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Local scale transformations and extended matter distributions in nuclei
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Local scale transformations are made to vary the long-range properties of harmonic oscillator orbitals
conventionally used in model structure calculations of nuclear systems. The transformations ensure that those
oscillator states asymptotically have exponentially decaying forms consistent with a set of chosen single-nucleon
energies, leaving the structure essentially unchanged within the body of the nucleus. Application has been made
to the radioactive nuclei 6,8He and 11Li, and the resulting wave functions are used to generate g-folding optical
potentials for elastic scattering of those ions from hydrogen. As a consistency test, application has been made
to form wave functions for 40Ca, and they have been used also to specify relevant proton-40Ca optical potentials
with which elastic scattering has been predicted.
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I. INTRODUCTION

A topic of current interest is the description of the structures
of exotic nuclei, especially as one approaches the drip lines.
The light mass neutron/proton rich nuclei are particularly
suited for study as a number of these nuclei can be formed as
radioactive beams with which experiments to determine their
scattering cross sections can be made. Their scattering from
hydrogen targets is of special interest because this is currently
one of the best means by which the densities of such nuclei
can be studied microscopically. That is achievable because
predictions can be made of nucleon-nucleus (NA) scattering
(elastic and low excitation inelastic) with a folding model
scheme [1,2], in a manner consistent with that employed for
electron scattering. Such allows for a sensitive assessment of
the related matter densities of nuclei, as was demonstrated in
the case of 208Pb [2]. That is the case also for the scattering of
radioactive ions from hydrogen, as inverse kinematics equates
the process to the scattering of energetic protons from the ions
as targets. However, to make such predictions [1], three basic
aspects of the system under investigation are required. Where
possible, these properties must be determined independently
of the proton-nucleus ( pA) scattering system being studied.

One must start with a credible effective (in-medium) two-
nucleon (NN ) interaction. Numerous analyses (to 300 MeV)
now suggest that such can be deduced from NN g matrices, so-
lutions of Bruckner-Bethe-Goldstone (BBG) equations based
upon any realistic (free) NN potential. With such effective
interactions, analyses of NA scattering data become tests of
the description of the target nucleus, namely, of its proton and
neutron densities.

The two other ingredients come from the chosen model of
spectroscopy. In the procedure we adopt, they are determined
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from the folding of one-body density matrix elements
(OBDME) and single-particle (SP) wave functions, both of
which should be obtained from credible models of structure.
Such are normally large-scale structure models that describe
well the ground state properties (and low-lying excitation
spectra if pertinent) of the nucleus in question.

The third ingredient is the specification of the SP wave
functions, and it is that with which this paper is concerned.
For the moment, let us presume that SP wave functions can be
specified appropriately so that in making a g-folding optical
potential [1] there is nothing left to be parametrized as such.
Note that the g-folding method used requires single-particle
wave functions and not simply densities since the method
defines the nonlocality due to antisymmetrization and uses the
result without localization.

When all elements have been chosen with care, that is,
when appropriate modifications to the (free space) interactions
between the projectile nucleon and each and every target
nucleon caused by the nuclear medium are made, and when
OBDME and SP wave functions that describe the target well
are used (for stable nuclei that means spectra, electromagnetic
moments and transition rates, and electron scattering form
factors), then predictions of the scattering of nucleons from
such nuclear targets can be, and have been, made of angular and
integral observables [1]. That includes spin-dependent angular
observables. Furthermore, analyses of data from the scattering
of protons from 208Pb [2] clearly indicated a preferential model
of the structure of that nucleus so that 208Pb should have a
neutron skin thickness of 0.17 fm.

For radioactive nuclei, however, few static properties are
known and no electron scattering data exist to complement, and
to constrain analyses of, the existing limited hadron scattering
data. Structure models for those nuclei are currently a major
field of study and, of note for the studies we report, several
groups have made shell model calculations of the light-mass
radioactive nuclei, 6,8He and 11Li. For example, Navrátil and
Barrett [3,4] have made large-space calculations (up to 6h̄ω

in the model space) using interactions obtained directly from
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the NN G matrices which have the Reid93 NN interaction
as their base. Also Karataglidis et al. [5] calculated wave
functions for 6,8He within a complete (0 + 2 + 4) h̄ω model
space using the G matrix interaction of Zheng et al. [6] based
on the Nijmegen III NN interaction. They [7] also defined
wave functions for 11Li using a complete (0 + 2) h̄ω model
space and fitted potentials. From those wave functions the
OBDME to use in the descriptions of both proton elastic
scattering and of the (γ, π+) reaction (in the case of 6He
only [5]) were determined. Both elastic proton scattering and
charged pion photoproduction reactions probe the microscopic
structure of the nucleus in a way that preserves initial states
in the reaction so that the analyses of scattering or reaction
data should not be complicated by the need to describe details
of reaction products. With that assumption, the analyses [5]
confirmed 11Li to be a halo nucleus while both 8He and 9Li
are not. The analysis of the (then) available data on 6He did
not allow a conclusion on the halo structure in 6He to be
made. But the subsequent measurement and analysis of p-6He
scattering by Lagoyannis et al. [8], and later by Stepantsov
et al. [9], confirmed that 6He has an extended neutron
distribution consistent with a halo.

Frequently, in analyses of scattering data, harmonic
oscillator (HO) wave functions have been chosen to describe
single-nucleon bound states in nuclei. A more utilitarian
representation may be Woods-Saxon (WS) functions, as found
for 12C [10], for example. With the OBDME determined from
(0 + 2) h̄ω shell model wave functions and the single-nucleon
bound states appropriately specified, electron scattering form
factors from both the elastic and inelastic scattering of
electrons from 12C then were well fit [10]. But all SP
states of import in that case could not be specified by
a single defined WS potential, in order to account for a
complete shell model SP spectrum within the specified model
space. Nevertheless, to estimate effects of any halo attribute in
the nucleus requires variation of the SP wave functions from
the HO set defined by (large-space) shell model calculations.
Such has been attempted using WS wave functions, as origi-
nally used in the analysis of the strong E1 transition in 11Be
by Millener et al. [11]. In such cases, no constraining electron
scattering data exist. Even if there were, electron scattering
data primarily are a measure of the proton distribution of
the nucleus. Little information is obtained directly about the
neutron densities from such data.

In the case of a neutron halo, a specification of the
optical potential requires the use of wave functions with the
appropriate long-range behavior. This has been done with
the use of WS functions, somewhat artificially. Indeed, forcing
a halo structure on nuclei within the traditional (bound state)
shell model, with no coupling to the continuum, requires
bound state WS potentials to be adjusted so that certain shell
model states are weakly bound. A halo structure was given to
6He [5], for example, by setting the neutron 0p shell binding
at 2 MeV (near the single-neutron separation energy of 1.8
MeV [12]) and the sd shell and higher states at 0.5 MeV, as
dictated within the spirit of the shell model single-particle
spectrum. No single WS potential parametrization can give
all of those bound states having the relevant binding energies
[10].

TABLE I. Estimated binding energies (in MeV) for single-
nucleon shell model orbits in 6,8He and 11Li.

Orbit 6He 8He 11Li

Proton Neutron Proton Neutron Proton Neutron

0s 1
2

24 24 24 24 33 33
0p 3

2
16.5 4.0 16.5 14.5 15.7 7.7

0p 1
2

15.5 2.0 15.5 13.5 13.8 5.0
0d 5

2
7.0 2.0 7.0 5.0 2.0 0.8

0d 3
2

5.0 2.0 5.0 4.0 1.5 0.8
1s 1

2
7.0 2.0 7.0 5.0 2.8 0.8

0f –1p 2.0 2.0 2.0 2.0 0.8 0.8

However, a procedure exists that ensures bound state wave
functions will have asymptotically an appropriate exponential
behavior [13–15] whatever its originating form and without
sacrificing, too severely, bulk internal character of the shell
model structure. That involves making a local scale trans-
formation (LST) of the coordinate variable of the bound state
wave functions used in structure calculations (even if they have
been so used only implicitly). Namely, given large-space shell
model wave functions, we modify the tails of HO SP wave
functions in the least artificial way to ensure compatibility
with whatever choice we make for single-nucleon binding
energies. This is of special interest for “halo” nuclei, or
candidates for such. Note that within this context, binding
energy refers to the energy of each orbit within the shell model
SP spectrum. That does not equate to single-nucleon separation
energies.

Herein, Sec. II briefly recalls the properties of some such
special nuclei. Then in Secs. III and IV we explain the
formalism of the scale transform and give its justification.
The results of application of the LST wave functions to an
analysis of proton-nucleus (nucleus-hydrogen) scattering are
presented in Sec. V. Concluding remarks follow thereafter.

II. SOME ASPECTS OF THE NUCLEI 6,8HE AND 11LI

Shell model calculations of 6,8He and 11Li have been made
to determine the nucleon shell occupancies ni to be used in
calculations of the optical potentials for the elastic scattering
of beams of those ions from hydrogen targets. By inverse
kinematics, that equates to proton scattering from the ions
themselves. We have used the information from shell model
calculations made for earlier studies [1,5,7], in which all
the nucleons of 6,8He and 11Li were taken as active (the
so-called no core shell model). Specifically we use the structure
information given from those calculations of 6,8He made in
a complete (0 + 2 + 4) h̄ω model space, and of 11Li made in
the smaller (0 + 2) h̄ω model space. The latter space limitation
arose from the dimensionality increasing with mass for a given
space. While the 6,8He information came from calculations
made using the G matrix interaction of Zheng et al. [6], the
WBP interaction of Warburton and Brown [16] was used for
11Li.

To utilize the LST, we list, in Table I, a set of estimated SP
binding energies for nucleons in the 0s to 0f –1p orbits of the
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TABLE II. Shell occupancies and rms radii from shell model calculations, with b = 1.6 fm.

Orbit 6He 8He 11Li

Proton Neutron Proton Neutron Proton Neutron

0s 1
2

1.821 1.886 1.836 1.915 1.994 1.998
0p 3

2
0.036 1.718 0.035 3.575 0.929 3.699

0p 1
2

0.036 0.262 0.038 0.329 0.037 1.474
0d 5

2
0.023 0.017 0.016 0.028 0.014 0.383

0d 3
2

0.029 0.024 0.018 0.027 0.019 0.068
1s 1

2
0.031 0.034 0.035 0.036 0.006 0.373

higher 0.024 0.059 0.022 0.090 0.001 0.005

rrms (fm) 1.88 (2.27) 2.30 (3.58) 1.86 (2.20) 2.39 (2.79) 2.16 (2.37) 2.46 (4.45)

Matter rrms (fm) 2.17 (3.21) 2.27 (2.66) 2.38 (3.99)

shell model for the exotic nuclei of interest. We stress that this
set is used for illustration; it should not be taken as definitive.
In defining this set we were guided by the systematics of
single-particle energies [17], on what WS functions were
needed to match form factors from electron scattering from
6,7Li [18], and from seeking rms radii, as consistent with
those assessed from other data analyses. We were also guided
by our previous work involving the use of WS functions in
the descriptions of exotic nuclei [5,7]. Note also that the
choice is dictated by the ordering of the single-particle states
in the underlying shell model; this approach differs from
that taken by Millener et al. [11], where the factorization
of the OBDME in terms of spectroscopic factors connecting
to the spectrum of the (A − 1) nucleus make the energies
change with the relevant component configurations of the wave
function.

In Table II the orbit occupancies determined from our
chosen shell model calculations, and up to the sd shell, are
listed. With those occupancies and with a set of SP (proton or
neutron) radial wave functions ϕi(r), we define a (proton or
neutron) density profile by

ρp/n(r) =
∑

i

ni

∫
d� ϕ∗

i (r)ϕi(r), (1)

where these densities are normalized according to∫ ∞

0
ρp(r)r2dr = Z and

∫ ∞

0
ρn(r)r2dr = N. (2)

With the oscillator length of b = 1.6 fm, we obtain the
rms radii given in the second last line of the table. The
numbers given in brackets are the rms radius values found
using the LST functions, which we define (and discuss)
later, using the energies in Table I. The calculations of
all radii are obtained from the shell model wave functions
using standard methods [19]. In the bottom line, we list
the rms radii for the entire nuclear mass, again with the
values resulting from using the LST wave functions shown
in the brackets. We consider first the shell model results,
here noting that the proton and neutron rms radii differ for
each nuclei thereby naturally identifying a neutron skin for
each. However, the rms radii obtained for 6He and 11Li do

not define the neutron halo character that both are expected
to have. (That will always be the case when HO functions are
used.)

Most recently, the charge radius of 6He was measured
to be 2.054 ± 0.014 fm [20]. The calculated charge radius
from our models are 1.85 and 2.25 fm for the HO and
LST models, respectively. To obtain agreement between the
measured charge radius and the LST, we need to set b =
1.3 fm, from which we obtain a charge radius of 2.06 fm.
The charge radius from the HO model with that choice of
oscillator parameter (1.3 fm) is 1.57 fm. The matter radius in
the LST model is 3.07 fm for this choice. The effect on the
differential cross section will be investigated below, but we
note that while there may be a noticeable effect, the ground
state radii alone are not sufficient constraints with which to
estimate single-particle wave functions [2].

The neutron rms radii for 6He and 11Li as obtained from
the LST model are higher than the oscillator result but
commensurate with those obtained from the WS and Glauber
models [1]. There is agreement in the neutron radii obtained
for 8He from both the oscillator and LST as consistent with
this nucleus being a neutron skin [5]. The reaction cross
sections for each nucleus are listed in Table III, with the
energies listed reflecting the results for the differential cross
sections discussed later. In the case of 6He, there is an
experimental value [21] of 410 ± 21 mb at 36.2 MeV. The
(concocted halo) WS result at 40 MeV is 406 mb [8]. The LST
result of 441 mb remains in better agreement with these values
than the HO result (353 mb [8]); the slight discrepancy is due
to the larger rms radius compared to that found from a Glauber
model analysis of the interaction cross section (2.71 ± 0.04 fm

TABLE III. Reaction cross sections (in mb) at the list
energy (MeV) as obtained from the HO and LST (m = 8) model
calculations.

Nucleus Energy HO LST

6He 40 321 441
8He 71 280 293
11Li 62 343 447
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[22]). Using b = 1.3 fm as required to fit the observed charge
radius [20] gives a reaction cross section of 392 mb, somewhat
worse than the value found with b = 1.6 fm. This confirms that
the ground state rms radii alone are not a sufficient constraint
on the SP wave functions. A similarly small overestimation
in the rms radius is observed for 11Li, for which the
radius estimated from the interaction cross section is 3.53 ±
0.10 fm [22], and we expect that a measurement of that reaction
cross section would fall below our prediction. Nevertheless, we
are encouraged by the result for 8He, where the reaction cross
section from the LST model is similar to the HO result as
consistent with 8He being a skin nucleus.

Thus, the choice of SP wave function is clearly crucial to
explaining observed scattering data, and an important factor
with that choice is the energy for each and every bound
nucleon. For the halo orbits, that energy will be small and the
contributions from those orbits will be small, commensurate
with the (usually) small occupation numbers associated with
them. Some control is available by requiring that the rms radii
be well predicted. Only with the 11Li case is the 1s wave
function of some importance, but it is more significant to have
a form for this that is extended noticeably from the Gaussian
function than it is to have a precise energy—at least within the
context of the present paper. As has been noted [1,8,9], it is the
reduction of the neutron density within the core of the neutron
halo nuclei, from that which is found by using oscillators, that
is significant in the analyses of proton scattering. Heavy-ion
scattering reflects longer range properties, and so we look
forward to use of the LST scheme to define density profiles,
etc., that can be used in such (heavy-ion) reaction studies. The
tabulated values thus are a base input in a study of LSTs to
see if the HO functions, used in the shell model calculations to
give the OBDME, may be adapted to better describe the matter
profiles and properties of these nuclei. The present study of the
LST is exploratory, and the calculated matter densities associ-
ated with this model are not given as “final” determinations.

III. THE LOCAL SCALE TRANSFORMATION

As given previously [14,15], an LST [13] of the form r =
f (s) replaces an original wave functions u(r) by a new one
v(r) defined by the isometric transform,

v(r) =
√

df

dr
u[f (r)], (3)

where f (r) must be real and monotonically increasing when r
runs from 0 to ∞. Also, two boundary conditions are in order,
namely f (0) = 0 and f (r) → ∞ as r → ∞. The isometry
of this mapping of wave functions u into wave functions v is
obvious since scalar products are conserved. Indeed, let u and
u′ be two initial wave functions, and consider their respective
images v and v′ under the transform. Then, trivially,∫ ∞

0
dsv(s)v′(s) =

∫ ∞

0
ds

df

ds
u [f (s)] u′ [f (s)]

=
∫ ∞

0
dru(r)u′(r), (4)

under the obvious change of integration variable r = f (s).
With metrics for radial wave functions where one uses an
integral

∫ ∞
0 r2dr , the transform, Eq. (3), must be slightly

modified to

v(r) = f (r)

r

√
df

dr
u[f (r)] = s(r)u[f (r)], (5)

where s(r) is the wave function scale.
We are interested specifically in converting the usual shell

model (HO) orbitals into ones that have a physical, exponential
decrease. Let b and µ denote the HO length and the (bare)
nucleon mass, respectively, and consider an orbital that is
bound by an energy ε; that energy being counted as a positive
number. If we neglect sub-dominant modulations brought by
the polynomials present in the HO functions and, possibly, by
the derivative df/dr , the choice of f must induce the change
in structure

exp

(
− r2

2b2

)
⇒ exp

(
−r

√
2µε

h̄2

)
. (6)

Hence, when r → ∞, we must constrain f by

f (r) → γ
√

r, with γ = b

[
8µε

h̄2

] 1
4

. (7)

Simultaneously, it seems best to set f (r) → r when r → 0.
This choice leaves the interior of the orbitals essentially
unchanged. Accordingly, the transition between the “inner,
intact” regime, f (r) = r , and the “outer, tail compatibility”
regime, f (r) = γ

√
r , must occur about the point r = rt = γ 2,

which we define as the transition radius. But a choice will need
to be made between two solution conditions:

(i) Extend the linear regime to respect the initial wave
function as much as possible, and

(ii) Fix the transition according to the SP binding energies,
as soon as r is of the order γ 2 for each individual
orbital.

Geometrically, condition (i) involves keeping a straight
line for f (r), overshooting the γ

√
r parabola, then bending

the formerly straight line slowly to reach the parabola from
upper values. The second choice consists of an unbiased
interpolation between the straight line and parabola, thus
deviating earlier from the straight line. In that case f (r) will
always lie below both the line and the parabola limits and
its derivative will remain positive definite and monotonically
decreasing. Thus, under condition (ii) the normalization in Eq.
(5) is always real and the transform gives a new function
that gains the larger orbit probability amplitude at long
range (exponential rather than Gaussian) at the expense
primarily of the surface region Gaussian amplitudes. We
believe that the condition (ii) features are sensible ones to
have with the transform, especially as a negative gradient (and
thereby indeterminate normalization) is not prevented with
condition (i).
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6420 108
r (fm)

0.4

0.8

s(
r)

0.4

0.8

df
/d

r

2

4

f(
r)

FIG. 1. m = 4 harmonic mean transform results for energies of
1 MeV (solid curves) compared with those for an energy of 20 MeV
(dashed curves). The limit transform functions also are shown in the
top panel by the dotted curve [f (r) = r] and by the two dot-dashed
curves [f (r) = γ

√
r].

IV. THE HARMONIC MEAN FORM

Condition (ii) is met if we use a harmonic mean form for
the LST, namely,

f (r) =
[

1(
1
r

)m + (
1

γ
√

r

)m

] 1
m

. (8)

This form has the added attractive character in that it depends
primarily upon the chosen SP energies. The order m controls
how sharply the transform alters the coordinate between
the limits. We present, empirically, the results for f (r), its
derivative df (r)/dr , and the wave function scale s(r) for
harmonic mean forms with m = 4 and 8 in Figs .1 and 2. These
test calculations were made using b = 1.6 fm and a mass of 1.
In both figures, the results shown by the solid and dashed
curves, respectively, are for energies of 1 and 20 MeV. In the
top segment of these figures, the dot-dash curves display the
parabolas f = γ

√
r for each orbital while the dotted line is

the central limit of f = r . In the middle segment of each
figure, the derivatives of the transformations are displayed.
The bottom panel shows the scaling function with which the
transformed wave function u [f (r)] is multiplied in Eq. (5).

For both the m = 4 and m = 8 harmonic mean cases,
portrayed in Figs. 1 and 2, respectively, a weaker binding
induces an earlier transition from the linear to the parabolic
regime. The derivatives also vary monotonically to give scaling
functions that do so as well. (For the sake of completeness, we
investigated several values of m, of which only m = 4 and
m = 8 were chosen for the figures.) Therein it is readily seen
that with larger m, the interpolating curve follows initially
the straight line limit from the origin before smoothly, but
more quickly, varying as the parabola. Actually, if m → ∞,
then f (r) becomes strictly linear until the intersection point
between the two regimes and then strictly parabolic beyond.

6420 8 10
r (fm)

0.4

0.8

s(
r)

0.4

0.8

df
/d

r

2

4

f(
r)

FIG. 2. Transform functions as given in Fig. 1, but for m = 8.

At this limit, however, the continuity in the derivative of f
is lost. That loss would make our transformed wave function
have a discontinuity as well, and was a reason for our choice
of moderate values of m for calculations of the nuclear wave
functions to be used later.

The key role played by the energy in modulating the wave
functions is apparent from these diagrams as well. Besides
the transform effect of changing Gaussian radial distributions
to exponentials with the appropriately defined exponents, the
scaling functions depicted in the bottom segments show that,
with deeper binding, the interior character of a shell model
wave function would be retained more than those for weaker
binding. Also the increase of power (from m = 4 to 8) causes
the variation to be more surface oriented. That is a consequence
of the transform remaining closer to the linear limit until the
break point, which increases in radius with energy (larger γ ).
It is important to note that the normalizing scale function, s(r),
tends slowly to zero as r increases, which has a consequence
for the densities obtained.

We show now the cases for three exotic nuclei, 6,8He and
11Li. The last, 11Li, is a special case because we need to address
with it a question of nonorthogonality. Of the three exotic
light-mass nuclei considered, it has a sizable 1s 1

2
neutron shell

occupancy, as consistent with its s-wave halo.

A. The case of 6He

In Figs. 3–6, we show the harmonic mean (m = 8) results
for the transformation functions and their derivatives, the
individual wave functions, and the densities for 6He. In
Figs. 3 and 4, the coordinate transform functions f (r) and their
derivatives df (r)/dr for the 0s 1

2
through 0p 1

2
wave functions

for 6He with the energies listed in Table I, are shown. The
identification of the different orbit results is given in the figure
caption. Since the scale factor is quite similar to the derivative
functions for most radii of interest, they are not shown.
However, from the shapes of the derivatives, the 0s orbit
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0 5 10 15

r (fm)

0

2

4

6

8

10
f(

r)

FIG. 3. m = 8 harmonic mean coordinate transform functions
for the orbits of 6He found using the energies listed in Table I. The
transforms for the 0s 1

2
, 0p 3

2
, and 0p 1

2
protons are shown from the

top by the solid, dashed, and dotted curves, while those of 0p-shell
neutrons bound by 4 and 2 MeV are depicted by the dot-dashed and
double-dot-dashed lines, respectively.

will remain essentially unchanged inside the nuclear volume,
such as it is for 6He, while the 0p orbits will be influenced
more, especially the neutron orbits. The degree to which this
is the case is shown in Fig. 5. The top panel gives two
0p wave functions generated from that oscillator function
using the m = 8 harmonic mean LSTs with energies of
Table I. Note that for the protons (top panel) there is only
a very slight change to effect the exponential forms with a
reduction of the amplitudes for radii in the range 1 to 3 fm.
The weaker bound (neutron) orbits, in contrast, are much
varied from the starting HO form with a reduction through the
nuclear interior to give the strong enhancement asymptotically.

0 5 10 15
r (fm)

0.0

0.2

0.4

0.6

0.8

1.0

df
/d

r

FIG. 4. Same as Fig. 3, but for the derivatives df (r)/dr .

4 5 63210
r (fm)

0.1

0.2

0.3

0.4

φ n(r
)

0.1

0.2

0.3

0.4

φ p(r
)

FIG. 5. p-wave orbit functions for 6He. LST results are the solid
(0p 3

2
) and dot-dashed (0p 1

2
) curves for various energy values as stated

in the text; HO wave functions are the dashed curves.

Thus an extended neutron (halo) distribution can be formed by
summation over the orbit occupancies. The results are shown
in Fig. 6 with proton and neutron matter densities in the top
and bottom segments, respectively. The neutron halo is clearly
established by both the WS and LST model results as compared
to that from the HO model. Note that the asymptotic properties
of the wave functions, and therefore densities, tend slowly
toward an exponential form. From the LST, this is due to the
behavior of the scaling function for each orbital s(r) tending
to zero only as r−3/4. The consequence of that extension in
the neutron density is an extension also for the proton density,
though not quite as strong. This stems from the addition of
small contributions from the loosely bound proton SP orbits.
That dilution of the proton density by an extensive neutron

6420 108
r (fm)

10
-6

10
-4

10
-2

10
0

ρ n (
fm

-3
)

10
-6

10
-4

10
-2

10
0

ρ p (
fm

-3
)

FIG. 6. The proton (top) and neutron (bottom) densities for 6He.
The HO, LST, and WS results are portrayed by the dashed, solid, and
dot-dashed curves, respectively.
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FIG. 7. Same as Fig. 6, but for 8He.

density, due to the effects of the NN force, is expected in heavy,
neutron-rich nuclei. This is consistent with the slightly larger
proton rms radius obtained from the LST model, as compared
to the oscillator result.

B. The case of 8He

We consider 8He a test case since it is reasonably well
established that this nucleus does not have a neutron halo.
Rather, the excess neutron number creates a skin, whose
properties have been established in analyses of proton and
heavy-ion scattering data ([5] and references cited therein).
Starting with the shell model results (OBDME and SP wave
functions) and an oscillator length of 1.6 fm, the density
profiles for 8He given the energies listed in Table I are shown
in Fig. 7. Proton (neutron) densities are shown in the top
(bottom) segment with those found using the HO, WS, and
LST functions displayed by the dashed, dot-dashed, and solid
lines, respectively. As with the WS and LST densities in
6He, extensions of both the neutron and proton densities are
observed, although the neutron densities are not as strong
at 10 fm as they are with 6He. This is consistent with the
understanding of 6He having a neutron halo and 8He having
a neutron skin. Note that the results for the rms radius and
reaction cross section for 8He obtained from the LST model
are also consistent with a neutron skin description of 8He.

C. The case of 11Li—a two s-orbit problem

For the case of 11Li, the shell model calculations [10] give
dominant occupancies for the orbitals as listed in Table II.
In this case there are two s orbitals, and the schemes used
previously to define a halo did not retain orthogonality of
those orbits, nor does the LST process set out above. But that
can be rectified.

The case where there are several orbitals with the same
{ljm} quantum numbers can be handled as follows. Assume,

0 5 10 15 20 25
r (fm)

0

5

10

15

f(
r)

FIG. 8. LSTs for states in 11Li obtained using the energies of
Table I. Curves are identified in the text.

for the sake of argument, that there are three s1/2 orbitals,
namely, 0s1/2, 1s1/2, and 2s1/2, with respective (positive)
energies ε0 > ε1 > ε2, and corresponding parameters γ0 >

γ1 > γ2, according to Eq. (7). Then LSTs parametrized
independently by γ0, γ1, and γ2 convert the HO functions into
orbitals |0〉, |1〉, and |2〉, which are normalized but are not
orthogonal. It is a trivial matter to subtract from |1〉 that amount
of |0〉 necessary to regain orthogonality and to renormalize
the resultant new orbit vector |1′〉. Notice that this resultant
state will have a long-range aspect still driven by γ1 since
the subtraction of a component proportional to |0〉 contains a
(much) shorter range tail driven by γ0. In turn, it is trivial to
orthogonalize |2〉 to |0〉 and |1′〉 and renormalize the result into
an orbital |2′〉, the tail of which is still governed by γ2. This
process is iterative.

The LST functions for the set of energies for 11Li listed in
Table I and for m = 8 are shown in Fig. 8. For the 0s case,
the proton and neutron transform function is identical and
is the top (solid) curve in this figure. The transform functions
for the 0p shell are different, as indicated by the smaller
energies for the neutrons. The functions for the 0p 3

2
and 0p 1

2

orbits are represented by the dashed and dot-dashed lines,
respectively. The higher lying set are those for the protons.
The remaining curves are the transforms for the proton: the sd
states as shown in descending sequence for the 1s 1

2
(dotted),

the 0d 5
2

(double-dot-dashed), and the 0d 3
2

(dot-double-dashed)
proton states. The lowest (long-dashed) curve is the transform
function for the three 1s–0d neutron states as each was chosen
to have an energy of 0.8 MeV in these calculations.

The s-state wave functions that result after reorthogonal-
ization are shown in Fig. 9. Because the proton and neutron
0s orbits were both chosen to be bound by 33 MeV, there
is little change to their wave functions from that of the
starting HO function. Of course the long-range form differs:
the transformed wave functions have an exponential character,
whereas the HO is Gaussian. But those differences cannot be
discerned on the scales used in Fig. 9. Those 0s HO wave
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FIG. 9. s-wave functions for 11Li. Harmonic oscillator functions
are the dot-dashed (0s) and double-dot-dashed (1s) curves in both
segments. Proton and neutron LST-transformed 1s functions are the
solid and dashed lines, respectively. Use of the LST alone gives
the wave functions displayed in the bottom segment which, after
orthogonalization, become those given in the upper segment.

functions are shown in both the upper and lower parts of this
figure by the dot-dashed curve. The 1s states change markedly
not only by virtue of the LST but also with reorthogonalization.
Due to the LST alone, wave functions shown in the bottom
panel of Fig. 9 result. After orthogonalization, the wave
functions displayed in the top panel result. In both panels, the
transformed 1s wave functions determined with an energy of
2.8 (proton) and 0.8 MeV (neutron) are shown by the solid and
dashed curves, respectively. Not only are the spatial variations
of the transformed wave functions quite different from that
of the initial 1s oscillator (bottom panel) as the transform
varies the HO to get the relatively smaller energy form of the
exponentials, but also those changes are altered with the central
radial values of the LST functions markedly reduced under the
constraint that the 0s and 1s results be orthonormal. Indeed,
both the proton and neutron 1s orbit functions are extended,
though by virtue of its weaker binding the neutron one is the
more so. Then with the rather large occupancy of neutrons in
the 1s orbit, the neutron matter profile has the character of a
neutron halo.

Diverse neutron matter densities are shown in Fig.10 in
a linear plot (top) and in a semilogarithmic plot (bottom) to
stress the short- and long-range properties differently. Clearly,
the power used in the harmonic mean form of transform makes
a significant difference. The m = 4 transforms all vary from
the linear limit condition at a rather small radius since the
resulting wave functions are reduced to effect the quite small
value of the central neutron density. As with the He isotopes,
the LST densities are more similar to those obtained from the
WS model. The main difference lies near the centre; the WS
density is higher. That is compensated by a sharper fall-off
compared to the LST up to 4 fm after which both the LST and
WS results exhibit a somewhat similar extension compared to
the HO density.
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FIG. 10. Neutron matter densities in 11Li given by the HO
(double-dot-dashed), the m = 8 harmonic mean transformations
(solid), the WS (dot-dashed), and the m = 4 harmonic mean trans-
formations (dashed) models.

D. A stable nucleus—40Ca

When used in the descriptions of a stable nucleus, for which
standard models have had success as found in scattering and
reaction analyses (see, for example, [1]), we expect that the
LST should not provide any difference in the descriptions
of data from those found using standard SP functions. That
may be seen given that, within a shell model description,
there are no orbits with significant nucleon occupancies which
are weakly bound, hence the transformation will not modify
the radial wave function within the nuclear interior. Of course,
at a large distance the wave functions will be transformed to
exponential forms. As a test, we consider the case of 40Ca, the
structure of which has been determined by both a standard shell
model approach [23] and by a Skyrme-Hartree-Fock (SHF)
prescription using the SKX interaction [24]. While the SHF
model may be the more consistent with analyses of elastic
electron scattering data, our purpose is to compare the (naive)
shell model and the LST. Within the oscillator model, while
Karataglidis and Chadwick [23] used an oscillator length of
2.0 fm, we found that better scattering results were obtained
with the shell model wave functions by allowing a small
reduction of that length to 1.9 fm.

We applied the LST to the shell model wave functions to
obtain a new set with exponential tails consistent with the
energies listed in Table IV. In that table we also give the rms
values for each occupied orbit.

Clearly, with regard to the rms radii of each orbit, the
modulation of the long-range character of the HO functions is
not severe as the energies are all reasonably large. In all cases,
the transform radius rt is quite large, as is evident in Fig. 11.

From this figure, the linearity of all of the transform terms is
well retained to near 4 fm, by which distance the matter density
is less than 10% of its central value. Thus we do not expect any
major difference in results obtained using the LST functions
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TABLE IV. Adopted energies (MeV) for nucleon orbits in 40Ca
and their rms radii.

Orbit B.E.
(proton)

B.E.
(neutron)

rmsHO (b =
1.9 fm)

rms
(proton)

rms
(neutron)

0s 1
2

67.0 67.0 2.33 2.33 2.33
0p 3

2
39.2 39.2 3.00 3.01 3.01

0p 1
2

39.0 39.0 3.00 3.01 3.01
0d 5

2
21.7 15.3 3.55 3.61 3.59

0d 3
2

15.3 8.3 3.55 3.66 3.99
1s 1

2
17.9 11.4 3.55 3.66 3.81

in calculations from those found when the HO functions
themselves are used. That expectation is heightened by a study
of the matter density. Considering the proton distributions only,
we compare in Fig. 12 the results obtained from the shell model
(b = 1.9 fm), from the LST functions deduced from that shell
model, and from the SHF/SKX description of the ground state
of 40Ca.

In this case, the LST density is similar to that of the input
shell model function, the surface being slightly extended.
Both differ most noticeably from the SHF/SKX in the nuclear
interior, and the SHF/SKX model density extends further still.
But the large interior difference is not very important in the
analyses we make because the volume integral contribution of
that region is not large. When these wave functions are used to
define optical potentials, that volume integration contribution
as well as the inherent absorption makes the region inside about
2 fm of small import for most scattering. One may expect the
results to be most influenced by surface differences.
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r (fm)

0

5

10

15
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FIG. 11. m = 8 harmonic mean coordinate transform functions
for the orbits of 40Ca found using the energies listed in Table IV.
Transforms for the six orbits of the 0s, 0p, and 1s–0d shells are
identified in the legend.
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FIG. 12. Proton matter densities in 40Ca given by the HO
(dashed), m = 8 harmonic mean transformations (solid), and
SHF/SKX (dot-dashed) models.

V. APPLICATIONS IN SCATTERING ANALYSES

The harmonic mean LST wave functions determined
from the m = 8 formulation have been used as input into
calculations of elastic scattering of the radioactive ions from
hydrogen targets as well as of proton scattering from the stable
nucleus 40Ca. A modified version of the code DWBA98 [25] has
been used with appropriate effective NN interactions for each
energy considered and with OBDME obtained for each nucleus
as outlined earlier.

A. Scattering of 6,8He and 11Li

Elastic scattering of 24.5A, 40.9A, and 70.5A MeV 6He
ions from hydrogen has been measured and analyzed [8,9,26,
27] revealing that this nucleus has a neutron matter distribution
more consistent with a neutron halo than a neutron skin,
as the naive shell model predicts. That was definitely the
case considering the 24.5A MeV elastic scattering data. At
40.9A MeV, the distorted wave approximation analysis of the
scattering data for excitation of the 2+

1 state was the prime
evidence for a halo. The 70.5A MeV elastic scattering data
do not extend to large enough momentum transfer to clearly
distinguish the halo aspect, but we include it to show a set of
data for which the method used to predict the cross sections is
reliable. In those previous studies, the neutron halo was created
by choosing weak binding for the 0p neutron orbits and using
WS potentials to define the radial wave functions.

Differential cross sections for the scattering of
24.5A, 40.9A, and 70.5A MeV 6He ions from hydrogen,
as obtained using the m = 8 LST on the HO functions
with energies listed in Table I, are shown by the solid
curves in Fig. 13. The data are shown by the open circles
(24.5A MeV), the filled circles (40.9A MeV), and the open
squares (70.5A MeV). The previous halo results [5,8,9] are
shown by the dashed curves for comparison. Our transformed
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FIG. 13. Elastic scattering differential cross sections for
24.5A, 40.9A, and 70.5A MeV 6He ions from hydrogen. For each
energy, the LST (m = 8) result is portrayed by the solid line while
the result obtained from the WS SP wave functions is given by the
dashed line.

wave functions serve to correct the description of these data as
does the more ad hoc selection of disparate WS functions [8]
for the occupied orbits, by being distinctively different from
those obtained when no extension to neutron matter was
considered. The data at 24.5A and 40.9A MeV extend beyond
the first minimum into the region where one may distinguish
between the halo and nonhalo regions [8,9]. Both the WS and
LST results agree well with those data, indicating that our
modifications to the HO wave functions with the LST make
the necessary corrections to explain the data. This is consistent
with our results concerning both the rms radius and the reaction
cross section. Both the WS and LST results agree equally well
with the available data at 70.5A MeV.

We have also analyzed the 24.5A and 40.9A MeV data
using two alternative LST sets of wave functions whose
calculated rms charge radius agreed with the observed value
[20] (see Sec. IV A). Specifically, both sets of LST functions in
this case used b = 1.3 fm for the proton set of wave functions,
while the neutron set used b = 1.3 fm (model II) and b =
1.6 fm (model III). The original set of LST functions we
denote as model I. The results found using all three sets of
LST wave functions are displayed in Fig. 14.

While all three models agree reasonably well with the
elastic scattering data, the results of model II exhibit a different
dependence with momentum transfer, particularly at small and
large angles. As illustrated in the inset of Fig. 14, at small
angles the 40.9A MeV result found using model II falls below
the data. Also, the 24.5A MeV result found using model II falls
significantly below the results from the other two models. Note
that there is no difference at forward angles between models I
and III, indicating that changing the proton SP functions to
fit the charge radius alone does not produce a change in the
forward angle cross section. While there is a ∼20% change in
the cross section induced by the change in the proton density
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FIG. 14. The elastic scattering differential cross section for
24.5A and 40.9A MeV 6He ions from hydrogen. Results using LST
models I, II, and III, as defined in the text, are denoted for each energy
by the solid, dot-dashed, and double-dot-dashed lines, respectively.
The inset shows the cross sections at small angles.

at larger angles, the far more significant change in the cross
section, by up to a factor of 2, is found with the change in
neutron density. This is consistent with proton scattering being
more sensitive to the neutron (than the proton) density [1]. It
is worth noting that the result of the reaction cross section at
40.9A MeV using model III is 420 mb, which is in far better
agreement with the observed value than are the other model
calculated values.

Previous scattering data analyses confirmed what had
been expected from heavy-ion collision studies that 8He has
a neutron skin but not the extended distribution one now
identifies as a halo. The appropriate LST for SP wave functions
for this nucleus, again predicated upon an oscillator length of
1.6 fm, retains a skin attribute and results in the differential
cross section for 72A MeV 8He ions from hydrogen shown
in Fig. 15 by the solid line. The data were taken from
Refs. [26,27], and the dashed curve is the result that was
obtained previously [5] when those SP wave functions were
taken as the earlier published WS set. Both results do well
in describing the available data, given that they are both
predictions based on our microscopic model and not fits from
phenomenology.

The nucleus 11Li is known to have an extended neutron
(halo) density. That was confirmed from the analyses of elastic
scattering of 11Li ions from hydrogen at 62A MeV [5] and
those results are displayed again in Fig. 16 along with our new
results obtained by using the same approach, with the same
effective force, but with the transformed HO wave functions.

As noted previously, the difference between using WS
wave functions with energies chosen to obtain a halo in the
neutron matter density in this nucleus and those wave functions
that set it to have only a skin is striking. Only with the
halo specification does a good prediction of the data result.
That is true also for the transformed HO functions, with the
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FIG. 15. Elastic scattering differential cross sections for
72A MeV 8He ions from hydrogen. Results of the calculations made
using the LST (m = 8) and WS sets of SP wave functions are
displayed by the solid and dashed lines, respectively.

m = 4 LST providing reasonable reproduction of the data.
While the results obtained from the LST transformation with
m = 8 provides good reproduction up to 50◦, it overestimates
the larger angle data.

B. Scattering from 40Ca

Finally we consider the use of the LST functions for
40Ca in generating optical potentials. With those functions,
we have made predictions of the elastic scattering of 65 and
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FIG. 16. Data from the elastic scattering 62A MeV 11Li ions from
hydrogen compared to the predictions made using the basic shell
model wave functions (dotted curve), the WS (halo) functions (dot-
dashed curve), and the m = 4 (dashed curve) and m = 8 (solid curve)
harmonic mean transformed wave functions.
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FIG. 17. Data from the elastic scattering of 65 MeV (a) and
200 MeV (b) protons from 40Ca compared with predictions made
using the basic shell model wave functions (dashed curve), with
the SHF/SKX functions (dot-dashed curve), and with the m = 8
harmonic mean transformed wave functions (solid curve).

200 MeV protons. Such data were analyzed recently [2] and
very good differential cross-section results were obtained for
both energies; especially when the SHF/SKX model wave
functions were used. Those SHF/SKX results are shown again
in Fig. 17 for both energies by the dot-dashed curves.

The shell model (b = 1.9 fm) results are those portrayed by
the dashed curves while the LST function results are given by
the solid curves. Note that the shell model results are varied
from those found earlier [2], the result of our changing the
oscillator length slightly from that defined by Karataglidis
and Chadwick [2]. The adjustment was made specifically to
obtain the best possible agreement with the data from the
shell model. That allows for the most sensitivity to changes
wrought by the LST. The changes are slight, but they in fact
improve agreement with observation. But neither our shell
model nor the LST built from it give results as good as the
SHF/SKX model of structure. Clearly, while the LST may
give more reasonable matter profiles to a model of the ground
state structure, it is not a panacea for a too limited initial guess.
Use of the LST approach with “best model” structures of nuclei
are in progress.

VI. SUMMARY AND CONCLUSIONS

Using local scale transformations of the radial coordinate
within the harmonic oscillator wave functions assumed to
describe bound nucleons in shell model studies gives new
descriptions of those nucleon functions that have exponentially
decreasing forms consistent with selected values for their
energies. Orthonormality of those transformed wave functions
can be ensured quite easily. Herein we have considered a
harmonic mean form of local scale transforms.

As an empirical example, the harmonic mean LST (of
rank 8) was used to specify a set of single-nucleon bound
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state orbitals for use in defining optical potentials to describe
the elastic scattering of light-mass radioactive ions (6,8He and
11Li specifically) from hydrogen as well as for the scattering of
protons from the stable nucleus 40Ca. Those optical potentials
were formed by g folding: folding of complex effective
NN interactions in which medium modification due to both
Pauli blocking and a background mean field had been taken
into consideration with the LST-generated single-nucleon
wave functions weighted by the OBDME given by shell
model calculations. The resultant nonlocality of those optical
potentials was treated exactly. The results for the elastic
scattering of 24.5A, 40.9A, and of 70.5A MeV 6He ions
from hydrogen agreed well with both the data and previous
calculations in which WS wave functions were used. With
both the WS and the LST formed wave functions, 6He has
a neutron distribution so extended from that associated with
the shell model (HO functions) as to be consistent with a
halo. Notably, the WS and LST densities are very much alike.
However, it is also of note that in finding such agreement in
the densities, the chosen sets of SP energies are not the same,
as the underlying potentials (WS and HO) are different. For
8He, the LST (and WS) functions involved also give good
results in comparison with scattering data taken at 72A MeV.
In this case, the neutron extension is not as large as that for
6He resulting in this nucleus defined to have a neutron skin
rather than a halo. Yet with both nuclei, we find an extension
of the proton density beyond the HO result. That dilution of
the proton density is influenced by the extension of the neutron
density, as expected for neutron-rich nuclei.

We also compared results found using various sets of LST
functions adjusted to best fit the observed charge radius in
6He. Adjusting the proton SP functions alone from our initial
estimated set of functions does not produce a significant
change to the cross section. Significant changes in the differ-
ential cross sections are produced by changes in the neutron
set of LST functions. Reaction data that probe the neu-
tron density in the core may be required to constrain
the LST functions further. While such is provided herein with
the WS densities, complementary analyses are required to

remove one aspect of arbitrariness in the WS model. It is
hoped that transverse electron scattering data may be obtained
to provide such complementary data, even though such form
factors will be difficult to measure, in the proposed electron-ion
collider facilities at RIKEN and GSI.

A good result in comparison to data is obtained when
cross sections for the elastic scattering of 62A MeV 11Li ions
from hydrogen are considered. The LST wave functions again
extend the neutron distribution for this nucleus so much that
we deem it to be a neutron halo. Moreover, the halo was due
mainly to the neutron occupancy of the 0p1/2 and 1s1/2 orbits,
and we took care to ensure that the 1s1/2 orbit was orthogonal
to the 0s1/2. In this case, we noted that the rank of the harmonic
mean had some import regarding the quality of the agreement
of the results with data.

Finally, as a control case, we found that using the LST
to vary the shell model single-nucleon wave functions for a
stable nucleus case did not vitiate the good results previously
found for scattering cross sections with potentials formed by
g folding with the shell model wave functions themselves.
The cross sections from 65 and 200 MeV protons elastically
scattered from 40Ca were considered. 40Ca was considered
also because SHF wave functions exist to describe its ground
state and its use in g folding gave potentials and scattering
results also in very good agreement with the data. However, the
densities formed by the shell and the SHF models are different,
most noticeably in the central region and also in the surface.
The LST modifications vary the shell model density mostly
through the surface region and therefore does not give changes
inside the nucleus to match the SHF results. Of course, as the
SHF wave functions need not have appropriate exponential
tails either, it is feasible to apply the LST scheme to those.
That application is under investigation.
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