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Isospin fluctuations in spinodal decomposition
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We study the isospin dynamics in fragment formation within the framework of an analytical model based on
the spinodal decomposition scenario. We calculate the probability to obtain fragments with given charge and
neutron number, focussing on the derivation of the width of the isotopic distributions. Within our approach this
is determined by the dispersion of N/Z among the leading unstable modes, due to the competition between
Coulomb and symmetry energy effects, and by isovectorlike fluctuations present in the matter that undergoes the
spinodal decomposition. Hence the widths exhibit a clear dependence on the properties of the equation of state.
By comparing two systems with different values of the charge asymmetry we find that the isotopic distributions
reproduce an isoscaling relationship.
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I. INTRODUCTION

In the last years widespread attention has been devoted
to the role played by the isospin degree of freedom in the
heavy–ion reaction physics. The interest on this subject is
twofold: the knowledge of the symmetry term in the equation
of state (EOS) of asymmetric nuclear matter, which is a
fundamental ingredient in astrophysical investigations [1],
and the thermostatistical properties both at equilibrium and
out of equilibrium of systems with two strongly interacting
components [2–8]. Both interests concern systems faraway
from the physical conditions of ordinary nuclear matter.

Thanks to the availability of high–performance 4π detec-
tors for the investigations of heavy–ion collisions at interme-
diate energy [9–12], recent experimental results can provide
new insights about isospin effects on the nuclear dynamics.
In particular, for multifragmentation processes we can obtain
information about highly excited two–component systems
and their subsequent decomposition. Statistical models have
been extensively applied to the description of experimental
data, also for isospin observables [13], and some conclusions
have been drawn on the behavior of charge asymmetric
systems. These models, however, imply the achievement of the
statistical equilibrium for the nuclear system. Then, it would
be highly desireable to have some insight on the path followed
by the system to attain equilibrium, if this occurs. Further,
it would be of great advantage to envision some observable,
which preserves memory of the dynamical processes occurred
during the fragmentation.

In this paper we present an analytical description of the
disassembly of excited nuclear systems formed during the
collision of heavy ions, in terms of the occurrence of nuclear
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matter instabilities. Our approach accounts for the source of
the density fluctuations occurring when the system enters the
spinodal instability region of the density–temperature phase
diagram, and describes the growth of the fluctuations with
time until they cause the decomposition of the system. This
approach is a generalization to include the isospin degree
of freedom, of the model developed in Refs. [14,15] for
symmetric nuclear matter basically. This gives rise to a
substantial improvement of the model, with new valuable
results. Such extension allows us to investigate separately
fluctuations of the neutron and proton densities and their
interplay. Following the procedure introduced in Ref. [14],
we identify the pattern of the domains containing correlated
density fluctuations, with the fragmentation pattern, and can
make predictions on the isotopic distributions of the fragments.
Moreover, we include in the present treatment the Coulomb
force according to the approach outlined in Ref. [16]. Its effects
on the isotopic distributions turn out to be sizeable.

Our results essentially refer to the distributions of the
fragments just after the early breakup of the system. So
our approach can be considered complementary to dynamical
model calculations based upon semiclassical kinetic equations
for one–body phase–space density, (for a review on dynamical
models see, e.g., Refs. [17–19]), as far as the description
of the early fragmentation mechanism is concerned. The
advantage here is that one can make significant predictions
on observables of experimental interest on an analytical basis.
This allows us to directly relate the results obtained to the
EOS properties and the features of the spinodal mechanism.
In our scheme the onset and the growth of the fluctuations
about the mean phase–space density in unstable situations,
are self–consinstently treated. The self–consistency condition
is provided by the fluctuation–dissipation theorem. Whereas
all the processes, which take place before the system enters
the spinodal instability region and after the breakup, are
beyond our approach. Therefore the mean values of density,
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temperature and asymmetry of the nuclear medium when the
system starts to break up are taken from calculations performed
within dynamical models.

On the other side, a dynamical model, which appropriately
incorporates the effects of the fluctuations, might give a
detailed description of the whole history of a collision between
heavy ions. Therefore, it can be of interest to compare the
results of our approach with those obtained by numerical
solutions of microscopic transport equations, also to connect
the results of the simulations to what is expected in a pure
spinodal decomposition scenario. The comparison will be
done with the isotopic distributions for the primary fragments,
calculated in the dynamical stochastic mean field (SMF) ap-
proach of Refs. [8,20]. In particular, we will consider the ratio,
for a given value of the proton number, between the isotope
yields from two different reactions. This quantity represents
a straightforward mean to compare isotopic distributions,
since it is experimentally found to obey a simple relationship
(isoscaling), as a function of the proton number and neutron
number [9,10,21,22]. We will also discuss the dependence of
the isoscaling parameters on the EOS considered.

In Sec. II we outline the extension of the formalism
developed in Ref. [14] only for isoscalar density fluctuations,
to include the isospin degree of freedom. In Sec. III we discuss
the results of our calculations and their comparison with the
calculations performed in Ref. [23] within the SMF approach.
Finally, in Sec. IV a brief summary and conclusions are given.

II. FORMALISM

A. Time evolution of density fluctuations

We study the density fluctuations by introducing a self–
consistent stochastic field acting on the constituents of the
system. The time evolution of the fluctuations is described
by a kinetic equation, within a linear approximation for the
stochastic field. The growth of fluctuations is essentially
dominated by the unstable mean field. Thus we focus our
attention on the behavior of the mean field and neglect the
collision term in the kinetic equation. Collisions would mainly
add a damping to the growth rate of the fluctuations and should
not change the main results of our calculations, at least at a
qualitative level.

The additional stochastic mean field, which we assume
having a vanishing mean, will induce fluctuations of the
proton and neutron densities, δ�i(r, t), with respect to their
uniform mean values �i (i = 1, 2 for protons and neutrons,
respectively). We assume that at the time t = 0, given density
fluctuations δ�i(r, t = 0) are present in the system. The
equations for the Fourier coefficients of δ�i(r, t) for t > 0
are given by a generalization of the equation for the isoscalar
density fluctuations of Refs. [14,24]. They read

δ�i(k, t) = δ�i(k, t = 0) − �j,l δ�l(k, t = 0)D−1
j,l (k, ω = 0)

×
∫ t

0
Di,j (k, t − t ′)dt ′

+�j

∫ t

0
Di,j (k, t, t ′)dWj (k, t ′), (1)

where the 2 × 2 matrix in the isospin space, Di,j (k, t − t ′),
is the density–density response function and Di,j (k, ω) its
time Fourier transform. For symmetry reasons the response
function and its Fourier transform depend only on the
magnitude of the wave vector. In the last integral dWj (k, t ′)
gives the contribution of the j component of the stochastic
field in the interval dt ′. Since the stochastic field is real
W ∗

i (k, t) = Wi(−k, t). The real and imaginary parts of the
Fourier coefficients Wi(k, t) are indipendent components of a
multivariate stochastic process [25], with

〈 ∫ t

0
dWi(k, t ′)

∫ t

0
dWj (−k, t ′′)

〉
=

∫ t

0
dt ′dt ′′Bi,j (k, t ′, t ′′)

(2)

defining the correlator for the stochastic field. Angular brackets
denote ensemble averaging.

In the mean–field approximation the response function
obeys the following set of equations:

Di,j (k, ω) = D
(0)
i (k, ω)δi,j + �lD

(0)
i (k, ω)Ai,l(k)Dl,j (k, ω),

(3)

where D
(0)
i (k, ω) is the noninteracting particle–hole propaga-

tor and Ai,l(k) is the Fourier transform of the nucleon–nucleon
effective interaction.

In Ref. [14] it has been shown that, in the case of
isoscalar fluctuations in symmetric nuclear matter, a white–
noise hypothesis for the stochastic field can be retained for
values of temperature and density sufficiently close to the
borders of the spinodal region. In such situations the imaginary
part of the response function displays a sharp peak dominating
the particle–hole background at a value of ω � kvF . This is
due to the occurrence of a pole on the imaginary axis of ω,
that corresponds to isoscalar fluctuations, at a distance from
the origin that is much smaller than the values of kvF . The
position of this pole determines the time scale characteristic
of the response function.

However, when one wants to investigate the properties
of neutron and proton distributions, as we do in the present
study, one should consider also the effects due to the isovector
fluctuations. Even though isoscalar modes are the dominant
ones, since they are unstable, isovector fluctuations contribute
to the width of the isotopic distributions of the fragments
formed in the spinodal decomposition process. In asymmetric
nuclear matter isovector and isoscalar fluctuations are coupled.
However one can still distinguish oscillations with neutrons
and protons moving in phase (isoscalarlike) or out of phase
(isovectorlike). Let us first concentrate on the properties of the
isoscalarlike modes.

1. Isoscalarlike fluctuations

The position of the pole ω = i�k for the unstable isoscalar-
like mode is given by the imaginary root of the equation

det|δi,j − D
(0)
i (k, ω)Ai,j (k)| = 0. (4)
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The quantity �k is the damping or growth rate (depending on
its sign) of the density fluctuations. In evaluating it, we use the
expression of D

(0)
i (k, ω) for ω � kvF [14]

D
(0)
i (k, ω) � − ∂�i

∂µ̃i

− i
1

2π
m2F (βµ̃i)

ω

k
,

where the effective chemical potential µ̃i of neutrons or
protons is measured with respect to the uniform mean field
Ui(�1, �2) of the unperturbed initial state and F (βµ̃i) is the
function

F (βµ̃i) = 1

e−βµ̃i + 1
,

with β = 1/T being the inverse temperature (we use units
such that h̄ = c = kB = 1).

Substituting into Eq. (1) the response function Di,j (k,

t − t ′) calculated with these approximations, the equation for
the fluctuations δ�i(k, t) becomes

δ�i(k, t) = δ�i(k, t = 0) + �j,lCi,l(k)D−1
l,j (k, ω = 0)

× δ�j (k, t = 0)
1

�k

(e�kt − 1)

+�j Ci,j (k)e�kt

∫ t

0
e−�kt

′
dWj (k, t ′), (5)

where Ci,j (k) are the residues, times (−i), of the components
of the response function at the pole ω = i�k . They have the
relevant property

det|Ci,j (k)| = 0. (6)

The explicit expression of the inverse of the response function
for ω = 0 is

D−1
i,j (k, ω = 0) = −

[
∂µ̃j

∂�i

+ Ai,j (k)

]
.

For isoscalarlike fluctuations Wj (k, t ′) represents a Gaus-
sian white noise [14]. The probability distribution of density
fluctuations, P [δ�i(k, t)], is given by a product of Gaussian
distributions. Each single factor corresponds to the stochastic
process of Eq. (5) for a given wave number k [14,15], with the
covariance matrix

σ 2
i,j (k, t) = �l,mCi,l(k)Bl,m(k, t)Cm,j (k)

1

2�k

(e2�kt − 1).

(7)

For simplicity, we have assumed that the initial fluctuations
are negligible σ 2

i,j (k, t = 0) � 0. Whenever it is necessary, a
nonvanishing covariance can be easily introduced.

The probability distribution P [δ�i(k, t)] is completely
determined once the covariance matrix σ 2

i,j (k, t) is known.
According to the procedure usually followed when treating
instabilities by exploiting the fluctuation–dissipation theorem,
see, e.g., Refs. [26,27], we determine the coefficients Bi,j (k, t)
as functions of �1, �2, and T for the system at equilibrium, then
we extend the expressions so found to nonequilibrium cases.
Since the relevant values of the wave vector k turn out to be
such that the quantity kvF is of the same order of magnitude
as T, the limit ω/kvF � 1 also implies ω/T � 1. In such a

case, the classical limit ω/T � 1 [or |�k(t)|/T � 1] can be
taken when evaluating both sides of the fluctuation–dissipation
relation. Then, we get

∂

∂t
〈δ�i(k, t)δ�j (−k, t ′)〉 = −T Di,j (k, t − t ′). (8)

The equation for the equilibrium fluctuations can be obtained
from Eq. (1) by shifting the initial time t = 0 to −∞. By
exploiting Eq. (8) we can obtain the following relation between
the coefficients Bi,j (k, t) and the functions Ci,j (k):

�l,mCi,l(k)Bl,m(k, t)Cm,j (k) = −2T Ci,j (k). (9)

From this equation we can see that Bi,j are constant and depend
only on the magnitude k of the wave vector, as it is expected
for symmetry reasons. Following Refs. [26,27] (see also the
discussion in Ref. [14] on this point) we assume that the
relation (9) is valid also in instability situations. In such a
way, the covariance matrix (7) acquires the form

σ 2
i,j (k, t) = −T Ci,j (k)

1

�k

(
e2�kt − 1

)
, (10)

and is completely determined both for stable and unstable
situations. We notice that, for the isoscalarlike mode, σ 2

1,2(k) =
σ 2

2,1(k) is positive.In fact proton and neutron densities oscillate
in phase, although with different amplitudes in general.
However, the ratio between amplitudes, σ 2

1,1(k)/σ 2
1,2(k), is

found to be larger than the initial proton to neutron ratio,
thus leading to the formation of more symmetric fragments,
the so-called isospin distillation effect [4].

2. Isovectorlike fluctuations

Now we turn to consider the isovectorlike modes. In this
case the frequency of the modes, ωiv

k is real, i.e., we have
stationary oscillations. The position of the pole is given by the
other solution of Eq. (6). However, we add a small negative
imaginary part −�iv

k to the position of the pole, taking into
account that here we are neglecting nucleon-nucleon collisions
and finite size effects. Correspondingly the imaginary part of
the response function acquires the width �iv

k .
The contribution of isovectorlike fluctuations to the covari-

ance matrix σ 2
i,j (k, t) can be written as follows:

σ 2
i,j (k, t) = 4 �l,mCiv

i,l(k)Civ
m,j (k)e−2�iv

k t

∫ t

0
dt1dt ′1

{
e�iv

k (t1+t ′1)

×Biv
l,m(k, t1, t

′
1) sin[2ωiv

k (t − t1)]

× sin[2ωiv
k (t − t ′1)]

}
, (11)

where Civ
i,j (k) are the residues at the pole and Biv

l,m(k, t1, t
′
1)

denote the contributions from the isovectorlike fluctuations to
the stochastic field.

To determine the amplitude of the stochastic field we
essentially follow again the derivation presented above. By
exploiting the fluctuation-dissipation theorem, now in the limit
ω/T � 1 (since the frequency of the isovector vibrations is
rather large with respect to the relevant values of T ), we obtain
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for values of ω close to the pole the relation:

�l,mCiv
i,l(k)Biv

l,m(k, ω)Civ
m,j (k)

= 2�iv
k Civ

i,j (k)

[
2
(
�iv

k

)2(
ω − ωiv

k

)2 + (
�iv

k

)2

]
, (12)

where we have added a Lorentzian factor to the right-hand side
in order to restrict to a small region about ωiv

k the contribution
from the isovectorlike pole to the time Fourier transform of
Biv

l,m(k, ω). In this way the correlator Biv
l,m(k, t1 − t ′1) for the

stochastic field results to be proportional to e−�iv
k |t1−t ′1|. This

means that the isovectorlike stochastic field is given by a
colored noise, at variance with the isoscalar case.

Substituting the time Fourier transform of Eq. (12) into
Eq. (11), and retaining only the leading term of the expansion
in powers of (�iv

k /ωiv
k ), we obtain for the covariance matrix

the expression

σ 2
i,j (k, t) = Civ

i,j (k)
(

1 − e−2�iv
k t − 2�iv

k t e−2�iv
k t

)

+O

[(
�iv

k

ωiv
k

)2
]

, (13)

whose asymptotic value is given by

σ 2
i,j (k) = Civ

i,j (k). (14)

We notice that, for isovectorlike fluctuations, σ 2
1,2(k) = σ 2

2,1(k)
is negative. Indeed neutron and proton densities oscillate out
of phase.

The covariance matrix of Eq. (14) refers to equilibrium
fluctuations at given values of density and charge asymmetry. It
can be directly obtained by means of the fluctuation-dissipation
relation in the case of a purely real pole ( �iv

k → 0).
We finally remark that the covariance matrix of Eq. (14)

is obtained in the limit T → 0 and, in addition, it does not
depend on the width �iv

k of the isovectorlike resonance. This
implies that the density fluctuations of isovectorlike nature, we
are considering, have a quantum origin.

B. Size distributions

Now we describe the procedure to determine the distri-
bution for the size of the correlation domains. We closely
follow the derivation given in Ref. [14] for isoscalar density
fluctuations, and we limit ourselves to outline the steps relevant
to the present more general treatment. We distinguish the
fluctuations of the proton density from those of the neutron
density.

1. Correlation lengths

The probability distribution for the sizes of the domains
where the fluctuations are correlated, b1 and b2 for protons

and neutrons, respectively, can be obtained by means of the
functional integral

P (b1, b2, t) =
∫

d[δ�i(r, t)]

× δ

[
b1 −

∫
drdr′δ�1(r, t)f1(r)δ�1(r′, t)f1(r′)

]

× δ

[
b2 −

∫
drdr′δ�2(r, t)f2(r)δ�2(r′, t)f2(r′)

]
×P [δ�i(r, t)], (15)

where P [δ�i(r, t)] is the probability distribution for the density
fluctuations and fi(r) are suitable weight functions. Moreover,
we assume that the dynamical correlation lengths for proton
and neutron density fluctuations, 〈b1〉 and 〈b2〉, coincide

L(t) =
∫

dk
(2π )3

σ 2
1,1(k, t)|f1(k)|2

=
∫

dk
(2π )3

σ 2
2,2(k, t)|f2(k)|2, (16)

where fi(k) are the Fourier transforms of the weight functions.
In this way we assume that, on average, neutrons and protons
are correlated within the same domain. We will see in the
following how this can be related to the average isospin
distillation effect in the formation of fragments.

Following the procedure used in Ref. [14] we obtain for the
probability distribution P (b1, b2, t) the equation

P (b1, b2, t) = 1

2π

1

L(t)

1

[b1 + b2]

1√
γ (t)

exp

(
− [b1 + b2]

4L(t)

)

× exp

(
− 1

4L(t)γ (t)

[b1 − b2]2

[b1 + b2]

)
, (17)

where the parameter γ (t) is given by

γ (t) = 1 −
∫

dkσ 2
1,2(k, t)|f1(k)|2 ∫

dkσ 2
1,2(k, t)|f2(k)|2∫

dkσ 2
1,1(k, t)|f1(k)|2 ∫

dkσ 2
2,2(k, t)|f2(k)|2 .

(18)

At variance with the case of isoscalar fluctuations, the
distribution P (b1, b2, t) depends on the weight functions
fi(k). These functions, to some extent, are arbitrary, the
only requirement is that the integrals containing them should
converge. For simplicity, we assume |fi(k)|2 = ai |f (k)|2. For
the functional form of |f (k)|2 we choose the simplest one:
|f (k)|2 = 1/k2. This choice is also supported by the fact
that for equilibrium fluctuations the integral of the variance
weighted with 1/k2 gives the correct value of the correlation
length [14]. In addition, we have found that for the physical
situations considered in this paper, the value of the parameter
γ (t) to a large extent is insensible to the particular form of the
weight function |f (k)|2.

From the probability distribution of the domain sizes we can
obtain the distribution of the numbers of correlated protons
Z and neutrons N, assuming the correlation domains to be
spherical. The relations between Z and b1, and N and b2 can
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be expressed as b1 = 2r01Z
1/3 and b2 = 2r02N

1/3, where r0i

is the mean interparticle spacing for nucleons of the i species,
calculated at the actual values of asymmetry and density (when
fragments are formed), that are different from asymmetry and
density of the initial matter. The fact that the fragment size
is related to the correlation length can be considered as a
reasonable assumption in situations where isoscalarlike modes
are the dominant ones, as in fragmentation processes.

So, since on average b1 is equal to b2, we obtain r01/r02 =
(ρ2/ρ1)1/3 = 〈N1/3〉/〈Z1/3〉, where ρi are the densities calcu-
lated at the time fragments are formed. In this way the ratio
r01/r02 can be related to the average asymmetry of the liquid
(fragment) phase, obtained after the distillation process has
occurred. One can consider, for instance, as average fragment
asymmetry, values extracted from dynamical SMF simulations
for primary fragments [8].

Then, the probability distribution of Z protons and N
neutrons contained in a correlation domain, acquires the form

P (Z,N, t) = 1

9π

r0

L(t)

λ1λ2

[λ1Z1/3 + λ2N1/3]

1

(ZN )2/3

1√
γ (t)

× exp

(
− r0

2L(t)
[λ1Z

1/3 + λ2N
1/3]

)

× exp

(
− r0

2L(t)

1

γ (t)

[λ1Z
1/3 − λ2N

1/3]2

[λ1Z1/3 + λ2N1/3]

)
(19)

with λi = r0i/r0, where r0 is the mean interparticle spacing
for nucleons of both species.

2. Correlation volumes

One may also assume that the size of fragments is directly
related to a correlation volume V, instead of a correlation
length. Equation (17) can be rewritten for the correlation
volumes, just replacing b1 and b2 with V1 and V2. Then the
probability distribution, after some algebra, reads

P (Z,N, t) = 1

2π

1

V̄ (t)

1

[ρ2Z + ρ1N ]

1√
γ (t)

× exp

(
− 1

4V̄ (t)
[Z/ρ1 + N/ρ2]

)

× exp

(
− 1

4V̄ (t)

1

γ (t)

[Z/ρ1 − N/ρ2]2

[Z/ρ1 + N/ρ2]

)
, (20)

where V̄ is the average correlation volume for nucleons of both
species. For not too large asymmetries, this can be rewritten
in the following form:

P (Z,N, t) = 1

πAĀ

1√
γ (t)

exp

(
− A

2Ā

)

× exp

(
− A

2Ā

1

γ (t)

[N − Z

A
− α

]2
)

, (21)

where α = (ρ2 − ρ1)/(ρ2 + ρ1) represents the average asym-
metry of fragments and Ā is the average mass.

III. RESULTS

In our calculations we have adopted a schematic Skyrme–
like effective interaction, that can be expressed as a sum of
two terms

Ai,j (k) = A(k) + Si,j (k) .

For the symmetric term A(k) we use the finite–range effective
interaction introduced in Ref. [28]:

A(k) =
(

A
1

�eq
+ (σ + 1)

B

�σ+1
eq

�σ

)
e−c2 k2/2 , (22)

with � = �1 + �2 and

A = −356.8 MeV, B = 303.9 MeV, σ = 1

6
.

These values reproduce the binding energy (15.75 MeV) of
symmetric nuclear matter at saturation (�eq = 0.16 fm−3) and
give an incompressibility modulus of 201 MeV. The width of
the Gaussian in Eq. (22) has been chosen in order to reproduce
the surface-energy term as prescribed in Ref. [29].

The isospin-dependent part, Si,j (k), contains three different
terms

Si,j (k) = ∂2Esymm

∂�i∂�j

+ τiτjDk2 + 1 + τi

2
VC(k)δi,j ,

(23)
with τ1 = 1 and τ2 = −1. The double derivative of the poten-
tial part of the symmetry energy density, Esymm, is calculated
in the unperturbed initial state. For the coefficient of the
isovector surface term we use the value D = 40 MeV fm5 [30].
Concerning the Coulomb interaction, a mean–field exchange
contribution

V ex
C = −1

3

( 3

π

)1/3
e2�

−2/3
1

is added to the bare Coulomb force.
In order to stress the effects of the asymmetry of the

nuclear medium, we will present results obtained with two
different parametrizations of the symmetry energy: one with a
stronger density dependence ( “superstiff” asymmetry term )
and the other one with a weaker density dependence ( “soft”
asymmetry term ). In both cases the density dependence of the
symmetry energy can be expressed by

Esymm(�1, �2) = S(�)(�2 − �1)2,

with

S(�) = 2d

�2
eq

�

1 + �/�eq
, (24)

where d = 19 MeV [31], for the “superstiff” case, and

S(�) = d1 − d2�, (25)

where d1 = 240.9 MeV fm3 and d2 = 819.1 MeV fm6 [32],
for the “soft” case.

The inclusion of the Coulomb interaction presents sizeable
effects on the stability conditions of nuclear matter. It gives rise
to an overall decrease of the growth rate of density fluctuations
with a corresponding contraction of the instability region in
the (�, T ) phase diagram [16,33].Moreover, it can be observed

064605-5



M. COLONNA AND F. MATERA PHYSICAL REVIEW C 71, 064605 (2005)

0 0.5 1 2
k (fm−1)

10−2

10−1

100

101

102

σ2 (k
)(
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FIG. 1. The variance for the unstable modes as a function of k at
four different times: from bottom to top: t = 30, 100, 125, 150 fm/c.
The values of �, T , and α are � = 0.3�eq, T = 4.5 MeV, and α = 0.2.

that, when the Coulomb force is included, the growth rate
vanishes for sufficiently low values of the wave vector k
(kmin � 0.2 fm−1) [16].

In the integrals of Eqs. (16) and (18), which determine
the relevant parameters L(t) and γ (t) for the distribution
P (Z,N, t), we consider only the contributions from the
unstable modes. To this purpose, we put the weight function
f (k) equal to zero for k larger than the value beyond
which the rate �k becomes negative. However, to evaluate
the total value of the covariance matrix, we will consider
the sum of the asymptotic value of the contribution due to
isovectorlike fluctuations, Eq. (14) and the contribution due to
the isoscalarlike modes, Eq. (7), that grows exponentially.

The variance for the unstable fluctuations of the isoscalar
density, σ 2(k) = σ 2

1,1(k) + σ 2
2,2(k) + 2σ 2

1,2(k), is displayed in
Fig. 1 at four different times. We only report the results
obtained with the “superstiff” symmetry term. For the isoscalar
fluctuations the “soft” asymmetry term gives almost undistin-
guishable curves. The values chosen for the density � = 0.3�eq

and for the temperature T = 4.5 MeV are in the range expected
for the multifragmentation process [19,34]. For the asymmetry
we choose a value of α = 0.2. Figure 1 shows that the variance
becomes a more and more peaked function about the most
unstable mode with increasing time. It is worth noting that the
values of the variance of our calculations quite well compare
with those obtained in Ref. [35] within a different approach
including the effects of the nucleon-nucleon collisions. This
supports the suggestion that the development and the growth of
the fluctuations are essentially determined by the instabilities
of the mean field, while the seeds are provided by the thermal
agitation of the system.

We now turn to evaluate fragment isotopic distributions. In
order to take into account that Z and N are discrete variables
we express the probability of finding a correlation domain
containing Z protons and N neutrons, Y (Z,N, t), through the
integral

Y (Z,N, t) =
∫ Z

Z−1
dZ

∫ N

N−1
dNP (Z,N, t). (26)

For large Z and N, Y (Z,N, t) tends to coincide with
P (Z,N, t).

We first consider Eq. (19) to calculate the distribution
P (Z,N, t) and the probability Y (Z,N, t). They are deter-
mined once the ratio r0/L(t) and the parameter γ (t) have been
calculated for given values of �, T and average asymmetry α

of the system at the breakup. The length L(t) characterizes the
decrease of the correlation function with distance. The proce-
dure to determine its value has been extensively discussed in
Refs. [14,15]. Here, we focus our attention on the calculation
of the parameter γ (t) characterizing the widths of the isotopic
distributions.

This can be evaluated by rewriting Eq. (18) with the
assumptions about the weight functions introduced in Sec. II:

γ (t) = 1 −
∫

dkσ 2
1,2(k, t)|f (k)|2 ∫

dkσ 2
1,2(k, t)|f (k)|2∫

dkσ 2
1,1(k, t)|f (k)|2 ∫

dkσ 2
2,2(k, t)|f (k)|2 .

(27)

Since the magnitude of the isospin–distillation effect, i.e.,
the ratio σ 2

1,2(k)/σ 2
1,1(k) = σ 2

2,2(k)/σ 2
1,2(k), depends on the

wave number k, even considering only the contribution of
the isoscalarlike modes to σ 2

i,j (k), one obtains a nonvanishing
value of the width γ . Considering also the contribution of
isovectorlike fluctuations, the width γ increases, as we will
show in the following.

For values of the asymmetry α of nuclear interest, the
parameter γ (t) turns out to be about 10−3 for both the con-
sidered asymmetry terms in the nucleon–nucleon interaction
(“soft” and “superstiff”). As a general trend, the parameter
γ (t) increases with increasing asymmetry and density of the
decomposing system, and decreases with the time.

In Fig. 2 we report the isotopic yields of Z = 6 fragment,
calculated according to Eqs. (19) and (26) for two different
values of the asymmetry: α = 0.1 and α = 0.2. The used
values of the parameters T = 4.5 MeV, � = 0.3�eq, and t =
125 fm/c, where t is the time that the system spends in
the instability region, are compatible with the analogous
values obtained within the SMF approach of Ref. [8]. We
notice that the asymmetry α has to be considered as the
average asymmetry of final fragments, that already includes
the distillation effect, from which one deduces the ratio r01/r02

in Eq. (19). According to SMF calculations, the asymmetry
of the initial unstable matter, that is needed to calculate the
parameter γ (t), has to be increased by 10% (5%) in the case of
“soft” (“superstiff”) interactions adopted in our calculations.
For the dynamical correlation length we have chosen the value
L = 1.3 r0. This value corresponds to the effective exponent
τeff = 1.65 of the power law Y (Z) = Y0Z

−τeff for fragment
distribution [15]. In the figure we display the results obtained
with the “superstiff” asymmetry term and with the “soft”
asymmetry term of the nucleon–nucleon interaction. Moreover
we compare also the relative contribution of isoscalarlike and
isovectorlike fluctuations to the width.

In the “superstiff” case isovectorlike oscillations are
suppressed for the considered values of �, T , and α, i.e.,
Eq. (4) has only one pole, so the width comes essentially
from the dispersion of the chemical effect in the isoscalarlike
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FIG. 2. Calculated isotopic yields of Z = 6 fragment with the
“superstiff” symmetry term (diamonds) and the “soft” symmetry
term (triangles). The circles represent the results obtained neglecting
the contribution of isovectorlike fluctuations in the “soft” case. The
values of �, T , L, and t are � = 0.3�eq, T = 4.5 MeV, L = 1.3 r0,
and t = 125 fm/c. Top panel: α = 0.1, the value of the parameter
γ (t) is γ (t) = 1.02 10−3 for the “superstiff” symmetry term, for the
“soft” symmetry term γ (t) = 0.69 10−3 and γ (t) = 0.37 10−3, with
and without the contributions from the isovectorlike fluctuations,
respectively. Bottom panel: α = 0.2, the value of the parameter
γ (t) is γ (t) = 1.62 10−3 for the “superstiff” symmetry term, for the
“soft” symmetry term γ (t) = 0.89 10−3 and γ (t) = 0.56 10−3, with
and without the contributions from the isovectorlike fluctuations,
respectively.

fluctuations (diamonds). In the “soft” case, the full calculation
is represented by triangles, while the result obtained taking into
account only the contribution from the isoscalarlike modes is
represented by circles. Comparing diamonds and circles, we
observe that the “superstiff” asymmetry term gives rise to a
wider isotopic distribution. This is due to the fact that the “soft”
asymmetry term, at the considered density, is more effective
to drive fragments closer to the average asymmetry value,
with respect to an asymmetry term with a stronger density
dependence. Indeed we find that, in spite of the competition
with Coulomb and surface effects, the isospin distillation
mechanism does not change much with the wave number k,
in the “soft” case. The counterpart in our formalism is that in
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FIG. 3. Isotopic distributions calculated according to the correla-
tion volume prescription [Eq. (21)]. The values of the parameters and
the symbols are the same as in Fig 2.

this case the behaviors of the components of the covariance
matrix, as functions of k, are more similar each other reducing
the width of the isotopic distribution. However, adding the
contributions due to the isovectorlike fluctuations, the total
width obtained in the “soft” case (triangles) becomes closer
to the “superstiff” results. It is also possible to observe that
the contribution of the isovectorlike fluctuations to the full
width is more important at smaller asymmetry. This is because
isovectorlike fluctuations become weaker when increasing the
asymmetry of the matter.

Figure 2 also shows that the width of the isotopic yields
increases with asymmetry. This corresponds to the general
property that for more neutron–rich systems the density–
density response function of neutrons is enhanced with respect
to that of protons. In addition, we can see that the more
neutron–rich system (α = 0.2) produces the more neutron–
rich isotopes, as expected.

It is worth to remark that both the overall behavior and the
widths of the distributions of Fig. 2 favorably compare with the
corresponding distributions for primary fragments calculated
within the SMF approach [23].

In Fig. 3 we present isotopic distributions obtained using
the correlation volume prescription [Eq. (21)], with Ā = 20.
This value corresponds to the average size of intermediate
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FIG. 4. Isotopic ratio R21(N, Z) = Yα=0.2(N,Z)/Yα=0.1(N, Z)
calculated with the “superstiff” symmetry term (solid lines ) and
with the “soft” symmetry term (dashed lines). Lines correspond to
different values of Z, Z = 3 − 8 from left to right. The values of
remaining parameters are the same as in Fig 2.

mass fragments, as obtained in the considered conditions
of density and temperature. As one can see by comparing
Figs. 2 and 3, results are not very different with the two
prescriptions.

The ratio between isotopic yields observed in two different
reactions, R21(N,Z) = Yα2 (N,Z)/Yα1 (N,Z), shows a very
simple behavior. As a function of Z and N, it can well be
fitted by an exponential law (the so-called isoscaling rela-
tionship) [9,10,21,22]. In addition, the isoscaling relationship
has been reproduced by SMF-model calculations also for the
distributions of primary fragments [23]. This particular feature
of the isotopic distributions can represent an effective tool
to compare isotopic distributions from systems with different
N/Z ratios.
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FIG. 5. Same as in Fig. 4 but using only the “superstiff” symmetry
term and for two different values of the density: solid lines correspond
to � = 0.3 �eq and t = 125 fm/c, dashed lines correspond to � =
0.4 �eq and t = 150 fm/c.
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FIG. 6. Comparison of calculated isotopic ratio R21(N, Z) =
Yα=0.195(N,Z)/Yα=0.13(N,Z) (diamonds) with the fit for primary
fragments of Ref. [23] (solid lines). From left to right Z =
3, 4, 5, 6, 7, 8. Calculations are done with the “superstiff” symmetry
term. The values of density �, temperature T, time t, and ratio L/r0

are the same as in Fig. 2.

The isotopic ratio R21(N,Z) calculated in our approach,
according to Eqs. (19) and (26), for two different values of the
asymmetry parameter, α2 = 0.2 and α1 = 0.1, is displayed in
Figs. 4 and 5. In Fig. 4 we compare the values of R21(N,Z) as
a function of N, obtained with the “superstiff” symmetry term
and with the “soft” symmetry term. The linear behavior, in
logaritmic scale, with the same slope for every Z is reproduced
in both cases within a satisfying approximation. Because of the
smaller value of the width parameter γ (t), the “soft” symmetry
term gives a steeper slope with respect to the “superstiff” term.
The average values of the slope approximatively are 2.2 ± 0.2
and 1.5 ± 0.15 for the “soft” case and the “superstiff” case
respectively.

In Fig. 5 the ratio R21(N,Z) is displayed for two values
of the density of the system at the breakup. In order to
obtain fluctuations of similar magnitude in the two cases, two
different times the system spends in the instability region are
considered. Nevertheless, a behavior with a steeper slope is
observed in the more unstable case. This is due to a smaller
value of γ (t) in this case, since, for a given charge asymmetry,
the response functions of protons and of neutrons tend to be
more similar with decreasing density.

We now perform a more quantitative comparison between
predictions of our approach and results for primary frag-
ments of the SMF-model calculations of Ref. [23]. To this
purpose we adopt for the average asymmetry of fragments
the values predicted by the SMF model for semicentral
collisions of 112Sn+112Sn and 124Sn+124Sn [8,23]: α1 = 0.13
and α2 = 0.195, respectively. In both the approaches the same
“superstiff” symmetry term for the effective interaction is
used. Also the values of density � = 0.3�eq, temperature
T = 4.5 MeV, and time spent at the breakup t = 125 fm/c are
chosen according to the results of SMF-model calculations.
Figure 6 shows the isotopic ratio R21(N,Z) calculated with
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our approach and the curves obtained in Ref. [23] by fitting the
results of the SMF model with an exponential law. We observe
a remarkable agreement between the results of our nuclear
matter calculations and the simulations of the SMF model.

IV. CONCLUSIONS

In this article we discuss relevant observables of multifrag-
mentation processes in charge asymmetric nuclear matter, such
as the isotopic distribution of intermediate–mass fragments,
as obtained within the spinodal decomposition scenario, on
the basis of an analytical approach. Fragmentation happens
due to the development of isoscalarlike unstable modes, i.e.,
unstable density oscillations with also a chemical component,
leading to the formation of more symmetric fragments. We
find that the isotopic distributions are peaked at a value
given by the average distillation effect, while the width is
determined by the dispersion of the chemical effect among
the relevant unstable modes and by isovectorlike fluctuations
present in the matter that undergoes spinodal decomposition.
The size of this dispersion is mostly due to the competition
between symmetry energy effects (that favor the formation of
symmetric fragments) and the Coulomb repulsion, that acts
against the concentration of protons in large density domains,
expecially for modes with large wavelength. Clearly the net
result of this competion also depends on the EOS used. Smaller
widths are obtained with a “soft” symmetry energy term.
However, the contribution due to isovectorlike fluctuations is
more important in the “soft” case, indeed in the “superstiff”
case isovector oscillations are suppressed. Hence finally the
isotopic distributions are quite similar when using the two
parametrizations of the symmetry energy.

In particular, we find that, when considering two systems
with different asymmetry, the isotopic (or isotonic) yields
obey an approximate isoscaling, with a slope connected to

the difference betwen the asymmetries of the two systems
and to the differences between the widths of the isotopic
distributions. Hence isoscaling properties can be recovered
in a dynamical picture. We notice that isoscaling has been
found in dynamical simulations of heavy ion collisions, such
as stochastic mean field [23] and antisymmetrized molecular
dynamics calculations [36].

The isoscaling parameters are also connected to the prop-
erties of the symmetry term in the EOS. Indeed we have
seen that a stiffer behavior of the symmetry energy term
yields larger isotopic widths, leading to smaller values of
the slope (see Fig. 4). However, as reported in Ref. [8], we
also observe that in collisions of charge asymmetric systems,
preequilibrium emission is less neutron rich when using a
stiffer parametrization of the symmetry term (thus leading
to more asymmetric fragments), with respect to the “soft”
case. Therefore, in the isoscaling analysis, there could be a
compensation between the average asymmetry of fragments
(larger in the “stiff” case) and the width of the distribution
(also larger in the “stiff” case). In fact, for the systems
considered in Ref. [23], similar values of the slope are obtained
for the two parametrizations considered for the symmetry
energy.

It may also be interesting to notice that the values obtained
in our calculations are larger than the predictions of statistical
multifragmentation models, see Ref. [22]. Of course this
picture can be modified by the secondary deexcitation process,
that reduces the asymmetry of fragments and, consequently,
the slopes deduced from isoscaling. Hence the final distribu-
tions can be quite different from the primary ones. A more
detailed study, aiming to extract information on the primary
distributions and on the fragmentation mechanism, would
require the introduction of more sophisticated observables,
probably based on an event by event analysis, in line with
the recent investigations of correlations between intermediate–
mass fragments [18].
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