent) effective interaction [16].

The empirical interaction of Seifert has been tested against
measurements of polarization transfer [18] with considerable
success for collective, natural parity transitions. There it was
noted that for small �L transfer, the polarization transfer
observables also tended to obey the relationships required
for elastic proton scattering from a spin-0 target. These
relationships are illustrated in Figs. 6 and 7 by overlapping
data points that are expected to be the same. For the in-plane
polarization transfer measurements, the resolution at large
scattering angles was not sufficient to resolve this state from its
neighbors, and these data points have not been included in the
figures. According to Liu et al. [18], the relationships P = A

and DLS ′ = −DSL′ are expected to be observed the best. The
agreement between the two sets of data, and likewise between
the two calculations, appears to be good and better than the
agreement between data and calculation for any observable,
even though this agreement also seems satisfactory. The
relationships DNN ′ = 1 and DLL′ = DSS ′ should be less well
observed. In Fig. 7, the agreement with the latter relationship
appears to be of high quality. However, DNN ′ < 1 over most
of the angular range, indicating significant contributions from
spin-flip processes in this transition. For DNN ′ the agreement
with the theory is still roughly satisfactory, indicating that the
bulk of the spin-flip amplitude is included there, as opposed to
the elastic scattering case. The good general agreement with
other polarization observables tends to support the use of the
empirical effective interaction for these transitions. This result
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FIG. 6. Measurements of P and DLS′ (solid points) along with A
and −DSL′ (open points) as a function of the center-of-mass scattering
angle for the 4+ transition to the state at 6.02 MeV in 10B. The curves
compare the empirical effective interaction with the data (solid lines
with solid points, dashed lines with open points).

is in accord with the good agreement found in [18], and in fact
extends that result to a larger range of angles and to a target
mass lighter than the one on which the empirical interaction
was based.

D. Comparisons with the other inelastic transitions

As seen in the last section, the calculations for the large
collective 4+ state at 6.02 MeV are generally successful. We
would now like to turn to the comparison with the remaining
natural parity transitions in 10B. The 1+, 2+, and 3+ states still
have considerable collective character (mainly �L = 2) but a
much smaller cross section. In these cases, there is a relatively
larger magnetic contribution, and we are likely to be sensitive
to a greater degree of cancellation among the contributing
particle-hole amplitudes. So the agreement with calculations
may not be as good as noted for the 4+ state. In addition, the 3+
state at 4.77 MeV may contain a large �L = 0 contribution not
described by the particle-hole basis we are using. Agreement
here may be the least satisfactory. In all of these calculations,
only the density-dependent interaction of Seifert [16] will be
used, since the discussion in the last section has shown it to be
satisfactory for at least the collective parts of these transitions.

The cross-section data are shown in Fig. 8. Agreement
forward of 60◦ seems generally satisfactory. At larger angles,
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FIG. 7. Same as Fig. 6, but for DNN ′ and DLL′ (solid points) along
with DSS (open points).

the data are underestimated by the calculation, which is finally
almost an order of magnitude too small. This difference is
larger than it was for the 4+ state. The only other systematic
problem is a small tendency to overestimate the cross section
in the region between 30◦ and 40◦.

We show in Fig. 9 the angular distributions of A and P
overlaid, and of DLS ′ and −DSL′ overlaid. Good agreement is
still obtained in the experiment for these strongly connected
observables. So these transitions still follow the elastic scat-
tering pattern. Likewise the density-dependent calculations for
each member of the pairs are close. But there are now larger
systematic disagreements between the calculations and the
data. In particular, the first positive lobe of DLS ′ or −DSL′ is
underestimated, and the second positive lobe is too large. At the
larger angles there are also problems with A and P, even though
things are generally better forward of 60◦. The differences in
the size of the oscillation pattern in the angular distributions
of A and P for the two 1+ states (0.72 and 2.15 MeV) is well
reproduced, suggesting that the structure difference between
these two transitions is well described by the present set of
shell-model matrix elements. There seems to be a special
issue with the 2+ transition at 3.59 MeV, since A and P are
also not well reproduced even at forward angles. The structure
information here may be faulty.

Looking at a similar comparison in Fig. 10, we see that
the data again support the rule that DLL′ = DSS ′ , but now in
this weaker case the calculation does not. The comparison for
DNN ′ between data and calculation suggests that there is now
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FIG. 8. Measurements of the cross section angular distribution for the 1+ state at 0.72 MeV, the 1+ state at 2.15 MeV, the 2+ state at
3.59 MeV, and the 3+ state at 4.77 MeV. The curves show the density-dependent effective interaction of Seifert [16].

less spin flip in the reaction than the calculation would suggest.
Taken together, these data point to more collective behavior in
these transitions than is contained in the shell-model structure
calculations.

In a qualitative way, the calculations here describe the trends
in the data, including the phase of the diffractive oscillations in
the spin dependence. We have examined things in a hierarchy

in which observables that ought to appear in pairs in strongly
collective transitions are plotted together. We looked first
at those pairings that ought to be the best satisfied. This
procedure seems to suggest that these states in 10B are highly
collective. That the calculations do not follow (whereas they
do for the 4+ state at 6.02 MeV) would suggest that there are
noncollective contributions to the structure we have put into
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FIG. 9. Measurements of A (solid points in upper panel), P (open squares in upper panels), DLS′ (solid points in lower panels), and −DSL′

(open squares on lower panels) as a function of the scattering angle. Calculations using a density-dependent interaction are shown as solid
curves for A and DLS′ , and as dashed curves for P and DSL′ . Excitation energies for the four transitions appear at the top of each column.
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FIG. 10. Measurements of DNN ′ (top panels), DLL′ (solid points in lower panels), and DSS′ (dashed points in lower panels) as a function
of the scattering angle. Calculations using a density-dependent interaction are shown as solid curves for DNN ′ and DLL′ , and as dashed lines
for DSS′ . Excitation energies for the four transitions appear at the top of each column.

these calculations that play a much reduced role in the real
measurements.

IV. CONCLUSIONS

We reported measurements of the cross section, analyzing
power, induced polarization, and a complete set of polar-
ization transfer coefficients for the natural parity transitions
in 10B( �p, �p′)10B leading to discrete final states. We then
included as much information as possible on the structure
of these transitions and worked with an empirical effective
interaction in an effort to come as close as we could to
these data with DWIA calculations. The nonvanishing spin
of the 10B ground state allowed multiple values of J transfer,
and the most important of these possibilities were incorporated
through a set of particle-hole matrix elements built on the
p shell. While we started with shell-model values for these
matrix elements, we changed the strength of the L = 2 part to
match inelastic electron scattering data. This, along with the
adjustment of the length parameter in the harmonic oscillator
wave functions, allowed us to begin with a set of particle-hole
matrix elements that agreed with the electron scattering data.
We included the self-coupling in the 10B ground state and
coupling to the large 4+ state at 6.02 MeV in our reaction
calculations.

The polarization measurements exhibited an internal con-
sistency that is similar to the rules for scattering a spin-1/2
projectile elastically from a spin-0 target, despite the presence

of multiple values of J transfer. These included A = P,DSL′ =
−DLS ′ , and DLL′ = DSS ′ . Deviations of DNN ′ from unity
reflect the spin-flip contributions to the scattering.

Agreement between the data and the DWIA calculations
was good, particularly in the angular range inside 60◦ where
the parametrization of the effective interaction had been
matched to collective transition data on heavier nuclei. This
supports the wider application of such interactions as adequate
descriptions of the effective interactions regardless of the
mass of the target. The quality of the agreement with the
polarization observables was best for A,P,DSL′ , and DLS ′

and not as good for DNN ′ ,DSS ′ , and DLL′ . The agreement was
overall the best for the 4+ transition at 6.02 MeV, suggesting
that the calculations work best for the more collective
transitions. The least well described were the polarization
observables for elastic scattering. There the analyzing power
deviated from the data past 30◦, and DNN ′ did not match the
large amount of spin flip demonstrated by the data. In general,
the calculations led to a successful understanding of these
transitions, demonstrating the need to maintain consistency
with the electron scattering data and to include strong channel-
coupling effects.

ACKNOWLEDGMENTS

This work was supported by NSF Grants PHY-9602872 and
PHY-0100348. E.J.S. acknowledges useful conversations with
John Millener.

064607-11



A. C. BETKER et al. PHYSICAL REVIEW C 71, 064607 (2005)

[1] H. V. von Geramb, in The Interaction Between Medium Energy
Nucleons in Nuclei – 1982, AIP Conf. Proc. 97 (AIP, New York,
1983), p. 44.

[2] L. Rikus, K. Nakano, and H. V. von Geramb, Nucl. Phys. A414,
413 (1984).

[3] K. Nakayama and W. G. Love, Phys. Rev. C 38, 51 (1988).
[4] L. Ray, Phys. Rev. C 41, 2816 (1990).
[5] K. Amos, P. J. Dortmans, H. V. von Geramb, S. Karatiglidis, and

J. Raynal, Adv. Nucl. Phys. 25, 275 (2000).
[6] E. J. Stephenson, R. C. Johnson, and F. Sammarruca, Phys. Rev.

C 71, 014612 (2005).
[7] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).
[8] M. R. Anatasio, L. S. Celenza, W. S. Pong, and C. M. Shakin,

Phys. Rep. 100, 327 (1983).
[9] R. Brockmann and R. Machleidt, Phys. Lett. B149, 283 (1984);

Phys. Rev. C. 42, 1965 (1990)
[10] C. J. Horowitz and B. D. Serot, Phys. Lett. B137, 287 (1984);

Nucl. Phys. A464, 613 (1987)
[11] B. ter Harr and R. Malfleit, Phys. Rep. 149, 207 (1987).
[12] F. Sammarruca, E. J. Stephenson, and K. Jiang, Phys. Rev. C 60,

064610 (1999).
[13] F. Sammarruca, E. J. Stephenson, K. Jiang, J. Liu, C. Olmer,

A. K. Opper, and S. W. Wissink, Phys. Rev. C 61, 014309
(1999).

[14] J. J. Kelly et al., Phys. Rev. C 39, 1222 (1989).
[15] James J. Kelly, Phys. Rev. C 39, 2120 (1989).
[16] H. Seifert et al., Phys. Rev. C 47, 1615 (1993) and references

therein.
[17] F. Sammarruca and E. J. Stephenson, Phys. Rev. C 64, 034006

(2001).
[18] Jian Liu, E. J. Stephenson, A. D. Bacher, S. M. Bowyer,

S. Chang, C. Olmer, S. P. Wells, S. W. Wissink, and J. Lisantti,
Phys. Rev. C 53, 1711 (1996).

[19] James J. Kelly, program LEA (May 1995 version), private
communication.

[20] J. J. Kelly, Phys. Rev. C 46, 711 (1992).
[21] B. S. Flanders et al., Phys. Rev. C 43, 2103 (1991).
[22] H. Baghaei et al., Phys. Rev. Lett. 69, 2054 (1992).
[23] W. Haeberli, Annu. Rev. Nucl. Sci. 17, 373 (1967).
[24] P. Schwandt, T. B. Clegg, and W. Haeberli, Nucl. Phys. A163,

432 (1971).
[25] S. W. Wissink et al., IUCF Sci. Tech. Rep., 1989–1990

(unpublished), p. 180.
[26] S. P. Wells et al., Nucl. Instrum. Methods A 325, 205 (1993).
[27] W. Bertozzi et al., Nucl. Instrum. Methods 141, 457 (1977).
[28] A. H. Walenta et al., Nucl. Instrum. Methods 111, 467 (1973).
[29] A. Cichocki, J. Dubach, R. S. Hicks, G. A. Peterson,

C. W. de Jager, H. de Vries, N. Kalantar-Nayestanaki, and
T. Sato, Phys. Rev. C 51, 2406 (1995).

[30] T. Stovall, J. Goldemberg, and D. B. Isabelle, Nucl. Phys. 86,
225 (1966).

[31] R. S. Hicks, J. Button-Shafer, B. Debebe, J. Dubach, A. Hotta,
R. L. Huffman, R. A. Lindgren, G. A. Peterson, R. P. Singhal,
and C. W. de Jager, Phys. Rev. Lett. 60, 905 (1988).

[32] T.-S. H. Lee and D. Kurath, Phys. Rev. C 21, 293 (1980).
[33] S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).
[34] B. A. Brown et al., The Oxford-Buenos Aires-MSU shell

model program OXBASH, Michigan State University Cyclotron
Laboratory Report No. 524 (1986).

[35] D. J. Millener and D. Kurath, Nucl. Phys. A255, 315 (1975).
[36] P. R. Lewis, G. G. Shute, B. M. Spicer, R. S. Henderson,

R. Abegg, D. Frekers, O. Häusser, K. P. Jackson, C. A. Miller,
and S. Yen, Nucl. Phys. A532, 583 (1991).

[37] H. O. Meyer, P. Schwandt, G. L. Moake, and P. P. Singh, Phys.
Rev. C 23, 616 (1981).

[38] J. R. Comfort, Comput. Phys. Commun. 16, 35 (1978).

064607-12


