
PHYSICAL REVIEW C 71, 064328 (2005)
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The spectral distribution of isovector dipole strength is computed using the time-dependent Skyrme-Hartree-
Fock method with subsequent spectral analysis. The calculations are done without any imposed symmetry
restriction, allowing any nuclear shape to be dealt with. The scheme is used to study the deformation dependence
of giant resonances and its interplay with Landau fragmentation (owing to 1ph states). Results are shown for the
chain of Nd isotopes, superdeformed 152Dy, triaxial 188Os, and 238U.
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I. INTRODUCTION

The nuclear giant dipole resonance (GDR) is a most
pronounced feature in the excitation spectrum, giving crucial
clues to the understanding of nuclear structure and dynamics.
Since its first observation [1], it has been much studied. For
reviews see, for example [2,3] from the experimental side
and [4–7] for the theoretical aspects, or [8] for both. Yet, there
are still many interesting questions that deserve continued
studies on that subject. The upcoming possibility to measure
GDR in exotic nuclei [9] challenges theorists to scrutinize
the predictive value of their models. Of particular interest
here are self-consistent mean-field approaches that describe
the ground-state and the excitation spectrum within one and
the same parametrization. For a recent review see, for example
[10]. The additional information from GDR probes otherwise
loosely fixed aspects of effective mean-field models. This has
been investigated for the case of the Skyrme-Hartree-Fock
(SHF) method in, for example [11,12] and there is still some
way to go for a full incorporation of all that information
into effective mean-field theories. One such aspect that has
not yet been much investigated is GDR in deformed nuclei,
this is due to the great technical complications involved in
the corresponding calculations. Nonetheless, deformed nuclei
provide an interesting testing ground because there is a
strong interplay between the structure of the GDR and the
ground-state deformation [13].

It is the aim of this paper to present an exploration
of the GDR in deformed nuclei, computing the excitation
spectra using the SHF method. The deformation removes
the degeneracy of the resonance peaks in spatial x, y, and
z directions, leading to a collective splitting of the resonance
[13]. A competing mechanism that also spreads the resonance
peak to some extent is Landau fragmentation, which results
from a coupling of the resonance with energetically close
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one-particle-one-hole (1ph) states. (Landau fragmentation is
the discrete-spectrum cousin of Landau damping, which is a
well-known effect in bulk matter [14].) The interplay of these
two mechanisms was studied recently for the case of deformed
metal clusters and it was found that Landau fragmentation can
mask deformation splitting under certain conditions [15]. We
will address this question here for the case of medium-heavy
and heavy nuclei.

A standard method to compute GDR spectra is the random-
phase approximation (RPA) [5,7]. It can be considered as the
small-amplitude limit of time-dependent mean-field equations
[16,17], but most practical solution schemes map that formally
into an algebra of 1ph states. This becomes computationally
very expensive for deformed systems owing to an enormous
proliferation of necessary 1ph states. A formally simpler
alternative is to use the straightforward time-dependent mean-
field theory and extract the resonance pattern by spectral
analysis of the time-dependent results. This method has been
used successfully many times for computing resonance spectra
in metal clusters [18–20]. It has also been applied in nuclear
physics with symmetry restrictions [21–24], and more recently
in some unrestricted calculations [25–27], which promise a
rich future for the method. In this paper, we use a fully fledged
time-dependent SHF model without any symmetry restrictions
to compute the isovector-dipole strength in deformed nuclei.
Only a brief outline of the model is given in Sec. II. Technical
details of the method will be fully described in a forthcoming
paper.

II. FORMAL FRAMEWORK

A. Mean-field equations

In the following, we give only a brief account of the time-
dependent SHF method and its solution. The underlying SHF
functional and subsequent mean-field equations are explained
in more detail in, for example [10,28,29].
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The starting point is the SHF energy functional E =
E(ρ, τ,J , j, σ ) expressed in terms of a few local densities and
currents obtained as a sum over single-particle wave functions:
density ρ, kinetic density τ , spin-orbit density J , current j,
and spin density σ , where each features twice, once for protons
and once for neutrons. It is augmented by a pairing functional
deduced from a zero-range two-body force (volume pairing).
The mean-field equations are derived by variation with respect
to the densities, yielding for the static case

ĥϕα = εαϕα (1)

and for the time-dependent case

ı∂tϕα = ĥϕα, (2)

where ϕα are the active single-nucleon wave functions and ĥ

is the mean-field Hamiltonian, which depends on all densities
and currents. This is complemented by the gap equations. We
treat pairing within the BCS approximation [10] and we do
that only for the static solution. The occupation amplitudes
are then fixed during the time evolution of the system.
This is an acceptable approximation for the spectra in the
resonance region (i.e., for energies around and above 10 MeV).
Dynamical changes in pairing will mostly affect the low-lying
states not considered here.

The practical solution of the mean-field equations em-
ploys a representation of fields and wave functions on a
three-dimensional Cartesian grid in coordinate space whereas
derivatives are evaluated in Fourier-transformed space [30].
We use grids with 24 × 24 × 24 points (the z dimension
is extended to 32 points for 238U) and a grid spacing of
1 fm. The fast Fourier transformation (FFT) is used for
swapping between coordinate and momentum space. The
accelerated gradient iteration is employed to find the stationary
ground-state solution [30,31]. A Taylor series expansion of
the mean-field propagator is used for the dynamical time
stepping [32]. The size of the time step is 0.2 fm/c.

B. The choice of the force

The SHF functional sets only a framework within which
there are myriad different parametrizations. Almost all pa-
rameter sets describe ground-state properties equally well
but differ in other observables (e.g., excitation spectra or
nuclear matter properties) [33]. One thus should, in principle,
always consider several sufficiently different parametrizations
to disentangle particularities of a given parametrization from
general features of the SHF model. Large-scale surveys
in connection with the GDR in spherical nuclei had been
performed in [11,12]. The computationally demanding, fully
triaxial calculations force us to constrain the variety. We
use here the two parametrizations SkI3 [34] and SLy6 [35].
Both are recent developments that try to take care of special
features in addition to the usual ground-state properties. SkI3
employs an extended spin-orbit functional whose isovector
properties resemble relativistic models. SLy6 has a bias on
neutron-rich systems up to neutron stars. Both provide a
reasonable description of the GDR in 208Pb [10,12]. As a
brief reminder of typical results for GDR with SHF, we show

TABLE I. The average GDR resonance frequencies for two dou-
bly magic nuclei computed with the two forces under consideration
and compared with experimental (Exp.) data [3]. The dipole spectrum
of 16O is very fragmented. An average in the range 18–26 MeV had
been taken.

Nucleus Exp. SLy6 SkI3
(MeV) (MeV) (MeV)

16O 23.5 19.6 20.2
208Pb 13.5 13.9 13.4

results in Table I for one very light and one heavy doubly
magic nucleus for the two forces. The results are typical for
all other presently available Skyrme forces [12]. One can
achieve a good description of the GDR position in 208Pb and at
the same time one grossly underestimates the resonant range
for 16O where the average resonance strength lies 2–4 MeV
below the experimental data. We thus constrain consideration
to heavier systems where we hope that we can trust the given
parametrizations with respect to GDR.

C. Spectral analysis

The dipole strength of the nuclei is computed using the
standard procedure of spectral analysis [19]. We start from
the ground state and apply an instantaneous momentum boost
to the center of mass of the protons with a reverse boost to
the neutrons. This means that each nucleon wave function is
augmented by a phase factor

ϕα(r) −→ ϕα(r, t =0) = eıbνrϕα(r), (3)

where bν is the boost momentum of nucleon type ν. Proton
and neutron boost sum to conserve center-of-mass momen-
tum (i.e., Zbp + Nbn = 0). The amplitude of the boost is
kept sufficiently small to stay well in the linear regime
of excitations. The direction of the boost selects the mode
that is excited. We chose a diagonal excitation with bν ∝
ex + ey + ez to access all three basic modes at once. The
three components of the total isovector-dipole momentum are
recorded during the subsequent dynamics, yielding the dipole
signal D(t) in the time domain. Spectral analysis requires
some filtering to avoid artefacts from the limited time span
of computation [36]. (We compute up to a time of 1600 fm/c
which leaves sufficient resolution for the GDR region.) We
do filtering in the time domain using a Gaussian smoothing
D(t) −→ D(t) exp [−(t/τ )2] with τ = 350 fm/c. Finally, the
dipole strength (=ptical absorption strength) is obtained as
the imaginary part of the Fourier transform [i.e., Si(ω) =
�{D̃i(ω)}]. Having the three spatial components recorded
separately, we obtain separate information about the dipole
strength for all three modes. The simplification of using a
diagonal excitation is applicable if the optical axes of the
nucleus are identical with the axes of the coordinate system.
All considered nuclei fulfill this condition because their ground
state is reflection symmetric with respect to all three axes. To
make the smoothing effective we run the dynamics up to at least
4τ = 1400 fm/c. The spectral resolution is then approximately
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ω ≈ 4τ−1 ≈ 2 MeV. This suffices for studies in the GDR
region. The GDR peak is in the particle continuum. We use
a finite box that artificially discretizes the continuum. The
resolution of 2 MeV is larger than the expected escape width
such that this sort of continuum effect is masked anyway.

III. RESULTS AND DISCUSSION

A. Simple estimates

There is a very simple, and yet reliable, estimate for the
average frequency of the GDR peak [37]:

ω0 = 80 MeV A−1/3. (4)

Note the trend ∝ A−1/3 ∝ R−1, where R is the nuclear radius.
This is motivated by the viewpoint that the GDR is zero-sound
and that the largest wavelength in a finite system is proportional
to R. The estimate (4) is a useful guideline for spherical nuclei.
Deformed nuclei show a splitting that can be estimated by
considering the trend with inverse length for each direction
separately, thus ωi ∝ R−1

i for i ∈ {x, y, z}. The deformation
can be described by stretching factors Ri −→ ηiR, where
ηxηyηz = 1. This yields immediately ωi = ω0/ηi . For axially
symmetric systems, one has ηx = ηy , which leaves one number
to characterize the deformation. Let us assume for instance that
this is done in terms of the axis ratio

ζ = Rz/Rx = ηz/ηx. (5)

Together with the condition η2
xηz = 1, we can then easily

derive the simple estimate

ωx,y = ω0ζ
1/2, ωz = ω0ζ

−1. (6)

More often, deformation is characterized in terms of
the quadrupole momentum Q20 = 〈r2Y20〉. This, however,
changes scale with R2 and thus hinders an immediate geomet-
rical appreciation. Therefore, one prefers the dimensionless
quadrupole momentum

β2µ = 4π

5

〈r2Y2µ〉
Ar2

0

, r0 = 0.93 A1/3, (7)

where only µ = 0 and µ = 2 are needed in a properly aligned
(i.e., intrinsic) system. Note that the denominator is often taken
as 〈r2〉 instead of the Ar2

0 . The two conventions are practi-
cally identical for small deformations. The present choice is
advantageous for large deformations where it stretches the
scale. For axially symmetric systems, one encounters β22 = 0.
The relation of β20 to the axis ratio (5) is then for small
deformations

ζ ≈ 1 + 3

2

√
4π

5
β20, (8)

with obvious consequences for the estimated GDR frequencies
(6). Figure 1 sketches a schematic GDR splitting along the
three principle axes of an axially symmetric nucleus. The
peak position of each of the collective dipole modes is
indicated by an arrow. The relative strengths indicate the sign
of deformation. Prolate nuclei have two states at the higher
frequency.
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FIG. 1. Schematic view of collective dipole strengths in a prolate
deformed nucleus. The dashed lines show the strength for the x-y and
z modes separately.

The lines are broadened by several effects (for an extensive
review see [38]): coupling of the collective strength to the
1ph states (spreading width, often called Landau fragmen-
tation), particle escape into the continuum (escape width;
see, e.g. [39]), correlations from nucleon-nucleon collisions
(collisional broadening, see, e.g. [40]), and coupling to
low-lying vibrations (phonon coupling; see, e.g. [41]). The
last two broadening mechanisms are related to 2 ph or higher
configurations and go beyond a mean-field treatment. The
collisional correlations deliver a smooth broadening of about
0.5–1 MeV. The surface coupling depends sensitively on
the softness of the nucleus, being small for near-magic or
well-deformed nuclei and larger in the transitional region.
Neither of these effects are accounted for in the present calcu-
lations. We assume that they are hidden under the rather large
smoothing width of about 2 MeV. The Landau fragmentation
and escape width belong to 1ph mechanisms and are accessible
to mean-field models. The escape width is related to the particle
continuum, giving each single-particle state in the energy
range of 5–10 MeV a width of 0.5–1 Mev. Such a splitting
is not resolved with the present precision. Thus three of the
broadening mechanisms—collisional, phonon coupling, and
escape—are masked by the global width introduced through
smoothing the signal. This is indicated by the broadening in
Fig. 1. The collective splitting can be nicely seen provided that
its energetic separation exceeds the line broadening and that
the broadening is smooth.

There remains the Landau fragmentation, which is the
major source of width in nuclei. The density of 1ph states in
medium-size nuclei is not so large, and thus Landau fragmen-
tation can induce a discrete pattern rather than a global broad-
ening. The effects depend on the detailed shell structure of a
given nucleus and even change for different forces. Figure 2
shows the dipole spectrum in doubly magic 132Sn in high
resolution to display more clearly the distribution of dipole
strength over the range of the GDR. The spectrum in the GDR
region shows very detailed structures that are related to the
underlying spectrum of 1ph states. (A detailed discussion for
the comparable case of metal clusters is found in [42].) An
almost direct relation between the small peaks in the wings of
the dipole distribution and the 1ph states can be established
when taking into account that the residual interaction causes a
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FIG. 2. Demonstration of Landau fragmentation with a highly
resolved dipole spectrum for 132Sn computed with SLy6. The full
line shows the GDR spectrum. The dashes underneath indicate the
positions of the individual 1ph with nonvanishing dipole strength.

small downshift for the low-lying states and an upshift at the
high-lying side. Experimentally, the high resolution in Fig. 2
is unrealistic because the other aforementioned broadening
mechanisms smooth the spectrum. In practice, one sees a broad
GDR peak with some structures where the fragmentation is
larger than the smoothing. For example, the well-separated
large peak at about 17 MeV will show up as a high-energy
shoulder in the spectrum. As a general rule, the collective
resonance [see Eq. (4)] as well as the typical 1ph transitions
follow the same trend ∝ A−1/3. Thus Landau fragmentation is
equally important in all nuclei. However, the spectral density
increases with A such that the broadening becomes smoother
for heavy nuclei whereas very fuzzy distributions are seen for
light nuclei (and also for exotic ones). The nuclei that are
studied here are mostly of medium size. It is interesting to
see how the fragmentation performs there. As a side remark,
we note that metal clusters are finite fermion systems, which
have many similarities with nuclei [43]. They also have a
giant dipole resonance, called the Mie surface plasmon. And
again, this mode shows significant Landau fragmentation in
the range of medium sizes [15] whereas the pattern becomes
much smoother for huge sizes (N ≈ 1000, a size not accessible
to nuclei) [44].

Since both ways of expressing deformations are in use, we
provide in Table II the information on deformation for all axi-
ally symmetric test cases together with the deduced estimates
for the peak frequencies. According to our SHF calculations,
we have one fully triaxial nucleus in the sample, 188Os. Its
axes are related as z : y : x = 1.62 : 1.22 : 1, yielding the
estimated frequencies ωx = 17.46 MeV, ωy = 14.25 MeV,
and ωz = 10.74 MeV. The superdeformed state in 152Dy is
a matter of debate. It has been found also in other mean-field
calculations [45–47], but its appearance depends on the force
and pairing recipe. We take it here as a principle example for
a superdeformed state.

B. Transition to deformation

Nuclei in the region Z ≈ 60 show a transition from
spherical, at the neutron closure N = 82, to deformed nuclei
when N is safely above 82. We consider here as one typical

TABLE II. The axis ratios ζ , dimensionless quadrupole defor-
mations β20, and estimated GDR peak frequencies for the axially
symmetric test case nuclei. All results are computed with SLy6,
except for 238U where SkI3 was used. The axis ratios are deduced
from the rms extensions in x and z.

Nucleus ζ β20 ωx(MeV) ωz(MeV)

142Nd 1.00 0.00 15.30 15.30
144Nd 1.05 0.03 15.64 14.90
146Nd 1.15 0.08 16.29 13.21
148Nd 1.21 0.11 16.64 12.50
150Nd 1.30 0.17 17.17 11.58
152Dyobl 0.87 −0.13 13.98 17.23
152Dyprol 1.15 0.15 16.06 13.04
152Dysupdef 1.86 0.90 20.44 8.06
238U 1.25 0.28 14.43 10.33

example the chain of Nd isotopes. Figure 3 shows dipole
strengths for the separate modes and in total as computed with
SkI3. The arrows indicate the estimated mean positions of
the x, y, and z modes (see, Sec. III A). They are degenerate as
they should be for a spherical nucleus. The spectrum, however,
shows strong fragmentation with a well-developed side peak.
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FIG. 3. Dipole strengths in the chain of Nd isotopes computed
with SkI3: Dashed lines denote modes along x and y directions,
dotted lines denote mode along z direction, and solid lines denote the
total computed strength. The deformation is indicated in each panel.
The estimated peak positions (see Sec. III A) are indicated by arrows.
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This is due to a redistribution of strength by coupling to
energetically close 1ph states (Landau fragmentation). The
effect should, in principle, deliver a smooth peak broadening
and it would do so in much heavier systems. Nuclei around
A ≈ 150 still have obviously a too dilute 1ph spectrum,
which, in turn, can yield a structured peak broadening. The
estimate (4) with (6), although a bit too high, shows satisfying
agreement in view of its enormous simplicity.

The deformation grows gradually when moving from 142Nd
to 150Nd. The separate strengths show the corresponding
collective shifts more or less in agreement with the simple
estimates. It is obvious, however, that in the transitional region
the width of the peaks is larger than the shift. This inhibits a
clear identification of weak deformations, particularly because
Landau fragmentation reduces the apparent peaks and can
give misleading visual impressions. It is only for the heaviest
and most strongly deformed nucleus in the sample that
deformation splitting safely outweighs Landau fragmentation.
The collective estimate (6) shows a splitting of the same order,
however always with a tendency to overestimate. There is a
further feature by which the detailed results differ from the
schematic view of Fig. 1. One rarely spots the weight of the
mode from the mere height of the peaks. Broadening can
be much different in the two modes and one has to analyze
the total strength under a peak. This goes beyond a simple
graphical inspection and requires peak fitting. Altogether,
the analysis of deformation is somewhat uncertain because
of the interplay with Landau fragmentation. This sets an
uncertainty of δβ ≈ 0.05 in the analysis provided it is done
on the grounds of comparison with microscopic calculations.
Deducing deformation from scanning two peaks and relating it
to the simple estimate (6) adds another bit of systematic error.
These findings are very similar to the results for medium-size
metal clusters [15].

Figure 4 compares the results from two different Skyrme
forces with experimental data. In all cases the average strength
fits nicely to the experimental data with a tendency to a slight
downshift of order 1 MeV. The agreement is better for 208Pb
and much worse for light nuclei (see Table I). It is not yet
clear whether the underestimation of about 1 MeV seen here
is already the beginning of the trend.

The theoretical spectra in the spherical 142Nd show strong
Landau fragmentation for both forces. The details, however,
differ owing to a somewhat different shell structure. The
high-lying shoulder is farther away from the resonance for SkI3
and is consequently weaker. Unfortunately, it seems that the
experimental resolution does not allow sufficient detail in the
fragmentation to be discriminated, or it may be that there is less
fragmentation than both Skyrme forces show. The deformation
is growing slowly with increasing N. The next nucleus in
the chain, 144Nd, is still dominated by Landau fragmentation.
But a weak deformation splitting may be seen already for
146Nd for SkI3 where the 1ph splitting is higher up in the
spectrum whereas the more compact pattern of SLy6 still hides
the collective effect. The experimental data are, however, too
coarse to resolve any detail here. A similar situation is found
for 148Nd. In fact, the qualitative differences between SkI3
and SLy6 look even more dramatic here. The overall profile
of the peak with a slight asymmetry toward low frequencies
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FIG. 4. Total dipole strengths in the chain of Nd isotopes
computed with SkI3 as well as with SLy6 and compared with
experimental data from [2]. The deformation is indicated in each
panel. The first value is associated with SLy6 for 144Nd where two
values are shown. The estimated peak positions (see Sec. III A) are
indicated by arrows.

seems to be better fitted by SLy6. Finally, the largest nucleus
in the sample, 150Nd, is sufficiently well deformed to show
qualitatively clear signs of deformation splittings in equal
manner for both forces and in the data. Even the magnitude
of splitting seems to match. The slightly smaller splitting
produced by SkI3 may be closer to the experimental situation,
but this observation has to be taken with care because the
results are masked to some extent by Landau fragmentation.

C. A superdeformed isomer

We have learned in the previous subsection that one needs
a sufficiently large deformation to make the deformation
splitting visible above the “background” of Landau fragmen-
tation and other broadening effects. It is natural then to go
one step further and to look for a superdeformed nucleus.
Figure 5 shows the case of 152Dy as one example. The energy
surface in the upper panel shows that there is a prolate ground
state as well as an oblate and a superdeformed isomer. The
lower panels show the spectra for all three minima. The
prolate and the oblate states show spectra where deformation
splitting and Landau fragmentation are strongly entangled.
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FIG. 5. (Upper panel) Quadrupole deformation energy surface
for 152Dy computed with SLy6. (Lower panels) Dipole strengths in
ground state and isomers as shown in the upper panel. The full lines
denote modes along x and y directions, the dotted lines denote the
mode along the z direction, the heavy solid lines denote the total
strength. The estimated peak positions (see Sec. III A) are indicated
by arrows.

The entanglement is worse than for 150Nd, where the splitting
was better separated despite the fact that both systems
have about the same deformation. This shows clearly that a
careful microscopic analysis is required before concluding
that there is a deformation splitting from an experimental
GDR spectrum. The superdeformed state, however, indicates
very clear splitting, larger than the line widths, which allows
an immediate identification of deformation. Similar structures
were found previously in a calculations based on a deformed
shell model [48]. A word of caution is in place here. The
resonance spectrum has been computed in the limit of small-
amplitude oscillations about the local minimum. A very small
amplitude, corresponding to an average excitation energy of
about 0.1 MeV, has been used to stay safely in the vicinity
of the minimum. The actual excitation energy, however, is at
least 8 MeV and thus far above the barrier to the ground state.
The photo-excited nucleus will thus move quickly toward the
ground-state shape, which, in turn, broadens the resonance
substantially. A full description of this process requires a very
elaborate mixing of collective quadrupole motion with the
giant resonance [49], which goes beyond the scope of this
paper. The simple estimate (6) is producing a splitting that
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FIG. 6. Dipole strength in the triaxial ground state of 188Os
computed with SLy6. The total strength is shown as well as the
strengths for the separate modes. The experimental result from [3] is
shown for comparison. The estimated peak positions (see Sec. III A)
are indicated by arrows. β =

√∑
µ β2µ is the total quadrupole

deformation and γ = atan
√

2β22/β20 is a measure of the triaxiality.

is somewhat too large. This is not surprising for this large
deformation because the simple geometrical idea behind the
estimate (simple ellipsoidal shapes) may be too crude. Keeping
that in mind, a 30% precision of an empirical formula is a nice
achievement.

D. Triaxiality

Triaxial nuclei display three different principal axes and
thus also deliver three different GDR peaks, as discussed
in Sec. III A. Deformation splitting is distributed over an
additional peak and thus is probably harder to identify. One
needs a nucleus with a sufficiently large net deformation. Our
calculations provided such a situation for 188Os. Figure 6
shows its dipole strength distribution. Somewhat to our
surprise, the perturbing effects from Landau fragmentation
are small here and we resolve nicely a triple splitting in
the theoretical calculation. However, the experimental data
look much different in every respect. They do not show any
indication of a triple splitting. The nucleus 188Os has an energy
landscape with various isomers. Moreover, this landscape
varies with various Skyrme forces to the extent that ground
state and isomers are placed differently. It is very likely that
the theoretical calculation for that particular force SLy6 has
interchanged ground state with isomer. The figure then shows,
at least from the theoretical side, the type of spectra at which
one has to look to single out candidates for triaxiality.

E. A heavy deformed nucleus

Finally, it is worth checking a much heavier nucleus.
Figure 7 shows the spectra for the ground state of 238U. In both
modes, there is some shoulder from Landau fragmentation.
However, the dominant peaks are sufficiently well developed
to allow a discrimination of the deformation splitting. Both
modes show a shoulder at about 15 MeV. The results agree
fairly well with the experimental distribution concerning
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FIG. 7. Dipole strength in the prolate ground state of 238U
computed with SkI3. The total strength is shown as well as the
strengths for the separate modes. The experimental result from [3] is
shown for comparison. The estimated peak positions (see Sec. III A)
are indicated by arrows.

overall position and splitting. They differ in detail to the extent
that the data do not show such a clear shoulder.

IV. CONCLUSION

We have computed dipole strength distributions for de-
formed nuclei within the framework of time-dependent
Skyrme-Hartree-Fock method. The spectra are obtained from
fully fledged dynamical calculations starting from an in-
stantaneous isovector-dipole boost and subsequent spectral
analysis of the emerging dipole signal. No symmetry restric-
tions are imposed. Thus all possible nuclear shapes can be
tackled.

The scheme has been used to study, at a microscopic
level, the deformation effects on the spectra in the region
of the giant dipole resonance. Collective estimates predict

a splitting of the GDR, where the mode vibrating along the
compressed direction is shifted upword in frequency, whereas
the elongated mode is shifted downword. The microscopic
calculations confirm that effect, in principle. In practice,
there is a competing mechanism that produces also detailed
substructures in the spectra. This is Landau fragmentation
caused by coupling of the collective strength to 1ph states
that are close in energy. This effect is found to be still
quite large for medium-heavy nuclei such that it masks the
deformation splitting to a certain extent. Small deformations
in the transitional region cannot be identified unambiguously
from the GDR spectra alone. Well-deformed nuclei have a
better chance to display the deformation splitting above the
“background” of Landau fragmentation. We have even found
visible signals of triaxial deformations. A particularly dramatic
splitting, beyond any doubt, is found in superdeformed
isomers.

The present exploration has employed only two different
Skyrme forces to get some indication of the force sensitivity
of the effects. The deformation splitting is found to be robust,
but the detailed pattern from Landau fragmentation is more
force dependent. More systematic surveys are needed to track
the variance of theoretical results and to thus deliver reliable
guidelines for the analysis of the data. Work in that direction
is in progress.
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