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Dynamics and thermodynamics of fragment emission from excited sources
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In this paper we study the process of fragmentation of highly excited Lennard-Jones drops by studying
the emission of stable fragments (clusters recognizable in configuration space that live more than a minimum
lifetime). We focus on the dynamics and thermodynamics of the emitting sources and show, among other things,
that this kind of process is a mixture of sequential and simultaneous events and that simultaneous events have a
broad time distribution. We also show how a local equilibrium scenario comes up on top of expanding collective
motion, allowing us to define and explore a local temperature, which turns out to be a strongly time-dependent
quantity, signaling that we are facing an out-of-equilibrium process.
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I. INTRODUCTION

The problem of fragmentation attracts the interest of
physicists in many branches of physics. In particular, in the
field of metallic clusters and nuclear collisions, one deals with
systems that are both finite and nonextensive. In these cases,
the size of the system under analysis is near the range of the
interaction potential and calls for a careful analysis.

This problem has been analyzed from different points of
view, and we classify them in two main groups, i.e., statistical
models and dynamical models. In the first case [1–3] the
main assumption is that the fragmentation process is driven
by phase-space occupancies. The ever-present assumption
of freeze-out volume states that the system fragments in an
equilibrium scenario at a given fixed volume and that thermal
and/or chemical equilibrium is reached, in correspondence
with the description chosen by the researcher (i.e., micro-
canonical, canonical, or grand canonical). This kind of analysis
has also been performed in systems that have a priori little
relation with the nuclear problem, as for instance, the lattice
gas model [4] and the Ising model [5]. The motivation for
the use of these kinds of systems is that they display true
phase transitions that are supposed to take place in nuclear
systems in the multifragmentation regime.

Recently, statistical models have been extended to the
isobaric isothermal ensemble [6]. Even in this kind of
formulation, there have been efforts to include nonequilibrium
effects like, for example, the presence of expansive collective
motion [4].

Dynamical models include, among others, classical [7–10]
and quantum [11,12] types, which are fully microscopic. This
category also includes those based on numerical realization of
kinetic equations such as the Boltzmann-Uehling-Uhlenback,
and the VLD. Focusing on the fully microscopic models, their
main advantage is that we can analyze correlations of all orders
at all times. Moreover, nonequilibrium features of the process
can be readily explored.

In what follows, we will focus on the analysis of small
Lennard-Jones (LJ) drops, i.e., a system in which the dynamics
is generated by a Hamiltonian with a very short-range strong

repulsion and a short-range attraction. In this way, we retain
the main characteristics of the nuclear interaction force. On the
other hand, all quantum properties are disregarded. Quantum
features like the Pauli exclusion principle, wave dynamics, or
shell effects are expected to play a stronger role in the later
stage of the evolution and cooling of the excited fragments than
in the early highly collisional stage of the reaction; therefore,
our approach gives the general classical framework which
should help in understanding the true nuclear behavior.

Continuing with a series of previous works, we will study
the dynamics of highly excited 147-particle LJ drops [8,13]
(and references therein). Previously, we mainly considered
the problem of fragment formation. We have shown that this
phenomenon takes place in phase space, and as such it is not
an experimental observable. Only emitted fragments can be
detected experimentally, i.e., when they are well defined in
configuration space. In this report, we will focus our attention
on the properties of the emitting sources and the corresponding
emitted fragments. At this point, it is worthwhile to define what
we understand as emission. We say that a fragment has been
emitted when it is recognizable in configuration space. We
have already made this classification [14] and have shown that
there are well-defined time scales for the processes of fragment
formation and fragment emission.

There are many unsolved questions regarding the fragmen-
tation process. One of the main ones is the proper charac-
terization of the degree of equilibration of the fragmenting
system. If system equilibration and fragmentation are driven
by phase-space accessibility, no traces of collective expanding
motion should be present (no Coulomb force is present in
our calculations, and collective motion can only be generated
by interparticle collisions). Moreover, this equilibrated state
should be detectable in our simulations. In fact, we will
show that no evidence of such behavior emerges from our
calculations.

This equilibrium problem is also related to the sequential
vs simultaneous pictures. To explore this effect we will define
a proper time scale. The numerical simulations are performed
in such a way that coordinates and momenta are recorded
every one-fifth of the natural period (one-fifth of the inverse of
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Einstein’s frequency), and then we will define as simultaneous
all events that take place within one natural period. In this
way, we will show that both simultaneous and sequential
fragmentations coexist at all energies.

Because of this mixture of sequential and simultaneous
fragmentation, it is relevant to study the dynamical and
thermodynamical evolution of the biggest source. In particular,
we will use the concept of effective temperature, as is
usually done in fragmentation studies. We will about effective
temperature because there is no such thing as a heat bath, but
there is evidence [14] that some degree of local equilibration
is attained by the system, in particular at the time of fragment
formation. In fact, our effective temperature will be related
to the intrinsic (chaotic) kinetic energy, i.e., what remains
from the total kinetic energy once the part related to collective
degrees of freedom is removed. In this way, we will show
that the biggest source cools down as it expands and emits
fragments.

Finally, we will show that the reducibility effect (i.e.,
the possibility of describing the fragmentation process as a
sequence of independent fragment emission events) arises
naturally in the present context.

This paper is organized as follows: In Sec. II, we review
the different fragment recognition algorithms currently in
use. In Sec. III, we present different temperature definitions
relevant to the analysis of the evolution of the excited drops.
Section IV deals with the model we study. Section V includes
all the results we have obtained in our numerical simulations
(fragment mass distributions, characteristic times, temperature
of the emitting sources, role of the radial flux, etc.). Finally,
conclusions will be drawn.

II. FRAGMENT RECOGNITION ALGORITHMS

The problem of analyzing molecular dynamics calculations
is an old one and is not completely settled. To our knowledge,
there are three main fragment recognition algorithms in use:
MST, MSTE, and ECRA.

The simplest and more intuitive cluster definition is based
on correlations in configuration space: particle i belongs to
cluster C if there is another particle j that belongs to C
and |ri − rj| � rcl, where rcl is the clusterization radius. If
the interaction potential has a cutoff radius rcut, then rcl

must be equal or smaller than rcut; in this work, we chose
rcl = rcut = 3σ . The algorithm that recognizes these clusters
is known as the minimum spanning tree (MST). The main
drawbacks of this method is that only correlations in q space
are used, neglecting completely the effect of momentum.

An extension of the MST is the minimum spanning tree in
energy space (MSTE) algorithm [15]. In this case, a given set
of particles i, j, . . . , k belongs to the same cluster Ci if

∀iεCi, ∃jεCi/eij � 01, (1)

where eij = V (rij ) + (pi − pj )2/2µ, and µ is the reduced
mass of the pair {i, j}. MSTE searches for configurational
correlations between particles considering the relative mo-
menta of particle pairs. In spite of not being supported by
a physically sound definition of a cluster, the MSTE algorithm

typically recognizes fragments earlier than MST. Furthermore,
because of its sensitivity to recognizing promptly emitted
particles, it can be useful for studying the preequilibrium
energy distribution of the participant particles.

A more robust algorithm is based on the most-bound
partition (MBP) of the system [16]. The MBP is the set
of clusters {Ci} for which the sum of the fragment internal
energies attains its minimum value, that is,

{Ci} = argmin
{Ci }

[
E{Ci } =

∑
i

E
Ci

int

]
(2)

E
Ci

int =
∑

i


∑

j∈Ci

Kc.m.
j +

∑
j,k∈Ci

j � k

Vj,k


 ,

where the first sum in (3) is over the clusters of the partition,
Kc.m.

j is the kinetic energy of particle j measured in the center of
mass frame of the cluster that contains particle j, and Vij stands
for the interparticle potential. It can be shown that clusters
belonging to the MBP are related to the mostbound density
fluctuation in r-p space [16].

The algorithm that finds the MBP is known as the early
cluster recognition algorithm (ECRA). Since ECRA searches
for the most-bound density fluctuations in q-p space, valuable
space and velocity correlations can be extracted at all times
especially at the very early stages of the evolution. This has
been used extensively in many fragmentation studies [7,8,16,
17] and has helped in discovering that fragments are formed
very early in the evolution.

When we use the three above-mentioned algorithms and we
apply a criterion based on the average microscopic stability of
the clusters (see, for example [7]) to determine the correspond-
ing times of fragment formation, three time scales emerge,
which satisfy the following relation: τECRA < τMSTE < τMST.
But the meaning of each of these times is quite different.
τECRA refers to that time at which, on average, clusters attain
microscopic stability regardless of the structure of the system
in q space. τMSTE has a rather obscure meaning because the
MSTE algorithm is not well defined from the physical point
of view for dynamical problems. Finally τMST refers to that
time at which, on average, microscopic stability is attained for
free fragments. Please take into account that depending on the
definition of rcl this last condition can be rephrased as “weakly
interacting fragments.”

III. TEMPERATURES

Because we are aiming to perform some kind of thermody-
namic analysis of the system, a prescription for the calculation
of the temperature in small (and probably out of equilibrium)
systems is to be given. It might be proper to remind the reader
that in our case, and also in nuclear experiments, systems
expand and fragment in a vacuum; i.e., there is no external
heat bath or external pressure. Therefore, our definitions of
temperature stand for an “effective kinetic temperature” and
are not to be confused with the usual thermodynamic definition
of temperature. On the other hand, we will frequently make
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use of the concept of local temperature, which is accepted in
modern thermodynamical theory [18]. We should also keep
in mind that we are going to analyze physical processes in
the framework of the molecular dynamics ensemble, which
is the microcanonical ensemble plus the conservation of total
linear and angular momentum. Let us assume that at a given
stage of the evolution of the system we can identify the biggest
fragment according to the MST algorithm.

To study the time evolution of the thermodynamics of the
biggest emitting source, we define the local temperature Tloc(t)
as the velocity fluctuations around the mean radial expansion
of the biggest source. So, we first introduce the mean radial
velocity of the biggest source,

vrad(t) =
〈

1

NBF

NBF∑
i=1

vi(t) · ri(t)

|ri(t)|

〉
e

, (3)

Where NBF indicates the number of particles of the biggest
source at time t, and 〈 〉e denotes an average over all events.
Both vi(t) and ri(t) are measured from the center of mass of
the biggest source. Taking into account that collective motion
should not be considered to calculate the temperature, we
define the local temperature Tloc as

Tloc(t) = 2

3NBF

NBF∑
i=1

m

2
[vi(t) − vrad(t) · r̂i(t)]

2. (4)

This definition is closely related to the one used in [7] for
the analysis of expanding systems. In that case, we obtained
the local temperature of the system by the following procedure.
We divided our drops in concentric spherical regions, centered
in the c.m. of the system, of width δr = 2σ . The mean radial
velocity of region i in this case is

v
(i)
radshell(t) = 1

Ni(t)

∑
ev

∑
j∈i

vj (t) · rj (t)

|rj (t)| , (5)

where the first sum runs over the different events for a given
energy, the second over the particles j that belong, at time t, to
region i; vj and rj are the velocity and position of particle j .
Ni(t) is total number of particles belonging to region i in all
the events. Then the local temperature, which will be called
T

(i)
shell, is defined as

T
(i)

shell = 2

3

1

Ni

∑
j∈i

1

2
m

(
vj − v

(i)
rad · rj

|rj |

)2

, (6)

where Ni is the total number of particles in cell i in all events.
The validity of Eqs. (4) and (6) relies on the conjecture

that the fragmenting system achieves local equilibrium (local
equilibrium hypothesis). Whereas in the last case all particles
in the inner shells should be equilibrated, the advantage of
dealing with the local temperature (4) relies on the fact that
only the biggest source is assumed to have reached some
degree of equilibration. In this paper, we will focus mainly
on this definition. If the biggest source is assumed to have
reached equilibrium, the velocity distribution should be

f (v) = ρ

(
mβ

2π

)3/2

e−β m
2 (v−vrad)2

. (7)

A first approach on the study of the local equilibrium
hypothesis (LEH) consists in analyzing the isotropy of the
velocity fluctuations around the expansion. For this purpose,
we introduce the radial and transversal local temperatures

T rad
loc = 2

NBF

NBF∑
i=1

m

2
{[(vi(t) − vrad(t) · r̂i(t)] · r̂i(t)}2, (8)

T tra
loc = 2

NBF

NBF∑
i=1

m

2
{[(vi(t) − vrad(t) · r̂i(t)] · r̂⊥i(t)}2. (9)

A more profound analysis of the accuracy of the LEH is the
study of the velocity distribution function and its comparison
with (7). For this purpose, we fit the velocity distribution
resulting from our numerical simulations with the formula
(7) and then we calculate the significance S of this fit.

To address the question of whether both distributions are
different, we will perform a Pearson χ2 test [19]. If the
significance is high enough not to reject the hypothesis that
both distributions are different, we obtain as a byproduct that
the effective kinetic temperature can be calculated as

Tmax = mσ 2, (10)

where σ is the width of the velocity distribution.

IV. THE MODEL

The system under study is composed, as in previous
works, of N = 147 particles interacting via a truncated and
shifted Lennard-Jones potential, with a cutoff radius rcut = 3σ .
Energies are measured in units of the potential well (ε),
and the distance at which the LJ potential changes sign (σ ),
respectively. The unit of time used is t0 =

√
σ 2m/48ε.

The typical frequency of such potential is ν0 ∼ 1
5t0

. This
defines a minimum time scale for the stability of an interacting
system.

The equations of motion were integrated using the velocity
Verlet algorithm, which preserves volume in phase space.
We used an integration time step of 0.01t0 and performed
a microcanonical sampling every 1t0 up to a final time of
t = 250t0. This time scale was chosen because is has proven
to be long enough to allow the system to attain microscopic
stability.

As stated in the previous section, we are mainly interested
in the properties of fragments in configuration space. Then we
are to analyze the MD evolutions using the MST algorithm. We
define a fragmentation process when a source emits a stable
fragment of at least four particles, i.e., the MST determination
of fragments is complemented with a temporal stability
condition, the emitted particles must remain together for at
least 5t0 to be considered an emitted fragment. Otherwise, if
the particles fly apart within 5t0 we will consider it to be an
evaporation process.

The evolutions are analyzed in an event-by-event basis, and
the times at which fragmentation takes place are determined.
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FIG. 1. (Color online) Asymptotic mass spectra. Energies E =
−2.0ε, 0.0ε, and 2.0ε are displayed in (a), (b), and (c), respectively.

V. NUMERICAL EXPERIMENTS

Initial configurations are built as dense drops in q space
(region C of the phase diagram of a finite LJ system, see
[20]). The total linear and angular momentum of the drops
are removed, and then velocities are scaled with a Maxwellian
distribution so that the system has the desired value of total
energy.

We covered a broad range of energies, namely, −2.0ε,

−1.0ε,−0.5ε,−0.2ε, 0.0ε, 0.2ε, 0.5ε, 1.0ε, and 2.0ε (all re-
ported energies are per particle). For each energy, 1000 events
were calculated.

A. Fragment mass distributions

The range of energies we used covers all regions of interest
in multifragmentation. In Fig. 1, it can be clearly seen that
the asymptotic mass distributions go from U-shaped, at low
energies, to exponentially decaying ones, at high energies.
Between these shapes a power-law (panel b) in Fig. 1 can be
found. Technical details of the fitting procedure used to identify
these mass spectra as a power law are given elsewhere [21], but
we would like to point out that the fitting procedure excludes
the biggest fragment at each event, and also explicitly excludes
monomers, dimers, and trimers.

We have studied the distribution of the number of times the
system fragments (NTSF) for all events as a function of the
energy of the system. In this case, our approach is to follow
the dynamics of the biggest source. At a given time ti = nt0, we
identify the biggest MST fragment and check for the particles
that belonged to this fragment at ti and formed a smaller cluster
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FIG. 2. (Color online) Distribution of NTSF for E =
−2.0ε, 0.0ε, and 2.0ε are shown in (a), (b), and (c), respectively.

at t = (n + 5)t0. We have chosen 5t0 as our threshold to accept
the cluster as stable because that is of the order of the inverse
of the natural frequency. In this way, we show in Fig. 2 this
distribution for energies per particle E = −2.0ε, 0.0ε, and
2.0ε. It can be easily seen that, in this range of energy, as
the energy of the system is increased, the maximum of the
multiplicity distribution shifts toward higher values while the
width of the distribution increases.

B. Characteristic times

The characterization of the fragmentation process as
sequential or simultaneous is a matter of debate. In our calcu-
lation, the analysis of these kinds of things is straightforward
once the proper time scales are defined. The dynamics of our
system is driven by the LJ interaction potential. This potential
has a natural period (inverse of the Einstein frequency) of
5t0, with t0 defined above. According to this, as stated above,
particles will be considered as a cluster if they remain together
for at least one period. We then define as simultaneous all
emissions, i.e. all fragments that can be recognized as emitted,
during a period of 5t0 and remain together at least for that
period of time.

There are different characteristic times that can be explored.
First, we will look at the first and last time of emission.
This means that we record for each of our evolutions the
time at which the first fragmentation takes place according
to our definition of an emission process. The results of that
calculation are displayed in Fig. 3.

We can see that at high energies (E = 2.0ε), the distribution
of times is narrower than at lower energies and does not seem
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FIG. 3. (Color online) Distribution of first (full line) and last
(dotted line) time of emission. Energies: E = −2.0ε, 0.0ε, and 2.0ε

are displayed in panels (a), (b), and (c), respectively.

to fit the view of a simultaneous process in configuration space.
(This issue will be further analyzed in Sec. V G). Another view
of the same data is shown in Fig. 4 in which what we show is the
corresponding lapse of time between the first and last emission
for each event. Once again, the distribution gets broader as
the energy gets lower (the comparison should be restricted
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FIG. 4. (Color online) Same as Fig. 3, but for lapse of time
between the first and last emissions.
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FIG. 5. (Color online) Same as Fig. 3, but for mass of the emitting
sources for the first (full line) and last (dotted line) emissions.

to events corresponding to E = 0.0ε and 2.0ε because of
the very few emission processes found at E = −2.0ε. To
further illustrate the kind of process we are facing, we show in
Fig. 5 the distribution of the mass of the emitting sources for
the times of first and last emissions.

The most relevant result of this figure is the presence, in
panel (b), of a broad range of masses at which the last emission
takes place, which is to be expected since the value of energy
(E = 0.0ε) corresponds to a power-law mass distribution.

The reason why we stated above that these results do
not seem to fit the simultaneous emission picture without
ensuring it is because we can also explore the possibility
of the occurrence of massive emission events (when a rather
large portion of the mass of the biggest is emitted within 5t0).
Even though emission events can be found in a rather large
scale of time, one may wonder if massive emission events
have a definite characteristic time which would sustain the
simultaneous picture.

We have used two definitions of massive emission event
(MEE). The first considers a MEE if the mass of the emitted
fragment is at least 30% of the total mass of the biggest source
at the time of emission. The second states that a MEE has
taken place if the mass of the biggest emitted fragment is at
least composed of 40 particles.

The results of such calculations are shown in Fig. 6. It is
immediately seen that massive emission, according to defini-
tion 1, can take place at any time during the evolution; whereas
under the second definition (which is more restrictive), almost
no massive events occur for times greater than t ∼ 100t0. Also
notice that the lower value of energy we used (E = −2.0ε) is
not present because no massive fragmentations were found.
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FIG. 6. (Color online) Distribution of emission times of massive
fragments using definition 1 (top) and definition 2 (bottom); see text
for details.

When gathering all these results together, we conclude that
for the energies displayed in these figures, the process can be
viewed as a mixture of sequential and simultaneous breakup.

C. Temperatures of the emitting sources

It is natural to think that as the sources emit fragments
they will undergo a cooling process. We should keep in mind
that we are trying to analyze things in an event-by-event basis,
without performing averages that would obscure the picture. To
gain knowledge of the microscopic view of the fragmentation
phenomena, we calculated the evolution of the temperature, for
a given energy and for each time step in which a fragmentation
event takes place. The temperature is that of the emitting source
in the time step prior to the time step in which the emission
takes place. We then plot all this information in a single graph
(see Fig. 7).
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FIG. 7. (Color online) Internal kinetic energy of the emitting
source as a function of its total internal energy for three NTSFs.
Empty (red) squares denote the 1st emission process. Empty (green)
circles denote the 8th emission process, and empty (blue) triangles
indicate the 12th emission process. Full (black) triangles stand for the
caloric curve of the expanding system.

In Fig. 7, we show the result for the analysis of 1000
events at an initial energy of E = 2.0ε. To make the figure
more readable, we are only showing the above-described
temperature for the first, last, and maximum multiplicity
fragmentation events. It is clearly seen that the internal kinetic
energy is linear with the total internal energy and displays a
cooling behavior. This overall behavior will not change if we
consider not only fragmentation events but also evaporation
events. It is interesting to note that if one were to calculate
temperatures from the analysis of the emitted light fragments
(monomers, dimers, and trimers), one would be sampling
a source that starting from a rather high temperature cools
down monotonically. So the corresponding temperature should
display a maximum at early times and decrease later [22].
This is not a problem at all because the system is out of
equilibrium, and therefore the kind of measurements we are
referring to at this point do not correspond to stable systems.
What might be improper is to talk about temperature instead
of “effective temperature.” A more quantitative calculation is
under development and will be communicated shortly.

D. The role of radial flux

In a series of previous works [9], we showed that if the
presence of collective (nonthermal) motion is not taken into
account, one obtains a wrong result: the presence of a vapor
branch in to the caloric curve. Only when the radial flux is
properly incorporated into the definition of the temperature
does one find that the nonequilibrium process of multifrag-
mentation appears as an almost constant temperature region
at high energies. In particular, in paper [14] we calculated the
time of fragment formation of this system (using the ECRA
phase-space method). The values of the mean radial velocity
calculated for the biggest source in each event according to
Eq. (3) are shown in Fig. 8.

In Fig. 9 we show the local temperature of the biggest source
at time of fragment formation, as a function of the total energy
(full line). The dotted line is included to emphasize the effect
of not removing the radial collective motion when calculating
caloric curves. As explained in Sec. III, temperatures were
calculated from velocity fluctuations around the collective
motion.
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FIG. 8. (Color online) Radial flux as a function of energy at the
time of fragment formation τff .
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FIG. 9. (Color online) Local temperature of the biggest source
at τff (straight red line) and “fake temperature” (dotted blue line).
The fake temperature is calculated from the total kinetic energy of
the biggest source without taking into account the importance of the
radial flux.

To see how the picture emerging from a phase-space
analysis relates to the main topic of this paper, i.e., the analysis
in configuration space, we calculated the temperature of the
emitting sources at the stage of evolution that corresponds to
the maximum of the multiplicity distribution [for example,
looking at Fig. 2(b), the maximum of the distribution turns out
to be NTSF = 4)]. From this kind of analysis, we get the empty
circles of Fig. 10. It can be easily seen that both approaches
give the same temperature.

E. Local equilibrium hypothesis (LEH)

To check the hypothesis of local equilibrium, which we used
in previous sections, we performed the following calculation.
Because in a local equilibrium scenario the fluctuations of
velocity should be the same for the radial and transversal
directions, we evaluated Eqs. (8) and (9) for a single event
at the three energies chosen as examples in this work. In each
of the three panels of Fig. 11, each of which corresponds to
a different total energy (see caption for details), we show our
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FIG. 11. (Color online) Radial (dotted line), transversal (thin
line), and local (full line) temperatures of the biggest source for
E = −2.0ε (a), 0.0ε (b), and 2.0ε (c).

three definitions of temperature. It is immediately seen that
all of them are essentially the same, except in the very early
stages of the evolution (when times are much shorter than the
time of fragment formation). This suggests that the LEH at
time of fragment formation is plausible for all energies.

F. Maxwellian distribution of velocities

In this section, we will show that the velocity distribution
of the biggest source at time of fragment formation is indeed
Maxwellian. Moreover, the temperature obtained from the
standard deviation of the velocity distribution is almost exactly
the same as that of Eq. (4), showing the consistency of our
numerical studies. In Fig. 12, we show the histogram of the
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FIG. 12. (Color online) Velocity distribution (histogram) and
Maxwellian fit (dotted line) for E = +2.0ε.
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TABLE I. Comparison of thermometers and statistical signifi-
cance of the Maxwellian fit.

E(ε) Tlocal(ε) Tfit(ε) Tevent(ε) Tshell(ε) S

−2.0 0.627 ± 0.043 0.623 0.645 0.647 0.86
0.0 0.619 ± 0.077 0.630 0.608 0.674 0.82
2.0 0.587 ± 0.062 0.575 0.506 0.558 0.78

velocity distribution at time of fragment formation and its
Maxwellian fit for E = 2.0ε.

In addition to observing the excellent agreement between
the velocity distributions and their fits, we performed a Pearson
χ2 test, trying to reject the hypothesis that the distribution of
velocities differs from that corresponding to the Maxwellian
fit. We found a significance S above 0.25 for all cases, showing
that even with a very low confidence level like CL = 0.80, we
could reject the hypothesis that both distributions differ (i.e.,
the velocity distribution is indeed Maxwellian).

In Table I we show a cross comparison of different
thermometers. To the results already presented, we add
the temperature obtained from the Maxwellian fit of the
velocity distribution, and we also show the obtained statistical
significance.

G. Reducibility

Not long ago, Moretto and coworkers [23,24] proposed that
the complex process of fragment emission could be described
in terms of a binomial distribution. This approach rests on the
assumption that a single transition probability p is capable of
describing the emission process when no regard is paid to the
mass or composition of the emitted fragments. In this way,
the probability of emitting n fragments in a series of m trials
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FIG. 13. (Color online) Probability distribution (histograms) and
binomial fit (dotted line). For energies (from top to bottom and left to
right): E = −2.0ε, −0.2ε, 0.0ε, 0.2ε, 1.0ε, and 2.0ε.
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FIG. 14. (Color online) Probability of emiting 0 (red), 1 (green),
2 (blue), 3 (violet), 4 (cyan), and 5 (yellow) fragments as a function
of energy.

should follow the well-known binomial distribution

P m
n = m!

n!(m − n)!
pn(1 − p)m−n, (11)

in which m stands for the number of “trials,” while n stands
for the number of successes. Following [23], we associate the
parameter m with the maximum multiplicity for each energy
and p with the transition probability. In Fig. 13, we show the
result of such an analysis. The quality of the resulting fit is
remarkable indeed, specially when one considers that we are
facing an out-of-equilibrium nonsimultaneous process, while
the very nature of the binomial process requires a constant
value of p for the whole emission process.

To further illustrate the accuracy of this approach, we show
in Fig. 14 the calculated probability of emitting n fragments
during the entire process as a function of the total energy, with
n = 0–5. Pn is calculated assuming a binomial distribution
[Eq. (11)] with the value of p obtained from the best fit.

We will not further analyze the implications of this
binomial fit because we have not yet been able to calculate
microscopically the associated transitions barriers.

VI. CONCLUSIONS

In this paper, we have analyzed the dynamics and thermody-
namics of fragment emission from excited sources interacting
via a LJ potential. As this a classical system, our study provides
only a framework for the analysis of fragmenting quantal
systems. However, it gives relevant information since the LJ
potential resembles the nuclear interaction force and is capable
of undergoing phase transitions.

Focusing on the evolution of the biggest source and the
corresponding emitted fragments, we have shown that the
emission process cannot be cast into either a sequential
or a simultaneous scenario, because even though there are
many events in which fragments are emitted sequentially, the
phenomenon of massive emission is frequent enough to forbid
the characterization as a purely sequential one. Moreover,
when looking at fragments well defined in configuration space,
the process of emission cannot be cast into an isothermal
one, i.e., temperatures are time dependent. Furthermore,
there is a time dependence of the size of the emitting
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source. Therefore, standard thermodynamical models that fix
temperature and volume do not seem to be appropriate to
revealing the true nature of the phenomenon under analysis.
We have also shown, by analyzing the temperature of the
source at the stage of most probable multiplicity, that it is
possible to recover the caloric curve already obtained in
the frame of phase-space analysis. If we recall Table I, we
see that temperature can be determined according to a few
reasonable definitions, which provide consistent results in
all cases.

Two other interesting results have been obtained as a by
product of these calculations. First, the velocity distribution
functions of the particles that form the biggest source are strik-
ingly Maxwellian for times larger than the time of fragment
formation after the collective expanding mode is removed.

Second, the probability of fragment emission (summed-up
over all sizes) is remarkably binomial, suggesting a constancy
of the transition amplitudes. We do not have a microscopic
description of this constancy right now, but we are currently
working on it.

We hope that these findings will encourage the development
of new, more accurate and realistic models to describe nuclear
multifragmentation.
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