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The neutron pairing correlation and the soft dipole excitation in medium mass nuclei near the drip line are
investigated from the viewpoint of the di-neutron correlation. Numerical analyses based on the coordinate-space
Hartree-Fock-Bogoliubov method and the continuum quasiparticle random phase approximation are performed
for even-even 18−24O, 50−58Ca, and 80−86Ni. A clear signature of the di-neutron correlation is found in the ground
state; two neutrons are correlated at short relative distances <∼2 fm with large probability ∼50%. The soft
dipole excitation is influenced strongly by the neutron pairing correlation, and it accompanies a large transition
density for pair motion of neutrons. This behavior originates from a coherent superposition of two-quasiparticle
configurations [l × (l + 1)]L=1 consisting of continuum states with high orbital angular momenta l reaching an
order of l ∼ 10. It suggests that the soft dipole excitation under the influence of neutron pairing is characterized
by the motion of di-neutron in the nuclear exterior against the remaining A − 2 subsystem. Sensitivity to the
density dependence of the effective pair force is discussed.
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I. INTRODUCTION

Excitations of neutron-rich nuclei near the drip line are
subjects currently being investigated extensively. It is expected
that exotic properties such as halo, skin, or presence of weakly
bound nucleons in neutron-rich nuclei cause new features in
excitations. An example is the soft dipole excitation in light
halo nuclei [1–8], typically in 11Li and 11Be, where significant
E1 strength is observed above the very low neutron threshold
energy. This is in contrast to the situation in stable nuclei,
where most of the E1 strength concentrates in the high energy
region of giant resonances. Recently the soft dipole excitation
has been observed also in heavier systems up to neutron-rich
oxygen isotopes 18−22O [9,10]. These oxygen isotopes do not
exhibit noticeable halo structure [11]; but on the other hand,
they contain many valence neutrons. This suggests that the
soft dipole excitation is not always inherent in a one- or two-
neutron halo, but instead it may be a many-body phenomenon
more generally seen in many neutron-rich nuclei near the drip
line reaching medium mass and possibly heavier regions.

The degree of collectivity or the nature of correlations
responsible for this excitation is one of the central issues that
need to be clarified. Indeed, different mechanisms have been
proposed so far. One of the simplest mechanisms producing the
soft dipole excitation is the one associated with uncorrelated
excitation of a weakly bound neutron to continuum states.
In this case, significant E1 strength emerges just above the
threshold energy of neutron escaping without resorting to
correlations or collectivity; it is sometimes called the threshold
effect [12,13]. This arises from a large spatial overlap between
the extended wave function of a weakly bound single-particle
orbit, which is occupied by a neutron in the ground state, and
that of low energy continuum orbits, to which the neutron is
excited. Major aspects of the soft dipole excitation observed in
one-neutron halo systems, e.g., 11Be, fit rather well with this
uncorrelated excitation picture [4,5]. However, when more
than one neutron participates in the excitation, correlation

between neutrons plays a role, and different mechanisms of
the soft dipole excitation can be expected. In the case of
the two-neutron halo nucleus 11Li, the pairing correlation
among halo neutrons plays a decisive role for the binding
and formation of the halo [14–18]. It is suggested that the
two halo neutrons in the ground state display an attractive
correlation in such a way that they are spatially localized
with respect to their relative distance, in a range smaller
than the size of the nuclear matter radius [14,16,17]. The
spatial localization of the correlated pair has been discussed
also in stable closed-shell core plus two-neutron systems
[19–22]. The pairing correlation of this type or the di-neutron
correlation in short is predicted to cause a strong enhancement
of the soft dipole excitation in the two-neutron halo nucleus
[14,23,24], or even to form a collective vibrational motion
of the correlated halo neutrons against the rest of the system
[15,25].1 Experimentally, signatures of a possible di-neutron
correlation in the soft dipole excitation are obtained in 11Li [2],
but strong neutron-neutron correlations are not probed in other
experiments [1,3].

The soft dipole excitation in medium mass nuclei has also
been investigated theoretically, but with different viewpoints
and results. The random phase approximation (RPA) calcu-
lations based on the Hartree-Fock models or the relativistic
mean-field model predict that the soft dipole excitations have
a character of uncorrelated neutron excitation carrying very
little collectivity in the neutron-rich oxygen isotopes [25–27].

1The collective vibrational mode of halo neutrons predicted by
Ref. [15] is called the soft dipole mode or the soft dipole resonance.
The term soft dipole excitation, on the other hand, is sometimes
used to distinguish from this picture or to emphasize a picture
of uncorrelated excitation of halo neutrons. In the present paper,
however, we use the soft dipole excitation only to imply neutrally an
excitation carrying a significant E1 strength far below the giant dipole
resonance energy without specifying any other characters.
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Note, however, that these RPA models do not take into
account the pair correlations among neutrons. The shell model
calculation [28] reproduces rather well the experimental soft
dipole strength in oxygen isotopes, but continuum effects are
not included. Recently quasiparticle RPA (QRPA) calculations
that include explicitly the neutron pairing corrections have
been performed [29–34]. It is predicted that the neutron pair
correlation has a sizable effect on E1 strength of the soft dipole
excitation in the oxygen isotopes [31,32]. This suggests that
the neutron pair correlation is an important key to clarifying
the character of the soft dipole excitation in medium mass and
heavier systems.

In the present paper, we analyze in detail pair correlation
effects in the medium mass region with Z = 8−28, taking
proton (semi-) magic oxygen, calcium, and nickel isotopes
as representative examples. Motivated by the debate on the
light two-neutron halo nuclei, we pay special attention to
possibilities of the di-neutron correlation also in these medium
mass nuclei. We will conclude that some features of the
di-neutron correlation are indeed present rather generally in
the ground state of the medium mass nuclei. Furthermore the
di-neutron correlation also brings about a characteristic and
strong influence on the soft dipole excitation.

Our analysis is based on the Hartree-Fock-Bogoliubov
(HFB) method in the coordinate-space representation for de-
scription of the ground state, and the continuum quasiparticle
random phase approximation (the continuum QRPA) for the
excitations. The coordinate-space HFB theory [35,36] has
been applied to describe the pair-correlated ground state in
near-drip-line nuclei as weakly bound and continuum orbits are
treated precisely through an explicit account of the coordinate
dependence of the pair potential and the quasiparticle wave
functions [37–43]. Generalization of the HFB theory to a
time-dependent problem, i.e., a linear response against an
external perturbation, leads to the quasiparticle random phase
approximation (QRPA) [44,45]. Thus, QRPA methods that
build upon the HFB ground states [31,33,46–52] as well as
similar approaches formulated on the relativistic mean-field
Bogoliubov models [32,53,54] have been developed recently
to describe excitation modes in medium mass and heavier
neutron-rich nuclei. We note here that the soft dipole excitation
has a special aspect in that the E1 strength associated with this
excitation is embedded and broadly distributed in the contin-
uum energy region just above the threshold energy of neutron
escaping. In fact, most of the soft dipole strength observed in
the oxygen isotopes lies above the threshold without forming a
narrow resonance [9], implying considerable neutron escaping
from this excitation mode. It is therefore important to treat
precisely escaping neutrons within the QRPA framework. This
is what the continuum QRPA methods achieve [48,49]. In the
present work, we use our own formulation of the continuum
QRPA [48], and apply it to the soft dipole excitation.
An important feature of this formulation is that it utilizes
the exact quasiparticle Green function satisfying the proper
out going boundary condition for neutrons. (In this respect, it is
an extension of the continuum RPA [26,55,56] which, however,
neglects the pair correlation.) Accordingly, the theory enables
us to take into account pair correlation acting among escaping
neutrons, which will be important for formation of a di-neutron

correlation in the dipole excitation. Since the pair correlations
are focused in the present analysis, we perform calculations
satisfying the self-consistency in the particle-particle channel
(the pairing channel) by using the self-consistent HFB pair
potential and the residual pair interaction derived from a single
effective pairing force. Concerning the particle-hole channel,
we use a Woods-Saxon potential and a residual interaction of a
delta force type, violating the self-consistency in this channel.
Finally we note that as our approach is fully microscopic in
treating all the nucleon degrees of freedom democratically,
the di-neutron correlation, if present, emerges only as a
consequence of the microscopic description. To probe the
di-neutron behaviors in the ground state and in the soft dipole
excitation, we look into the two-body correlation density and
the pair transition densities, which provide information on pair
motion of neutrons.

Numerical calculations are performed for even-even
neutron-rich oxygen, calcium, and nickel isotopes 18−24O,
50−58Ca, and 80−86Ni near the drip line and for some more
stable isotopes for comparison. In Sec. II, we analyze the
di-neutron correlation in the ground state. In Sec. III, analysis
of the soft dipole excitations using the continuum QRPA
method is presented. Conclusions are drawn in Sec. IV. We do
not discuss in the present paper the low-lying dipole strength
in stable nuclei with neutron excess, called pygmy dipole
resonance [57–61], because the situations are different from
those in near-drip-line nuclei on which we focus the present
paper. A preliminary report of the present work is seen in
Ref. [62].

II. DI-NEUTRON CORRELATION IN THE GROUND STATE

A. Coordinate-space HFB with density-dependent interaction

Wave functions of weakly bound neutrons in nuclei
close to the drip line extend largely to the outside of the
nuclear surface because of the quantum mechanical penetra-
tion. Since associated neutron density is very low, the pair
correlations in internal, surface, and external regions may
be different. The coordinate-space Hartree-Fock-Bogoliubov
theory [35–37] enables us to deal with this nonuniformity
by utilizing an explicit coordinate representation for the
Bogoliubov quasiparticles, which are the fundamental modes
of the single-particle motion under the influence of a pairing
correlation. In this scheme, the quasiparticles are able to
have both particle and hole characters simultaneously, and
accordingly they are expressed by the two-component wave
functions

φiq(rσ ) ≡
(

ϕ1,iq(rσ )
ϕ2,iq(rσ )

)
, (1)

where σ = ± 1
2 =↑,↓, and q = n, p represent spin and

isospin. The quasiparticle states are determined by the HFB
equation

H0qφiq(rσ ) = Eiqφiq(rσ ), (2)
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with

H0q =
(

hq − λq h̃q

h̃q −hq + λq

)
, (3)

where Eiq is the quasiparticle energy. The HFB self-
consistent mean-field Hamiltonian H0q consists of not only
the particle-hole part hq − λq including the kinetic en-
ergy term, the Hartree-Fock mean field, and the Fermi
energy λq , but also the particle-particle part h̃q originat-
ing from the pair correlation. The mean-field Hamiltonian,
hq and h̃q , are expressed in terms of the normal den-
sity matrix ρq(rσ, r ′σ ′) = 〈�0| ψ†

q (r ′σ ′)ψq(rσ ) |�0〉, the pair
density matrix ρ̃q(rσ, r ′σ ′) = 〈�0| ψq(r ′σ̃ ′)ψq(rσ ) |�0〉 =
(−2σ ′) 〈�0| ψq(r ′ − σ ′)ψq(rσ ) |�0〉, and the effective nu-
clear force. We do not need the explicit form of the correlated
HFB ground state |�0〉 since ground state expectation values
of various physical quantities can be evaluated with use of
the Wick’s theorem for the quasiparticle annihilation and
creation operators βiq and β

†
iq satisfying the vacuum condition

βiq |�0〉 = 0, and with use of their relation to the nucleon
annihilation and creation operators given by

ψq(rσ ) =
∑

i

ϕ1,iq(rσ )βiq − ϕ∗
2,iq (rσ̃ )β†

iq ,

ψ†
q (rσ ) =

∑
i

ϕ∗
1,iq(rσ )β†

iq − ϕ2,iq (rσ̃ )βiq . (4)

In the present work, we derive the particle-particle mean-
field h̃q by using the self-consistent HFB scheme. As the
effective nuclear force responsible for the particle-particle
part h̃q , called the effective pairing force below, we adopt
the density-dependent delta interaction [14,63,64]

vpair(r, r ′) = 1

2
V0(1 − Pσ )

[
1 − ρ(r)

ρ0

]
δ(r − r ′). (5)

With this choice, the particle-particle part h̃q becomes a local
pair potential 
q(r) = V0

2 [1 − ρ(r)
ρ0

]ρ̃q(r) expressed with the
diagonal pair density ρ̃q(r) = ∑

σ ρ̃q(rσ, rσ ). The parameter
ρ0 together with the total density ρ(r) = ρn(r) + ρp(r) in
Eq. (5) controls the density dependence of the effective pairing
force. There is no established knowledge on the density
dependence of the pairing force, being under current inves-
tigations [38,39,65]. In the following analysis, we consider
three cases: (1) the pairing with strong density dependence (or
the surface pairing force for short) for which the parameter
ρ0 is set to the central total density ρ0 = 0.19 fm−3, (2) the
density-independent pairing force with the choice of 1/ρ0 = 0
(the volume pairing force), and (3) the case of an intermediate
density dependence with ρ0 = 0.32 fm−3 (the mixed pairing
force). Since a recent analysis suggests that the mixed pairing
force reproduces better the odd-even mass difference in many
isotopic chains [39], we adopt the mixed pairing as a reference
choice. The surface and volume pairing forces are employed
to examine sensitivity to the density dependence.

Concerning the particle-hole part hq of the HFB Hamil-
tonian, it is in principle possible to derive it by using an
effective interaction, e.g., the Skyrme force, as we have a
code to calculate the HFB ground state and the static HFB
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FIG. 1. Woods-Saxon single-particle levels of neutrons in
22O,54Ca, and 86Ni. The single-particle energy is indicated in
parenthesis. The thick dotted line is the calculated Fermi energy.

mean fields. On the other hand, we are not yet ready to apply
the full Skyrme force to the continuum QRPA method [48]
utilizing the exact Green function with the outgoing boundary
condition. In the present analysis, therefore, we replace hq

by a spherical Woods-Saxon potential model both in the HFB
and the continuum QRPA calculations. It should be examined,
of course, how choices of the particle-hole mean field affect
numerical results. This point is briefly discussed below in
reference to the pair correlation in the ground states. The
parameters of the Woods-Saxon model follow Ref. [55], which
gives a reasonable description of the giant dipole excitation
in doubly shell-closed stable nuclei, such as 16O and 40Ca.
Neutron single-particle orbits near the Fermi energy are shown
in Fig. 1 for representative isotopes.

Assuming the spherical symmetry, we solve the HFB
Eq. (2) in the radial coordinate for each partial wave. Here
we adopt the radial mesh size 
r = 0.2 fm, and the box
size rmax = 20 fm. To achieve self-consistency between the
quasiparticle wave functions and the HFB pair potential,
an iteration method [35] is used. As the contact interaction
is adopted as the effective pair force, we need an energy
cutoff, which is done here with respect to the quasipar-
ticle energy bounded by the maximum limit Emax. We
adopt a value Emax = 50 MeV following the arguments in
Refs. [35,37]. Similarly large values are adopted in many
recent HFB and HFB+QRPA calculations [38–43,49–51,65].
We include all the quasiparticle states under the energy cutoff
and another cutoff for the orbital angular momentum l of
the quasiparticle states: we adopt a large value lmax = 12 to
give good convergence. Note that the space contains neutron
quasiparticle states in the continuum energy region E > |λq |
lying above the threshold |λq |. We shall discuss roles of
high-lying and high-l quasiparticle states in the following
section.

The force strength parameter V0 in Eq. (5) is fixed for
each isotope chain so that the calculated neutron average
gap 〈
n〉 = ∫

ρ̃n(r)
n(r)d r/
∫

ρ̃n(r)d r [35,48,66] gives an
overall agreement with the odd-even mass difference of the
three-point formula [67], as shown in Fig. 2. A common
value V0 = −280 MeV fm3 is adopted in the case of the
mixed pairing. Note that we here improve the pairing force
parameter, compared with our previous calculations [31,48]
where the conventional systematics 
syst = 12/

√
A MeV is
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FIG. 2. Calculated neutron average pairing gap 〈
n〉 in O, Ca,
and Ni isotopes, plotted with crosses. Experimental odd-even mass
difference evaluated with the three-point formula [67] is shown by
dashed line. Dotted line is the conventional systematics 
syst =
12/

√
A MeV of the pairing gap.

fitted to determine V0. The value of 
syst in the oxygen isotopes
is larger by about 40% than the experimental odd-even mass
difference (Fig. 2).

B. Two-body correlation density

To analyze the spatial behavior of the neutron pair correla-
tion and to search for possible di-neutron aspects, we evaluate
the two-body correlation density

ρcorr,q(rσ, r ′σ ′) = 〈�0|
∑

i 
=j∈q

δ(r − r i)δ(r ′ − rj )δσiσ δσj σ ′ |�0〉

− ρq(rσ )ρq(r ′σ ′) (6)

for the calculated ground state. This quantity displays a
correlation between two neutrons at positions r and r ′ with
spins σ and σ ′. The spin antiparallel (spin-singlet) config-
uration σσ ′ =↑↓ is responsible for the neutron pairing. In
the above definition, we subtract the uncorrelated contribution
ρq(rσ )ρq(r ′σ ′) in order to separate the change originating
from the correlation.

Using the creation-annihilation operators and Wick’s
theorem, the two-body correlation density is expressed
as

ρcorr,q(rσ, r ′σ ′) = 〈�0|ψ†
q (rσ )ψ†

q (r ′σ ′)ψq(r ′σ ′)ψq(rσ )|�0〉
− ρq(rσ )ρq(r ′σ ′)

= |ρ̃q(rσ, r ′σ̃ ′)|2 − |ρq(rσ, r ′σ ′)|2, (7)

in terms of off-diagonal parts of the pair and the normal
density matrices. For the spin antiparallel configuration, the
last term of Eq. (7) gives only a minor contribution, while
it gives the Pauli repulsion correlation for the spin parallel
configuration. In the following, we concentrate on the spin
antiparallel neutron correlation. In displaying this quantity, we
fix the position r ′ of one spin-down (σ ′ =↓) neutron (called
the reference neutron hereafter) and plot it as a function of
the position r of the other spin-up (σ =↑) neutrons. Actual
plots are made for the two-body correlation density ρcorr,n

(r ↑, r ′ ↓)/ρn(r ′ ↓) divided by the neutron density ρn(r ′ ↓)
at the position of the reference neutron. This represents the
conditional probability of finding neutrons at position r with
spin σ = ↑ provided that the reference neutron is fixed at
r ′ with spin σ ′ = ↓. This normalization removes the trivial
radial dependence of the density that falls off exponentially
as the reference neutron position moves to the exterior region.
This facilitates comparison among different positions of the
reference neutron.

Examples of the two-body correlation density are displayed
in Fig. 3 for nuclei near the drip line 22O, 58Ca, and 84Ni. The
reference neutron is placed at a position r ′ = (0, 0, z′) along
the z axis, where z′ is fixed at the surface radius z′ = Rsurf . We
evaluate Rsurf by a position of the half central neutron density.
To examine dependence on the reference neutron position, it
is further displaced at an internal (z′ = Rsurf − 2 fm) and an
external (z′ = Rsurf + 2 fm) positions shifted by ±2 fm from
the surface. The external position z′ = Rsurf + 2 fm represents
the neutron skin region, as the neutron density at this position
is about ∼1/30 of the central density (see later in Fig. 6)
in these isotopes. (Note that a criterion ρn(r)/ρn(0) = 1/100
is sometimes adopted in the literature [68,69] to define the
neutron skin thickness and to distinguish from a typical neutron
halo, which emerges with a lower density ρn(r)/ρn(0) <

1/100.)
It is seen that the correlation density ρcorr,n(r ↑, r ′ ↓)

exhibits a large and sharp peak in all the cases shown in Fig. 3.
The peak position almost coincides with the reference neutron
position. The distribution is concentrated mostly within an
interval <∼2−3 fm around the peak. The peak width ξd ,
evaluated by the full width at half maximum (FWHM), reads
only about 2 fm when the reference neutron is placed at the
internal or the surface positions, whereas the spreading of
the peak becomes slightly wider in the case of the external
position. This obviously means a strong concentration of the
correlation density around the reference neutron as the width
ξd is smaller than the nuclear radius or the distance between the
reference neutron and the nuclear center. In the region other
than the first largest peak, the correlation density displays
oscillatory behaviors, but its absolute value is much smaller
than the first largest peak. The observed concentration of the
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FIG. 3. Neutron two-body correlation density ρcorr,n(r ↑, r ′ ↓)/ρn(r ′ ↓) in 22O, 58Ca, and 84Ni calculated with the mixed pairing force is
drawn on the x-z plane. A contour plot of the same quantity is attached in the bottom of each panel where the interval of contour lines is
0.001 fm−3. The symbol “X” on the x-z plane indicates the position r ′ = (0, 0, z′) of the reference neutron. Results for 22O, 58Ca, and 84Ni are
listed in the top, middle, and bottom rows, respectively. In the middle column, the reference neutron is fixed at the nuclear surface z′ = Rsurf ,
whereas it is placed at the external position z′ = Rsurf + 2.0 fm in the right column and at the internal position z′ = Rsurf − 2.0 fm in the left
column. See Table I for the value of Rsurf .

two-body correlation density in the small region around the
reference neutron indicates that two neutrons with the spin
antiparallel (spin singlet) configuration have a large probability
of coming close at short relative distances |r − r ′| <∼2−3 fm. It
may be possible to regard this feature of the neutron pairing as
that of the di-neutron correlation. This di-neutron correlation
resembles qualitatively the spatial localization of correlated
two neutrons suggested in the previous studies of two-neutron
halo nuclei [14,16,17] and of stable nuclei having closed-shell
core plus two neutrons [19–22].

It is possible to quantify the extent of the di-neutron
correlation by evaluating the first largest peak in the two-body
correlation density. Here we note that the second last term
in Eq. (7), expressed in terms of the pair density matrix ρ̃n,
gives the dominant contribution to the correlation density. It
is customary to regard the pair density matrix ρ̃n(rσ, r ′σ̃ ′) =
〈�0|ψn(rσ )ψn(r ′σ ′)|�0〉 as the wave function of a neutron
pair in the correlated ground state. In this sense, the second last
term |ρ̃n(rσ, r ′σ̃ ′)|2 ≡ pn(rσ, r ′σ ′) with the opposite spins
represents the probability distribution of a spin-singlet neutron
pair. Using this quantity and normalizing, we can define a
relative probability

p(rd ) =
∫
|r−r ′|<rd

pn(r ↑, r ′ ↓)d r∫
pn(r ↑, r ′ ↓)d r

(8)

for the spin-up neutron to exist within a distance rd from
the spin-down reference neutron. The quantity p(rd ) with a
suitable value of rd measures the probability for the correlated
neutron pair to form the di-neutron peak. We call it the
di-neutron probability in the following. Calculated examples
of the di-neutron probability are listed in Table I. We adopt
rd = 2 fm for the internal and the surface cases; while for

TABLE I. Di-neutron probability p(rd ) in 22O, 58Ca, and 84Ni
near the neutron drip line, and in more stable 44Ca and 66Ni. The
reference neutron position r ′ = (0, 0, z′) is fixed at the surface ( z′ =
Rsurf ), internal (z′ = Rsurf − 2 fm), and external (z′ = Rsurf + 2 fm)
positions. The surface radius Rsurf defined by the half central density
of neutrons is also listed. The di-neutron probability is evaluated with
rd = 2 fm except in the external case, where we use rd = 3 fm. See
also the text.

Rsurf p(rd )

(fm) Internal Surface External

22O 2.9 0.32 0.48 0.47
58Ca 4.2 0.39 0.53 0.59
84Ni 4.8 0.32 0.49 0.47
44Ca 3.6 0.44 0.46 0.51
66Ni 4.3 0.36 0.51 0.48
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the external case, rd = 3 fm is chosen to cover the large
peak near the reference neutron (cf. Fig. 3, and later Figs. 7
and 8). The di-neutron probability amounts to 30–60%. As
a reference, we compare with an estimate that would be
obtained if the neutron pair probability pn(r ↑, r ′ ↓) were
distributed uniformly in the whole nuclear volume. This
uniform limit, which we evaluate by replacing pn(r ↑, r ′ ↓)
with the neutron density ρn(r), gives p(rd ) = 0.20, 0.10, 0.06
for z′ = Rsurf − 2,+0,+2 fm in 22O, 0.08, 0.04, 0.03 in 58Ca,
and 0.05, 0.03, 0.02 in 84Ni. In contrast to the uniform limit,
the microscopically calculated values of p(rd ) shown in Table I
exhibit a significant enhancement especially at the surface and
external positions.

The di-neutron correlation emerges systematically at dif-
ferent positions inside and outside the nucleus, as seen in
Fig. 3. Inspecting in more detail, we find that, besides the
width mentioned above, features of the di-neutron correlation
vary with the reference neutron position. When the reference
neutron is moved from the internal position (z′ = Rsurf −
2 fm) to the surface (z′ = Rsurf), the di-neutron correlation
apparently enhances. This is also seen in the di-neutron
probability (see the cases of 22O, 58Ca, and 84Ni in Table I),
which shows an increase from p(rd ) ≈ 30−40% at the internal
position to ≈50% at the surface position. Moving further
toward the outside, as represented by the external position
in the skin region z′ = Rsurf + 2 fm, the concentration of
correlation density around the largest peak is constantly quite
large, keeping the di-neutron probability p(rd ) ≈ 50−60%. It
is seen in this case that the peak position of the correlation
density deviates slightly from the reference neutron position.
The deviation is, however, within the di-neutron width ξd ,
keeping a large spatial overlap of the other neutron with the
reference one. As the reference neutron moves far outside the
nucleus, the deviation from the reference neutron increases
further whereas the spatial correlation survives rather robustly
even around z′ ∼ Rsurf + 3 to +4 fm in 58Ca and 84Ni. (An
example of the correlation density with z′ = Rsurf + 3 fm is
shown in Fig. 4.) This behavior also manifests itself in the
pair probability p(rd ). In 58Ca, for example, this quantity
with the reference neutron positions z′ = Rsurf + 2,+3,+4
and +5 fm reads p(rd ) = 0.59, 0.57, 0.52, and 0.53 with rd =
3, 4, 5, and 6 fm chosen respectively, to encompass the first
largest peak, whereas p(rd ) with fixed rd (=3 fm) decreases as
p(rd ) = 0.59, 0.38, 0.18, 0.07 at the same reference positions.
We find a similar behavior in 84Ni, while in 22O the strong
concentration of two-body correlation density is seen for z′ <∼
Rsurf + 3 fm. These observations indicate that the di-neutron
correlation is most strong in the surface and the skin regions
while the spatial correlation associated with the di-neutron
behavior remains and decreases only gradually even outside
the skin.

If we compare the oxygen, calcium, and nickel isotopes
in Fig. 3, we observe that the concentration of two-body
correlation density around the position of reference neutron
is more evident in 58Ca and 84Ni than in 22O. For example,
the di-neutron probability in 58Ca and 84Ni is as large as
the one in 22O (Table I). This means that the enhancement
relative to the uniform limit is much larger in 58Ca and
especially in 84Ni than in 22O. It is also seen that the oscillatory
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FIG. 4. Neutron two-body correlation density evaluated along the
z axis in the near-drip-line nuclei 58Ca and 84Ni, and in a more
stable isotope 66Ni. Reference neutron is fixed at z′ = Rsurf + 3 fm,
as indicated by arrows.

behavior apart from the largest peak is weaker in 58Ca and
84Ni than in 22O, especially when the reference neutron is
placed at the external position. The small oscillation is a
remnant of nodal structure in the wave functions of neutron
single-quasiparticle states near the Fermi energy, e.g., 2s1/2 and
1d5/2,3/2 neutron states in the case of 22O, although the magni-
tude of oscillation is suppressed by coherent contributions of
other neutron quasiparticle states (see the next subsection for
details). The smearing of the single-particle structures is more
effective in heavier systems as more single-particle levels parti-
cipate in the pairing correlation. It should be noted also that
the neutron separation energy (related to the Fermi energy)
is smaller in 58Ca and especially in 84Ni than in 22O (see
Fig. 1). This difference in neutron binding also influences the
neutron pairing correlation in the external region as discussed
just below.

We have also analyzed the neutron two-body correlation
density along the isotopic chains of Ca and Ni to check the di-
neutron property in more stable nuclei and to examine how the
di-neutron correlation varies with an approaching neutron drip
line. We select 44Ca and 66Ni as examples representing stable
nuclei and neutron-rich unstable nuclei (situated between the
drip line and the stable region), respectively. Here 66Ni is
chosen to compare with the near-drip-line nucleus 58Ca having
the same neutron number N = 38 and with the near-drip-line
isotope 84Ni. It is found that the gross behavior of the two-body
correlation density in 44Ca and 66Ni is similar to those in 58Ca
and 84Ni in the surface and the internal regions. As a repre-
sentative example, we show in Fig. 5 the two-body correlation
density in 44Ca and 66Ni for the reference neutron fixed at the
surface (z′ = Rsurf). In Table I, we do not see an obvious
difference between the near-drip-line nuclei and the more
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FIG. 5. Same as Fig. 3, but for 44Ca and 66Ni. Reference neutron
is fixed at the surface position z′ = Rsurf .

stable ones in the di-neutron probabilities p(rd ) at the internal
position z′ = Rsurf − 2 fm and at the surface z′ = Rsurf .

A clear difference emerges, however, when the reference
neutron is placed far outside the nuclear surface. This is
illustrated by Fig. 4, where we compare the correlation
densities in 66Ni, 84Ni, and 58Ca with a reference neutron
fixed at a position (z′ = Rsurf + 3 fm) in the far outside region.
The value of the correlation density evaluated at the reference
neutron position is lower in 66Ni by a factor of 2 or more
than in the near-drip-line nuclei 58Ca and 84Ni. Moreover,
the large correlation density at the position of the reference
neutron is most significant in 84Ni. This indicates that the
di-neutron correlation in the external region is stronger in
near-drip-line nuclei having shallower neutron Fermi energy
than that in more stable nuclei with deeper Fermi energy (see
Fig. 1 for the single-particle energies and the Fermi energy
in these nuclei). We can also see this property directly in the
profiles of the pair density ρ̃n(r) of neutrons, shown in Fig. 6.
The pair density ρ̃n(r) has comparable or larger magnitude
ρ̃n(r) >∼ ρn(r) with the normal density ρn(r) in the skin region
r ∼ Rsurf + 2 fm and far outside. As discussed in Ref. [37], the
exponential tail constant of the neutron pair density ρ̃n(r) in
the asymptotic external region is related to the Fermi energy.
The asymptotic tail develops as the drip line is approached and
is longer than that of the normal density ρn(r). Consequently,
the di-neutron correlation in the external low-density region
becomes relatively stronger in nuclei near the neutron drip
line.

C. Di-neutron correlation and single-particle configurations

In obtaining the significant di-neutron correlation, it is
essential to adopt a large model space of neutron quasiparticle
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FIG. 6. Density ρn(r) and pair density ρ̃n(r) of neutrons in 44,58Ca
and 66,84Ni. Solid and dashed lines represent ρn(r); dotted and dot-
dashed lines are for ρ̃n(r).

states including continuum orbits up to large quasiparticle
energy (Emax = 50 MeV in the present calculation) and large
orbital angular momentum (lmax = 12). If the oxygen isotopes,
for example, are chosen, one would consider that neutron
single-particle orbits 2s1/2 and 1d5/2,3/2 lying around the
neutron Fermi energy are those most responsible for the
neutron pairing. (Note that the Woods-Saxon 1d3/2 orbit is
not a bound orbit but a resonance close to the zero energy.
See Fig. 1.) However, if one truncates to a single-j orbit
or to orbits in one major shell, the di-neutron correlation
never shows up: The two-body correlation density would
exhibit a mirror symmetry with respect to the x-y plane
if only orbits with the same parity are taken into account.
Importance of configuration mixing involving single-particle
orbits in a large space as well as mixing with different parities
and orbital angular momenta has been pointed out for the
spatial localization of the correlated two-valence neutrons
around a closed-shell core [19–22]. In the case of 2n-halo
nucleus 11Li, mixing with s and p orbits is suggested to
cause the localization [17]. A similar but qualitative argument
on the superconducting BCS wave function is also given in
Ref. [70]. Here we shall clarify from a similar viewpoint the
nature of configuration mixing responsible for the di-neutron
correlation observed in the HFB description of the medium
mass neutron-rich nuclei, where more than two weakly bound
nucleons participate in the pair correlation.

In Fig. 7, we show partial contributions of neutron quasi-
particle orbits truncated with respect to the orbital angular
momentum l of the orbits. Namely, the two-body correlation
density is evaluated by including the neutron quasiparticle
states obtained in the HFB calculation only up to a cutoff
orbital angular momentum lcut. By including both parities
but with low angular momenta l = 0, 1, 2 (covering at least
all the neutron bound Woods-Saxon single-particle orbits
in 22O), the spatial correlation at the internal position is
rather well reproduced, but it is insufficient to bring about
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FIG. 7. Dependence of the neutron two-body correlation density on the orbital angular momentum cutoff lcut = 0, 1, 2, 3, · · · for 22O, 58Ca,
and 84Ni in the top, middle, and bottom rows, respectively. Two-body correlation density is plotted along the z axis. Full result is drawn with the
solid line. Reference neutron positions fixed at the internal (z′ = Rsurf − 2 fm), surface (z′ = Rsurf ), and external (z′ = Rsurf + 2 fm) positions
are shown by arrows in the left, middle, and right columns, respectively.

the correlation at the surface and the external positions;
see the line corresponding to lcut = 2. Adding l = 3 orbits,
the di-neutron correlation becomes more visible, but at the
external position an approximate convergence is achieved
only by including further l = 4−5 orbits. It should be noted
here that the neutron quasiparticle orbits with high angular
momentum (l > 2) are continuum states with E > |λn|.
Figure 7 indicates that the continuum high-l orbits are
important at the surface and external positions also in Ca and
Ni isotopes, for which a larger value of angular momenta up
to l ∼ 6−8 at z′ = Rsurf and l ∼ 7−9 at z′ = Rsurf + 2 fm are
necessary. The above result pointing to the configuration mix-
ing with different parities and orbital angular momenta goes
along the line of the previous studies [17,19,21,22]. Note that
significant high-l orbits are involved to form the di-neutron cor-
relation as the reference position moves far outside the surface.

The large contribution of the neutron high-l quasiparticle
orbits in the skin region can be related to the fact that the
spatial correlation is enhanced at small distances |r − r ′| <

2−3 fm. To illustrate we consider a pair of neutrons cor-
related in the relative s-wave at zero relative distance and
whose center of gravity is located off the nuclear center.
A corresponding two-particle wave function is written as
∼δ(r − r ′) ∝ ∑∞

lm Y ∗
lm(r)Ylm(r ′) where l is the orbital angular

momentum about the nuclear center. This expression indi-
cates that a coherent superposition of orbits with all orbital

angular momenta l are necessary for such a correlation.
On a similar basis, we can argue that a superposition of
angular momenta up to lM is needed to describe the di-
neutron correlation which is dominantly in the relative s-
wave and has a width approximately given by ξd ∼ 2r/ lM
with respect to the angular direction (r being the radial
position of the center of gravity of the pair, and ξd is the
length scale of the di-neutron correlation). If we use ξd ∼
2 fm, the above estimate gives a qualitative (though not
precise) account of the maximum angular momentum seen in
Fig. 7.

We have also examined the contribution of high-lying
neutron quasiparticle orbits. For this analysis, we reperform
HFB calculations using smaller values of the cutoff energy
Emax for the quasiparticle states, and we look into dependence
on Emax. To remove trivial effects originating from a reduction
of the pairing correlation, we readjust the pairing force
parameter V0 to keep the same average pairing gap: 〈
n〉 =
1.52, 1.27, and 1.35 MeV for 22O, 58Ca, and 84Ni. Results
obtained with different values of Emax are shown in Fig. 8.
Here we plot the probability of the pair wave function pn

(r ↑, r ′ ↓) = ρ̃n(rσ, r ′σ̃ ′)2 in place of the correlation density
ρcorr,n(r ↑, r ′ ↓) = pn(r ↑, r ′ ↓) − ρn(r ↑, r ′ ↓)2 in order to
focus on the effect on the pair wave function. (The comparison
between the solid lines in Fig. 7 and those in Fig. 8 shows
that the second term in the above equation is negligible.)
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As indicated in Fig. 8, the di-neutron correlation barely appears
if we use the small space including only up to Emax = 5 MeV,
which usually covers most of the quasiparticle states in one
major shell. The results with Emax = 10, 20 MeV display
only weak di-neutron correlation, and one needs neutron
quasiparticle states at least up to E ∼ 30 MeV to obtain a
qualitative account of the di-neutron correlation.

The above analysis also indicates a important role of
continuum quasiparticle states for the di-neutron correlation.
As the neutron Fermi energy is small (−λn = 3.54, 2.13, and
0.72 MeV in the case of 22O, 58Ca, and 84Ni, respectively), the
quasiparticle states that contribute to the di-neutron correlation
are mostly those embedded in the continuum energy region
E > |λn|. Most of the neutron continuum states are non
resonant states except for a few corresponding to the hole
neutron orbits (e.g., 1p1/2,3/2 and 1s1/2) which have specific
quasiparticle energies. The slow convergence with respect to
the quasiparticle energy indicates that the nonresonant contin-
uum states give nonnegligible and accumulating contributions
to the di-neutron correlation. It is noted that the contribution of
quasiparticle states with relatively small quasiparticle energy
is important in the case of the external position. This may be
related to the fact that the pair correlation becomes weaker in
the external region.

D. Dependence on pair interaction and particle-hole
mean field

It is expected that the density dependence of the pairing
interaction influences the di-neutron correlation since the
pairing forces of the surface and the mixed types give stronger
neutron-neutron attraction in the surface and the external
regions than in the interior. The volume pairing force (the
density-independent force) does not have this feature. To
examine the influence of density dependence, we perform
calculations using the surface and volume pairing forces.
The pairing force strength V0 chosen to reproduce the same
average pairing gap 〈
n〉 calculated with the mixed pairing
force. The calculated two-body correlation density shown in
Fig. 9 indicates that the density dependence indeed affects the
di-neutron correlation. Namely, in the case of surface pairing,
the calculated two-body correlation density is significantly
large in the surface (e.g., z′ = Rsurf) and the exterior regions
(z′ = Rsurf + 2 fm) but it is weak in the internal region (z′ =
Rsurf − 2 fm). The volume pairing force does not exhibit such
a position dependence. In the case of the mixed pairing force,
the two-body correlation displays an intermediate feature as
seen from comparison of Figs. 7 and 9.

We emphasize also that the di-neutron correlation cannot
be properly described if one adopts the schematic seniority
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FIG. 9. Neutron two-body correlation density along the z axis
in 22O, 58Ca, and 84Ni calculated with the surface and the volume
pairing forces having different density dependence. Dashed, solid,
and dotted lines in each panel display this quantity for the internal,
surface, and external positions of reference neutron. The pairing force
parameters are V0 = −375, −395, −385 MeV fm3 (in 22O, 58Ca, and
84Ni, respectively) and ρ0 = 0.19 fm−3 for the surface pairing, and
V0 = −190, −178, −180 MeV fm3 (22O, 58Ca,84Ni) for the volume
pairing.

pairing force used together with the conventional BCS ap-
proximation, where a constant pairing gap 
0 is assumed
instead of the self-consistent pair potential 
(r). This is
illustrated in Fig. 10, where we present a BCS calculation
obtained with use of the standard analytic expression of
u, v factors, the Woods-Saxon single-particle energies, and
the gap constant 
0. We include all bound and discretized
continuum Woods-Saxon neutron orbits (obtained with the
box radius rmax = 20 fm) and use the same cutoff parameters
Emax = 50 MeV and lmax = 12 as in the HFB calculation.
The value of 
0 is set to that of the average neutron gap
〈
n〉 obtained in the HFB calculation. It is seen that the BCS
calculation significantly overestimates the correlation density
when the reference neutron is placed at external positions. In
the case of surface and internal positions, the disagreement
with the HFB is less serious, but profiles of the two-body
correlation density are not well reproduced, as shown in
Fig. 10. The unwanted overestimate in the external region
arises from contributions of the discretized Woods-Saxon
orbits in the positive-energy continuum region, for which the
BCS approximation is known to cause unphysical correlation
[37]. If we neglect the discretized continuum Woods-Saxon
orbits to avoid this difficulty, however, the BCS approximation
produces a result (dotted line in Fig. 10) that is far off the HFB
result, and the di-neutron correlation never shows up.

We also examined whether the pairing properties de-
pend on our choice of the Woods-Saxon model for the
particle-hole mean field hq . For this purpose, we performed
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FIG. 10. Neutron two-body correlation density along the z axis
in the BCS approximation for 58Ca with use of a constant pairing gap

n = 1.27 MeV (dashed line). The HFB result (solid line) is shown
for comparison. Another BCS result using only the bound Woods-
Saxon neutron orbits is also shown by the dotted line (labeled BCS′).
The reference neutron is placed at the external position z′ = Rsurf + 2
fm in the upper panel; it is at the surface z′ = Rsurf in the lower panel.

a fully self-consistent HFB calculation that adopts the
Skyrme force to derive the particle-hole mean field. Nu-
merical procedures are the same as described in Sec. II A
except that the Skyrme Hartree-Fock mean-field Hamiltonian
with the SLy4 parameter set [71] is used for hq . The
Hartree-Fock neutron single-particle states are located slightly
more deeply than the Woods-Saxon states and have larger
single-particle level spacing due to the smaller effective
mass: The energies of the last bound orbits are, for exam-
ple, e1d5/2,2s1/2,1d3/2 = −6.58,−4.60,−0.64 MeV in 22O, and
e1f7/2,2p3/2,2p1/2,1f5/2 = −10.46,−6.61,−4.57,−3.45 MeV in
58Ca, while the corresponding Woods-Saxon states have
e1d5/2,2s1/2 = −4.94,−3.44 MeV and e1f7/2,2p3/2,2p1/2,1f5/2 =
−7.75,−4.81,−3.28,−2.53 MeV (see also Fig. 1). We read-
just the strength V0 of the mixed pairing interaction so as
to reproduce the same average gap. A representative result
calculated for 58Ca is shown in Fig. 11, where comparison with
the Woods-Saxon calculation is also made. Note that the value
V0 = −310 MeV fm3 adopted for the Hartree-Fock is larger
than the V0 = −280 MeV fm3 used for the Woods-Saxon case,
reflecting the larger level spacings. It is seen in Fig. 11 that
two-body correlation density ρcorr,n(r ↑, r ′ ↓) calculated with
the Skyrme HFB exhibits the di-neutron correlation, i.e., the
enhanced distribution at short relative distances |r − r ′| <∼
2−3 fm, which is quite similar to those obtained with the
Woods-Saxon potential.

E. Di-neutron correlation and coherence length

It is interesting to compare the di-neutron correlation
observed in the two-body correlation density in our HFB
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comparison, with the result obtained with the Woods-Saxon model
(corresponding to the middle right panel in Fig. 3), is shown (dashed
line).

calculation with the characteristics of the pair wave func-
tion known in the BCS theory of superconducting uniform
matter. In the standard BCS description, the pair wave
function ψpair(rσ, r ′σ ′) ∝ ρ̃n(rσ, r ′σ̃ ′) exhibits a relative
s wave proportional to sin(kF r12)/r12 (r12 = |r − r ′|) multi-
plied with a radial function which damps asymptotically as
∼e−r12/πξP /

√
r12 for large r12, where ξP = h̄vF /π
 is the

Pippard’s coherence length, and kF (vF ) and 
 are the Fermi
momentum (velocity) and the pairing gap, respectively [72].
The coherence length represents the size of the pair wave
function. If we use typical values of kF ∼ 1.4 fm−1 and

 ∼ 1 MeV, an estimate based on the above expression gives
ξP ∼ 20 fm, which is much larger than the nuclear radius
[73], implying broad spreading of the pair wave function in
the whole region of nuclear volume. The correlation den-
sity ρcorr,n(rσ, r ′σ ′) ∼ ρ̃n(rσ, r ′σ̃ ′)2 calculated in the present
HFB calculation appears to display a feature of the relative

s wave for r12 less than a few fm, and the first node around
r12 ∼ 2 fm could be related in the case of the internal positions
to the oscillation period π/kF ∼ 2 fm suggested in the BCS
pair wave function. (We here follow the discussion in Ref. [22],
where a behavior similar to sin(kF r12)/r12 was previously
pointed out in the case of the correlated two-valence neutrons
in 210Pb.) On the other hand, the localization with the large
probability ∼30−60% in the short distance region r12 <∼
2–3 fm observed in the HFB calculation appears much stronger
than what is expected from the simple coherence length
estimate.

We note that the two-neutron correlation in the HFB de-
scription of the neutron pairing is calculated also by Barranco
et al. [74] for the nonuniform low-density neutron matter
in a Wigner-Seiz cell with an immersed lattice “nucleus,”
approximating the situation of an inner crust of neutron
stars. The authors point out that the root-mean-square relative
distance weighted with the two-neutron probability density
coincides approximately with Pippard’s coherence length
ξP . The calculated two-neutron probability itself (Fig. 3 in
Ref. [74]), on the other hand, shows a distribution that forms a
sharp and large peak at short relative distances |r − r ′| <∼ 2 fm,
indicating a behavior similar to the di-neutron correlation
discussed in the present investigation. The HFB calculation
in Ref. [74] adopts the finite range Gogny force [75] as the
effective pairing force. Combining the results of Ref. [74]
and ours, it can be suggested also that the qualitative feature
of the di-neutron correlation persists irrespective of detailed
forms of the effective pairing force. The quantitative aspects,
however, will depend on the effective interaction, as we already
discussed in the previous subsection.

III. DI-NEUTRON CORRELATION IN THE SOFT
DIPOLE EXCITATION

A. Continuum QRPA description of the soft dipole excitation

We first recapitulate briefly the continuum QRPA method
[48], which we adopt to describe the dipole excitation of nuclei
near the drip line. It provides a fully microscopic description
of a linear response of the nucleus excited by an external
perturbing field by taking into account all nucleon degrees of
freedom. It is formulated as the small amplitude limit of a
time-dependent extension (TDHFB) of the coordinate-space
HFB theory, which we utilize for the description of the ground
state. Consequently, the description is constructed in a self-
consistent manner. The linear responses in the normal and the
pair densities are the basic quantities of the description. They
are governed by the RPA density response equation called also
the Bethe-Salpeter equation [44]:


 δρqL(r, ω)

δρ̃+,qL(r, ω)
δρ̃−,qL(r, ω)


 =

∫
0
dr ′[Rαβ

0,qL(r, r ′, ω)
] 


∑
q ′ κ

qq ′
ph (r ′)δρq ′L(r ′, ω)/r ′2 + vext

qL(r ′)
κpair(r ′)δρ̃+,qL(r ′, ω)/r ′2

−κpair(r ′)δρ̃−,qL(r ′, ω)/r ′2


 . (9)
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Here, the excitation with multipolarity L and frequency ω, and
use of contact forces are assumed. The functions κph(r) and
κpair(r) represent the residual interaction associated with the
density variations. An important feature of the present response
equation is that we include the particle-particle channel, i.e.,
the second and third rows in Eq. (9) containing δρ̃+,qL(r ′, ω)
and δρ̃−,qL(r ′, ω), which correspond to the variations in
the pair densities δρ̃±,q (rt) = δ〈�(t)| 1

2

∑
σ [ψ†

q (rσ )ψ†
q (rσ̃ ) ±

ψq(rσ̃ )ψq(rσ )]|�(t)〉 as well as the one in the normal density
δρq(rt) = δ〈�(t)|∑σ ψ†(rσ )ψ(r)|�(t)〉 in the particle-hole
channel, represented by the first row. To derive Eq. (9), a linear
perturbation in the time-evolving TDHFB state vector |�(t)〉 is
considered. The products κpair(r) 1

r2 δρ̃±,qL(r, ω) of the residual
interaction κpair(r) and the pair density variations represent
the dynamical change δ
(rt) of the pair potential associated
with the time evolution. The two-point function R

αβ

0,qL(r, r ′, ω)
is the unperturbed response function for the three kinds of
densities δρ(r) and δρ̃±(r), which are indexed by α and β.
Through the recursive relation for the density responses in
Eq. (9), the RPA correlations with infinite orders of the residual
interactions are taken into account. The RPA correlation acting
in the particle-particle channel, which is associated with the
residual pair interaction κpair, may be called the dynamical
pair correlation [31,32,48]. As the external field, whose radial
form factor is represented by vext

qL(r), we consider the dipole
operator

Dµ = e
Z

A

∑
i∈n

(rY1µ)(r i) − e
N

A

∑
i∈p

(rY1µ)(r i), (10)

in which the spurious center of mass motion is explicitly
removed. As the effective nuclear force, we adopt the density-
dependent delta forces. We employ the same pairing force vpair

used in the description of the ground state to derive the particle-
particle residual interaction κpair. Thus the self-consistency
is achieved in treating correlations in the particle-particle
channel. As the effective force responsible for the particle-hole
correlation, we adopt a delta interaction of the Skyrme type
[55]:

vph(r, r ′) = [t0(1 + x0Pσ ) + t3(1 + x3Pσ )ρ(r)] δ(r − r ′).
(11)

As the particle-hole mean field (the Woods-Saxon potential)
and the particle-hole residual interaction are not derived from
a common effective interaction, the two are not self-consistent.
We, therefore, impose according to Ref. [55] an approximate
self-consistency in the particle-hole channel by renormalizing
the force strengths as t0,3 → f t0,3 so that the lowest energy
dipole mode corresponding to the spurious center of mass
motion has the zero excitation energy. As this procedure gives
a reasonable description of particle-hole correlation in the
giant resonances in closed-shell stable nuclei [55], we expect
the same for the soft dipole excitation, for which correlation
caused by the particle-hole residual interaction is suggested
to be rather weak [25–27]. With this choice, the residual
interaction reads

κ
q=q ′
ph (r) = t0

2
(1 − x0) + t3

12
[(5 + x3)ρ(r)

− (2 + 4x3)ρq(r)], (12)

κ
q 
=q ′
ph (r) = t0

(
1 + x0

2

)
+ t3

12
(5 + x3)ρ(r), (13)

κpair(r) = V0

2

[
1 − ρ(r)

ρ0

]
. (14)

In the present continuum QRPA method, special attention
is paid to treatment of the continuum states that play essential
roles for excitations embedded in the energy region above the
threshold of nucleon escaping. To this end, we evaluate the
unperturbed response functions R

αβ

0,qL by means of an integral
representation that uses a contour integral in the complex
quasiparticle energy plane [48]:

R
αβ

0,qL(r, r ′, ω) = 1

4πi

∫
C

dE
∑
lj,l′j ′

〈l′j ′‖YL‖lj 〉2

2L + 1

× [TrAαG0,ql′j ′ (r, r ′, E + h̄ω + iε)

×BβG0,qlj (r ′, r, E) + TrAαG0,qlj (r, r ′, E)

×BβG0,ql′j ′(r ′, r, E − h̄ω − iε)]. (15)

Here G0,qlj (E) = (E − H0,qlj )−1 is the HFB Green function
in the partial wave lj, which describes propagation of nucleons
under influence of the pair potential 
(r) and the particle-hole
mean field (the Woods-Saxon potential). We use the exact form
of the HFB Green function G0,qlj (E) [76], which is given as
a product of the regular and outgoing solutions of the HFB
equation (2) so that G0,qlj (E) satisfies the outgoing boundary
condition appropriate for continuum quasiparticle states. The
combined use of the integral representation Eq. (15) and the
exact HFB Green function is the key ingredient of the present
continuum QRPA method. Note that the present scheme takes
precise account of two quasiparticle configurations where two
nucleons occupy simultaneously continuum orbits since the
two quasiparticles are both described by the outgoing HFB
Green function in Eq. (15). Furthermore, the particle-particle
and the particle-hole correlations acting among such two-
quasiparticle configurations are included through the density
response equation (9). The energy-weighted sum rule (the
TRK sum rule) is satisfied within about 1% thanks to the
self-consistent treatment of the pair correlations and the use
of the exact HFB Green function. Detailed derivation and
other aspects of the continuum QRPA method are discussed in
Ref. [48].

Some physical quantities are calculated directly from the
solution of the density response equation. The E1 strength
function for the dipole excitation is given by SE1(E = h̄ω) =
dB(E1)/dE = − 3

π
Im

∑
q

∫
drvext

qE1(r)∗δρqL=1(r, ω). We can
also characterize the excitation mode by means of the transition
densities. The particle-hole transition density for an excited
state |�i〉, at the excitation energy Ei (i.e., with the frequency
ωi = Ei/h̄) is given by

ρ
ph
iq (r) = 〈�i |

∑
σ

ψ†
q (rσ )ψq(rσ )|�0〉 = Y ∗

LM (r̂)ρph
iqL(r),

(16)

ρ
ph
iqL(r) = − C

πr2
Im δρqL(r, ωi), (17)

with use of the density response δρqL(r, ω) in the particle-hole
channel. We normalize the transition density by a constant C
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so that the transition amplitude for the E1 operator, Miq =∫
drr2vext

q (r)ρph
iqL(r), gives the E1 strength B(E1, 0+

g.s. →
1−

i ) = ∫ E2

E1
SE1(E)dE = 3M2

iq integrated over a certain energy
interval around the excitation energy E = h̄ωi of the state
under consideration.

The present continuum QRPA also enables us to evaluate
two kinds of transition amplitudes for pairs of nucleons:

P
pp
iq (r) = 〈�i |ψ†

q (r ↑)ψ†
q (r ↓)|�0〉 = Y ∗

LM (r̂)P pp
iqL(r), (18)

P hh
iq (r) = 〈�i |ψq(r ↓)ψq(r ↑)|�0〉 = Y ∗

LM (r̂)P hh
iqL(r). (19)

These pair transition densities provide information of how
nucleon pairs move in the excited state. The first pair transition
density P

pp
iq (r) can be related to an amplitude to produce the

excited state by adding (or transferring) at the position r a
spin-singlet nucleon pair with the relative s wave to the ground
state of the A − 2 system. We call it the particle-particle or
the particle-pair transition density hereafter. The second pair
transition density P hh

iq (r), which we call the hole-hole or the
hole-pair transition density, on the other hand, is related to
an amplitude of producing the excited state by removing a
spin-singlet nucleon pair from the A + 2 ground state. These
pair transition densities are calculated as

P
pp
iqL(r) = C

2πr2
Im[δρ̃+,qL(r, ωi) − δρ̃−,qL(r, ωi)], (20)

P hh
iqL(r) = C

2πr2
Im[δρ̃+,qL(r, ωi) + δρ̃−,qL(r, ωi)], (21)

with use of the pair density responses δρ̃±,qL(r, ω) obtained
in the density response equation. Here the same normalization
constant C is adopted as for the particle-hole transition density.

The force parameters of the particle-hole residual
interaction is chosen as t0 = −1100 MeV fm3, t3 =
16 000 MeV fm6, x0 = 0.5, and x3 = 1 taken from
Ref. [55]. The renormalization factor f determined
for each nucleus is f = 0.708, 0.727, 0.750, 0.775 for
18−24O; f = 0.713, 0.735, 0.745 for 50,54,58Ca; and
f = 0.735, 0.744, 0.749, 0.755 for 80−86Ni. The same
radial mesh as in solving the HFB equation (2) is used to
solve Eq. (9). The maximum orbital angular momentum in
the two-quasiparticle sum of Eq. (9) is lmax = 12 in O and
Ca isotopes, which is the same as in the HFB calculation
for the ground state. In Ni isotopes we use a larger value
lmax = 17 and a larger radius cutoff rmax = 25 fm to achieve
better convergence in the continuum QRPA calculations.
In this case, the HFB calculation is performed with the
enlarged lmax and rmax although we do not see any sizable
influence in the ground state properties. The same mixed
pairing force as that in the HFB calculation is adopted as
the reference choice. We adopt a small imaginary constant
with ε = 0.2 MeV, which corresponds to smoothing of
the strength function convoluted with a Lorentzian with
FWHM = 0.4 MeV. The calculated results shown below
differ from those in the previous analysis [31], where
calculations are done for 22O by using the surface-type pairing
interaction (ρ0 = 0.16 fm−3) and a larger force strength V0 =
−520 MeV fm3 adjusted to the conventional systematics of the

pairing gap 
syst = 12/
√

A MeV (∼2.5−2.8MeV in the oxy-
gen isotopes). Here the adopted value V0 = −280 MeV fm3

with ρ0 = 0.32 fm−3 is fixed so as to produce the odd-even
mass difference (∼0.5−2.0 MeV for the same isotopes), as
discussed in Sec. II. Other numerical details are the same as
in Ref. [31].

B. E1 strength near neutron threshold energy

The E1 strength functions SE1(E) = dB(E1)/dE calcu-
lated for even-even isotopes 18−24O, 50,54,58Ca, and 80−86Ni
near the drip line are presented in Fig. 12. In all nuclides the
strength function exhibits significant distribution of the E1
strength just above the threshold energy Eth,1 = min(Ein) +
|λn| of one-neutron escaping and far below the giant dipole
resonance energy (EGDR ∼ 20 MeV in O and ∼15 MeV in
Ni). This low-energy E1 strength increases significantly as the
neutron drip line is approached. In many isotopes, the soft
dipole excitation is situated also above the threshold energy
Eth,2 = 2|λn| of two-neutron escaping, which becomes low in
nuclei near the drip line, especially in the nickel isotopes. The
strength distribution in the giant dipole resonance region shows
rather strong isotopic dependence in the case of the oxygen
isotopes. The peak at the zero energy corresponds to the
spurious center of mass motion, for which the energy-weighted
strength is negligible. In the following, we concentrate on the
soft dipole excitations.

The strength function in the region of the soft dipole
excitation shows a smooth profile as a function of the excitation
energy. It is not possible to evaluate the resonance width
because the strength does not form a sharp resonance peak.
The smooth profile implies that neutron escaping has a large
influence on the soft dipole excitations. This is explicitly
seen by comparing the profile with a calculation neglecting
neutron escaping, shown in Fig. 13 for 22O. This calculation
is done with use of the discretized continuum quasiparticle
states obtained with the box boundary condition (the box
radius rmax = 20 fm), instead of using the exact Green function
with the outgoing boundary condition adopted in the present
continuum calculations. In the discretized calculation, there
are several discrete peaks in the energy region of the soft dipole
excitation. The four major peaks seen in the interval E =
5−9 MeV have different behaviors in the transition densities,
while the transition densities in the continuum calculation vary
smoothly as a function of the excitation energy. The soft dipole
excitation cannot be represented by one of these discrete peaks.

The E1 strength in the soft dipole region is experimentally
measured in neutron-rich oxygen isotopes, and the energy-
weighted sum of the E1 strength below E < 15 MeV is
extracted [9]. We evaluate the corresponding energy-weighted
sum from the calculated strength function, as listed in
Table II. The experimental value of the energy-weighted sum
is about 8% of the Thomas-Reiche-Kuhn sum rule value
in 18,22O and about 12% in 20O [9]. The calculation gives
a fair agreement with the experimental data in 18,20O, but
it overestimates in 22O. The agreement may be improved
by refining the model Hamiltonian, e.g., the Woods-Saxon
parameters, or by adopting a self-consistent Hartree-Fock
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FIG. 12. E1 strength function in the neutron-rich even-even oxygen, calcium, and nickel isotopes near the drip line, calculated with the
mixed pairing force (solid line). The result obtained without the pairing correlation (by use of a very weak pairing force V0 ≈ 0) is also plotted
(dotted line). Renormalization constant f is determined to achieve the approximate self-consistency for both cases with and without the pairing
correlation. Arrows indicate the one- and the two- neutron threshold energies Eth,1 and Eth,2. Note that Eth,1 = Eth,2 in 86Ni and 84Ni, where
there are no bound quasiparticle states for neutrons.

potential which is expected to be more realistic. Note that the
shell model [28] and the phonon coupling model [29] based
on the Skyrme HF+BCS+QRPA approach exhibit a saturation
around 22O.

Comparing among O, Ca, and Ni isotopic chains, we ob-
serve slightly different behaviors in the soft dipole excitation.
In the case of Ni isotopes, the E1 strength is distributed at
very low excitation energy as the neutron threshold energy
is very low (Eth,1 ∼ 0.70−2.45 MeV). This can be related
to the small neutron Fermi energy in the A = 80−86 nickel
isotopes, which is only about −1.50 to −0.40 MeV. Note also
that the single-particle energies of the most weakly bound
neutron Woods-Saxon orbits 3s1/2 and 2d5/2 in the vicinity of
the Fermi energy are small; e3s1/2,2d5/2 ∼ −1 MeV (Fig. 1). In
Ca isotopes, the increase of the E1 strength above the neutron
threshold energy Eth,1 is not as steep as in O and Ni, but a
small peak is formed at the energy which slightly deviates
from the threshold energy. This occurs because there is no

weakly bound neutron s orbit in the calcium isotopes, while p
orbits (2p1/2,3/2) participate instead (see the following section
for details).

C. Pairing effects on dipole strength

We analyze effects of the neutron pair correlation on the
soft dipole excitation, which is the primary issue in the
present investigations. To visualize the influence of neutron
pairing correlation, we perform a calculation where the neutron
pairing interaction is switched off, i.e., by setting V0 = 0.
(For open subshell nuclei such as 18,20O, a very weak pairing
interaction V0 = −28 MeV fm3 is used to guarantee a Jπ =
0+ configuration in the last j-shell orbit partially occupied in
the ground state. This choice produces such a small average
pairing gap 〈
n〉 < 0.1 MeV that the pair correlation effects
are negligible.) Calculated results are shown by the dotted line
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FIG. 13. E1 strength function in 22O, obtained by using the
discretized continuum states and the box boundary condition, in the
case of the mixed pairing force. See also the text.

in Fig. 12. We immediately see a sizable pairing effect on
the E1 strength of the soft dipole excitation, whereas there is
essentially no effect on the giant dipole resonance. To focus
on the soft dipole excitation, we show a magnified portion of
the dipole strength function in Fig. 14.

The effect of the neutron pairing correlation on the soft
dipole strength varies depending on the isotopic chains and
mass numbers.

(i) In the oxygen isotopes, the neutron pairing correlation
significantly increases the E1 strength in the soft dipole region
in 20,22O (and slightly less clearly in 18O). Table II lists the
B(E1) value of the soft dipole excitation integrated over
an energy window of 4 MeV width above the one-neutron
threshold energy Eth,1. The pairing correlation increases the
B(E1) value by about 50–80% in 18−22O. The energy-weighted
sum of B(E1) up to E = 15 MeV is also tabulated in
Table II. The influence of pairing on the energy-weighted sum

TABLE II. Calculated energy-weighted sum S1 = ∫ E

0 dE′E′

dB(E1)/dE′ of the E1 strength for the excitation energy
below E = 15 MeV in the oxygen isotopes, and B(E1) =∫ E2

E1
dE′dB(E1)/dE′[e2 fm2] in an excitation energy interval of

4 MeV above the one-neutron threshold energy Eth,1. The value
of S1 is given as a fraction to the Thomas-Reiche-Kuhn sum rule
value S1

TRK. We list also the results obtained without the neutron
dynamical pairing correlation, and those neglecting all the neutron
pairing correlations.

18O 20O 22O 24O

S1/S1
TRK (E < 15 MeV)

Full pairing 6.8% 10.2% 13.6% 19.4%
No pairing 6.7% 9.3% 11.8% 19.8%

B(E1) [e2 fm2] (Eth,1 < E < Eth,1 + 4 MeV)
Full pairing 0.188 0.254 0.393 0.702
No dynamical 0.131 0.205 0.354 0.694
pairing
No pairing 0.104 0.175 0.235 0.718

is relatively small compared with that on the B(E1) value,
because the pairing effect becomes weaker at higher excitation
energies. The pairing effect is negligible in the case of 24O,
but this is because the pair correlation itself is very small
(〈
n〉 = 0.66 MeV) in this nucleus.

(ii) In the calcium isotopes, the pairing correlation does not
enhance the magnitude of E1 strength. Instead, it shifts the
low-lying dipole strength up in the excitation energy and/or
it suppresses the strength of the soft dipole excitation. The
suppression in the E1 strength is about 20% in 54Ca (see
Table III).

(iii) In the nickel isotopes, the neutron pair correlation either
significantly suppresses the E1 strength at low energies (in
86Ni by about 30%, see Table III) or modifies the shape of
the strength distribution (in 80−84Ni, see Fig. 14). After all, the
pair correlation certainly influences the strength distribution
of the soft dipole excitation, but it can either enhance (as
in the case of 20,22O) or suppress (as in 54Ca,86Ni) the E1
strength.

To analyze the pair correlation effect, it is useful to
decompose it into the static and the dynamical mechanisms
[31,48]. Note that the pair correlation causes the static pair
potential 
(r) in the HFB mean-field Hamiltonian. This
mean-field effect modifies the ground state configuration and
the single-particle excitation, through which the excitation
properties are also affected. We call this mechanism the static
pair correlation effect. On the other hand, the RPA correlation
associated with the dynamical variation in the pair potential
δ
(rω) gives the additional pair correlation effect on the
excitation, which we call the dynamical pair correlation effect.
In other words, the dynamical pair correlation effect originates
from the residual interaction taken into account in the RPA
equation (9), while the static effects are present even in the un-
perturbed response. To examine these pair correlation effects
separately, we performed calculations where the dynamical
pair correlation is neglected while keeping the static pairing
effects. The result is shown in Fig. 14 with the dashed line.
It is immediately seen that both the static and the dynamical
correlations have considerable effect on the dipole strength in
the soft excitation region.

Let us first focus on the static pairing effect. The static effect
is a major part of the net pairing effect on the dipole strength
and produces qualitative trends of the strength function,
although the dynamical effect cannot be neglected for a
quantitative description. To get more insight into the static
effect, we look into the unperturbed strength function obtained
by neglecting all the residual interactions for the RPA (Fig. 15).
In the unperturbed strength, we separate contributions from
different two-quasiparticle excitations by selecting a specified
pair of angular momenta of the two-quasiparticle configura-
tions. Taking 22O as an example, where the pairing effect on
the soft dipole excitation is large, we find that the static pairing
effect increases the unperturbed E1 strength. This arises
mainly from a contribution of a neutron two-quasiparticle
configuration exciting the 2s1/2 state and the continuum p states
coupled to L = 1, abbreviated as [2s1/2 × p∗]L=1 or more
shortly 2s1/2 × p∗ (the asterisk denotes the continuum states),
as seen by comparing between the left top and the left bottom
panels of Fig. 15. This quasiparticle excitation is available
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FIG. 14. Same as Fig. 12, but emphasizing the low excitation energy region and effects of the static and dynamical pairing correlations. For
the latter purpose, the result obtained by neglecting the dynamical pairing correlation (while keeping the static pairing correlation) is plotted
with the dashed line.

only by taking into account the ground state pair correlation,
because the Woods-Saxon 2s1/2 orbit located above the Fermi
energy (Fig. 1) can be partially occupied only if the pair
correlation is included. The contribution of the 2s1/2 × p∗
configuration to the dipole strength is added with those of
1d5/2 × p∗ configurations, which are dominant ones when the
pairing is neglected (see the lower panel of Fig. 15). In 18−20O,

the increase of dipole strength due to the static pairing effect is
similarly seen, but it is not very large since the occupation of
the 2s1/2 orbit is smaller. Another aspect of the static pairing
effect is that it pushes up the strength to a slightly higher
energy. This happens because the pair correlation increases
the energy of the two-quasiparticle excitation higher than that
of the corresponding unpaired particle-hole excitation.

TABLE III. The calculated E1 strength B(E1) = ∫ E2
E1

dE′dB(E1)/dE′ (e2 fm2) of the soft dipole excitation
in Ca and Ni isotopes. In Ca isotopes, the energy interval [E1, E2] is chosen with E1 = 5.9, 5.2, 4.8 MeV and
E2 = E1 + 4 MeV to enclose the soft dipole peak in A = 50, 54, 58, respectively. In Ni isotopes, the interval with
E1 = Eth,1 and E2 = Eth,1 + 5 MeV is used. See also the caption of Table. II.

50Ca 54Ca 58Ca 80Ni 82Ni 84Ni 86Ni

B(E1) (e2 fm2)
Full pairing 0.73 1.48 1.76 1.39 2.17 3.01 3.72
No dynamical pairing 0.64 1.40 1.72 1.15 1.86 2.69 3.41
No pairing 0.68 1.86 1.83 1.27 2.25 3.21 5.11
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FIG. 15. Unperturbed E1 strength functions in 22O, 54Ca, and 86Ni. Upper panels, unperturbed strength functions obtained with the mixed
pairing force; lower panels, results without the pairing correlation. Partial strengths selected by a pair of the angular momentum quantum
numbers of the two-quasiparticle excitations are also plotted.

The static pairing effect in Ca and Ni isotopes appears
different from that in the oxygen isotopes. For example,
it causes the large suppression of the E1 strength in 86Ni,
which is explained in terms of the neutron 3s1/2 orbit. This
orbit would be fully occupied by the last two neutrons if
we neglected the pair correlation (cf. Fig. 1). Since the 3s1/2

orbit is only weakly bound (the Woods-Saxon single-particle
energy e3s1/2 = −0.78 MeV) and has a spatially extended
wave function, the particle-hole excitations from this orbit
to the continuum p orbits bring about a large E1 strength just
above the one-neutron threshold energy, which is often referred
to as the threshold strength (cf. the right lower panel of Fig. 15).
Once the neutron pair correlation is included, the associated
strength is reduced as the 3s1/2 orbit becomes partially
occupied, making the contribution of the two-quasiparticle
configurations 3s1/2 × p∗ to the dipole strength significantly
smaller. In Ca isotopes, the unperturbed strength in the
soft dipole strength is dominated by contributions of the
two-quasiparticle excitations 2p1/2,3/2 × d∗ and 2p1/2,3/2 × s∗
(Fig. 15). The increase in the quasiparticle energy of the
2p1/2,3/2 state caused by the pair correlation pushes up the
peak around E ∼ 7 MeV by about 1 MeV.

We thus conclude that the static pairing effect shows
variety in different nuclides, depending strongly on low-energy
quasiparticle states (around the Fermi energy) which are quite
sensitive to the pairing correlation. By the same token, this
suggests that the unperturbed strength function associated
with the soft dipole excitation would depend somehow on
the particle-hole mean field, because the single-particle states
will be slightly different, for example, in the cases of the
Woods-Saxon potential and the Skyrme Hartree-Fock mean
field.

We then look into the dynamical pairing effect. We
immediately see that in contrast to the static effect, the

dynamical pairing effect has a systematic tendency to increase
the dipole strength in all examples shown in Fig. 14, although
the magnitude of the increase varies. The effect on B(E1)
associated with the soft dipole excitation is shown in Tables II
and III. The largest effect on B(E1) amounting to 10−40%
is seen in 18−22O, and ∼10−15% in the nickel isotopes.
The increase of the strength due to the dynamical pairing
effect is found in the previous QRPA calculations for oxygen
isotopes [31,32,62]. We here find that the increase due to the
dynamical pairing correlation is universally seen in spherical
nuclei near the drip line in the medium mass region. Note also
that the enhancement due to the dynamical pairing effect has
a similarity to the pair interaction effect predicted on the soft
dipole excitation in the two-neutron halo nucleus 11Li [14].

D. Transition densities: Particle-particle dominance
in the soft dipole excitation

Characters of the soft dipole excitation can be clarified by
looking into the transition densities. Choosing a representative
energy, we evaluate the particle-hole transition density ρph(r)
and particle-pair and the hole-pair transition densities P pp(r)
and P hh(r). They are plotted in Figs. 16, 17, and 18. It is
seen in the particle-hole transition density ρph(r) that in
the external region (r >∼ Rsurf), the soft dipole excitation has
significant neutron amplitude, whereas there is essentially no
amplitude for protons, indicating that only neutrons are moving
in the external region. At and slightly inside the surface,
the particle-hole amplitudes of neutrons and protons have
the same sign, but with the opposite phase to the external
neutron amplitude, indicating that both neutrons and protons
in this region move coherently against the external neutron
motion. The external neutron motion is responsible for the soft
dipole strength. This behavior of the particle-hole transition
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FIG. 16. Particle-hole transition density ρ
ph
iqL(r) (top plot in each

panel), particle-pair transition density P
pp
iqL(r) (middle plot), and

hole-pair transition density P hh
iqL(r) (bottom plot) of neutrons for the

soft dipole excitation in the oxygen isotopes (solid lines). Particle-
hole transition density ρ

ph
iqL(r) of protons is also shown (dashed

line with wide intervals). For the pair transition densities P pp(r)
and P hh(r), the neutron amplitudes calculated by neglecting the
dynamical pairing effect are also displayed (dashed line). Dotted lines
represent the neutron transition densities calculated by neglecting all
the pairing correlations. Arrow indicates the surface radius (the half-
density neutron radius) Rsurf . The selected excitation energy is E =
10.0, 8.5, 7.0, 5.5 MeV for 18,20,22,24O (E = 7.5, 7.1, 6.8, 5.4 MeV
in the case of the no pairing calculation), which are indicated also
in the figure. The B(E1) value listed in Table II is used for the
normalization.

density in the soft dipole excitation is commonly seen also in
other RPA and QRPA calculations without and with the pair
correlations [25–27,31,32].

A novel finding in the present analysis is that the neutron
particle-pair transition density P pp(r) has very large amplitude
in the external region, where the amplitude even exceeds that
of the particle-hole transition density ρph(r). The hole-pair
transition density P hh(r), on the other hand, is the smallest
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FIG. 17. Same as Fig. 16, but for the calcium isotopes. Transition
densities are evaluated at the peak energy of the soft dipole excitation
indicated in each panel. E1 strength listed in Table III is used for the
normalization.

among the three transition densities and almost negligible
in the external region. The relation |P pp(r)| > |ρph(r)| >

|P hh(r)| in the external region is seen in all isotopes in Figs. 16,
17, and 18, except in 24O and 58Ca, where P pp(r) is still
sizable. The dominance of P pp(r) indicates that the soft dipole
excitation has a character of a particle-particle excitation. It is
more appropriate to characterize the soft dipole excitation as
the motion of a spin-singlet neutron pair in the external region,
than to describe it as a simple particle-hole excitation of a
neutron to continuum states. We also note that the particle-pair
transition density P pp(r) displays a characteristic isotopic
dependence. The large particle-pair amplitude in 50,54Ca and
18−22O decreases with increasing neutron number, while the
particle-hole amplitude increases in the other way. A similar
but slightly weak isotopic dependence is seen in the nickel
isotopes.

To reveal the origin of the particle-particle dominance in
the soft dipole excitation, we investigate the influence of the
pairing correlations on the transition densities. Comparing
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FIG. 18. Same as Fig. 16 but for the nickel isotopes. Same
excitation energy is used to calculate the transition densities with
and without the pairing correlation.

with calculations where the pairing effects are fully neglected
(shown in Figs. 16, 17, and 18 by the dotted line), we
immediately see that the neutron pair correlation brings about
the large particle-pair amplitude in the exterior region r >

Rsurf . In Figs. 16 , 17, and 18, we also show results obtained
by neglecting the dynamical pairing correlation. It is seen
that both the static and the dynamical pair correlations are
responsible for the particle-particle dominance. In particular,
the dynamical pair correlation has a dramatic influence that
enhances P pp(r) by a factor of about 2 or more in the external
region. In the following, we investigate in more detail the static
and dynamical effects separately.

1. The static pairing effect

Generally, low-energy two-quasiparticle excitations, which
are building blocks of a low-lying excitations under the
influence of a pairing correlation, carry simultaneously

particle-hole, particle-pair, and hole-pair amplitudes. As an
example, let us consider the neutron two-quasiparticle excita-
tions 2s1/2 × p∗ and 1d5/2 × p∗ (and 1d5/2 × f ∗), which give
dominant contributions to the unperturbed strength function
in 22O (cf. Fig. 15). With the pairing correlation included, the
quasiparticle state 2s1/2 has a large amplitude both in the upper
and lower components (corresponding to the particle and
hole components, respectively) of the wave function since
it is located near the Fermi energy. Accordingly, the two-
quasiparticle configuration 2s1/2 ×p∗ brings a large amplitude
both in the particle-hole transition density ρph(r) and in the
particle-pair transition density P pp(r). (The hole-pair transi-
tion density P hh(r) is small since both 2s1/2 and p∗ are located
above the Fermi energy, and particle characters are dominant
in these quasiparticle states.) The amplitudes P pp(r) and ρph(r)
associated with the configuration 2s1/2 ×p∗ are especially
large in the exterior region as the quasiparticle wave function
of the 2s1/2 state is spatially extended to the outside. The other
dominant configuration 1d5/2 ×p∗(f ∗) contributes also to the
particle-pair transition density in a similar way. The particle-
particle character of these two-quasiparticle excitations in
18,20O decreases as the Fermi energy (the neutron number)
increases. In 24O, the particle-particle character becomes small
as the quasiparticle states 1d5/2 and 2s1/2 both have a dominant
hole character. The qualitative trends observed in the transition
densities can be connected in this way to the properties of the
relevant quasiparticle states. Similar mechanisms are applied
to the calcium isotopes, where the neutron 2p3/2,1/2 states
play a central role. In the nickel isotopes, the relevant neutron
quasiparticle states are 3s1/2 and 2d5/2 (see Figs. 1 and 15).

2. The dynamical pairing effect

It is clear that the static pairing effects discussed above
explains only qualitative aspects of the transition densities
since the static pairing effect alone explains about a half of the
particle-pair transition amplitude. The dynamical effect adds
an essential enhancement to P pp(r), especially in the external
region which is most relevant to the soft dipole excitation.
The increase by a factor of 2 in the particle-pair transition
amplitude P pp(r) corresponds to an enhancement of a factor
of about 4 in the strength of neutron pair transfer. Namely, the
characteristic particle-pair dominance of the soft excitation is
strongly affected by the RPA correlations. This means that
the calculated soft dipole excitation cannot be explained as
a few representative two-quasiparticle configurations which
we find responsible for the static pairing effect, such as
2s1/2 × p∗ or 1d5/2 × p∗(f ∗) in the case of O isotopes. This
conclusion is quite different from that of the RPA calculations
neglecting the pair correlations [25,27], which predict the
soft dipole excitation in neutron-rich oxygen isotopes as a
noncollective independent particle-hole excitation of weakly
bound neutrons. It is also noted that the large enhancement of
the particle-pair transition density P pp(r) by the dynamical
pairing correlation is commonly seen in all the calculated
examples in different isotope chains O, Ca, and Ni, where
single-particle structures near the Fermi energy are different.
This indicates that the large dynamical pairing effect is a
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FIG. 19. Dependence of the particle-pair transition density r2P pp(r) (top panels) and the particle-hole transition density r2ρph(r) (bottom
panels) of neutrons on the cutoff orbital angular momentum lcut of the neutron quasiparticle states in 22O, 54Ca, and 84Ni. The results with
lcut = l0

cut(= 3), 4, 5, . . . , 9 for 22O, lcut = l0
cut(= 4), 6, 8, 10 for 54Ca, and lcut = l0

cut(= 5), 7, 9, 11, 13 for 84Ni are shown by thin lines. Here the
volume element r2 is multiplied to magnify the amplitude in the external region. For reference, the result with the full pairing effects and the
one without the dynamical pairing correlation are shown by the thick solid and the thick dashed lines, respectively.

phenomenon that is rather insensitive to details of the single-
particle structure near the Fermi energy.

E. Di-neutron correlation in the soft dipole excitation

We shall investigate the nature of the large dynamical
pairing effect on the particle-pair transition density P pp(r).
The large amplitude in P pp(r) itself indicates that the pair
correlation enhances the probability to find two neutrons
participating in the soft dipole excitation at the same position r .
It is then tempting to interpret it in connection with the
di-neutron correlation which we found in the ground state.
To check this viewpoint, we examine contributions of high-l
quasiparticle orbits to the soft dipole excitations.

We have performed calculations where the contribution
of quasiparticles with high angular momenta is truncated
in evaluating the RPA correlations. In practice, we put an
upper cutoff lcut to the sum the over the orbital angular
momenta l and l′ of the two quasiparticle configurations in the
density response function, Eq. (15). If the pairing correlation is
completely neglected, the angular momentum of quasiparticles
contributing to the dipole response is limited in a small
range 0 � l � l0

cut = locc + 1, where locc is the largest orbital
angular momentum of the occupied bound Woods-Saxon
single-particle orbits. In the case of oxygen isotopes 18−24O,
for instance, neutrons would occupy s, p and d bound orbits
in the ground state in the null pairing case, and hence only the
angular momentum combinations [s × p]L=1, [p × d]L=1 and
[d × f ]L=1 contribute. The cutoff l0

cut = 3 is sufficient in this

case. As the pairing correlation is taken into account, however,
all combinations including [l × (l + 1)]L=1 with l � l0

cut are
allowed to contribute. Note that these high-l quasiparticle
states are all continuum orbits.

Results of the truncated calculations are shown in Fig. 19.
It is seen that contributions from neutron high-l quasiparticle
states with l > locc are essential to produce the large enhance-
ment in the particle-particle transition density. In 22O and 54Ca,
the angular momenta up to l ∼ 9 and l ∼ 10, respectively,
are necessary to approach the final result. In 84Ni, the orbits
up to l ∼ 13 contribute in the external region up to r <∼ 12
fm, but very high angular momenta l > 13 still continue
to influence in the far outside r >∼ 15 fm. The particle-hole
transition amplitude ρph(r), on the other hand, is affected very
little by the high-l continuum configurations with l > locc, as
seen in Fig. 19.

We thus conclude that the neutron correlation responsible
for the large enhancement of the particle-pair transition density
P pp(r) in the soft dipole excitation is associated with a coherent
superposition of a large number of neutron two-quasiparticle
configurations with angular momentum coupling [l × (l +
1)]L=1 involving up to large values of l. The accumulating
high-l contribution can be regarded as evidence that two
neutrons carrying the soft dipole mode are spatially correlated
at short relative distance in such a way that we have seen the
di-neutron correlation in the ground state (cf. Sec. II C). This
suggests that the soft dipole excitation is characterized rather
strongly by motion of a spin-singlet di-neutron in the nuclear
exterior against the remaining A − 2 system.
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FIG. 20. E1 strength functions in 22O, 58Ca, and 84Ni calculated
with the surface and volume pairing forces having different density
dependence (solid line). Left panels show results with surface pairing
with ρ0 = 0.19 fm−3, right panels are those with volume pairing.
Dashed line represents results without the dynamical pairing effect.
See the caption of Fig. 9 for the adopted force parameters.

It is noted that much larger values of angular momentum
contribute in the soft dipole excitation than in the ground
state. In 84Ni, for example, we need angular momentum up
to l ∼ 13 to achieve an approximate convergence around
r = 7–12 fm where the pair transition density has the dominant
distribution. This is because the di-neutron correlation in the
soft dipole excitation takes place much farther outside of the
nuclear surface than that in the case of the ground state.
Note also that in 84Ni, convergence of high-l contributions
to the particle-pair transition density P pp(r) is slow in the
very far exterior r > 15 fm even around the maximum angular
momentum 13 <∼ l � lmax(= 17). This is related to the fact that
two neutrons can escape simultaneously in the nickel isotopes
where the soft dipole excitation lies above the two-neutron
threshold energy Eth,2. The oscillation of P pp(r) at r >∼ 10 fm
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FIG. 21. Same as Fig. 20, but for the particle-pair transition
density P pp(r) of neutrons associated with the soft dipole excitation
at the excitation energies indicated in the figure.

indeed indicates a sizable two-neutron escaping. The slow
convergence with respect to the angular momentum at very
large distances suggests that there exists the pair correlation
between the two escaping neutrons.

F. Dependence on pair interaction

Since the soft dipole excitation is strongly influenced by
the neutron pairing correlation, sensitivity of the soft dipole
excitation to the effective pairing force is expected. We
shall examine this issue in connection with the di-neutron
correlation, focusing on the density dependence of the effective
pair interaction.

We performed calculations using the volume pairing (the
density-independent) force and the surface pairing force with
strong density-dependence as done in Sec. II. Calculated
results are shown in Figs. 20 and 21, which may be compared
also with those using the mixed pairing force, representing
an intermediate density dependent force (cf. Figs. 14, 16,
17 and 18). Figures 20 and 21 clearly show that results
are very different with different density-dependences. It is

064326-21



MATSUO, MIZUYAMA, AND SERIZAWA PHYSICAL REVIEW C 71, 064326 (2005)

seen that the dynamical enhancement of the particle-pair
transition density P pp(r) in the external region (r > Rsurf)
is much larger with the surface paring force than with the
mixed and the volume pairing forces (Fig. 21). This trend
is also seen in the E1 strength (Fig. 20). In the case of the
volume pairing force, on the other hand, the dynamical pairing
effect on the strength function becomes almost insignificant,
and even the particle-pair transition density is not strongly
enhanced. Note that the neutron-neutron attraction acting in the
low-density external region is proportional to the value of V0,
which differs as |V0| ≈ 180, 280, 380 MeV fm3 for volume,
mixed, and surface pairing forces, respectively. Thus, the above
observation implies that the soft dipole excitation, especially
the associated particle-pair transition density, is quite sensitive
to the effective pairing force among neutrons moving in
the low-density part outside the nuclear surface. This is, of
course, related to the fact that the soft dipole excitation is
essentially a mode carried by the correlated neutrons moving
in the nuclear exterior. In addition, the strong sensitivity to
the density dependence is in accord with a similar behavior
of the di-neutron correlation in the ground state (cf. Fig. 9).
This again supports the picture that the soft dipole excitation
is strongly influenced by the neutron pairing correlation of the
di-neutron type.

IV. CONCLUSIONS

We have investigated the neutron pairing correlations and
their influences on the soft dipole excitation in medium mass
nuclei near the neutron drip line from the viewpoint of the
di-neutron correlation.

The analysis using the two-body correlation density has
revealed the presence of the spatial di-neutron correlation
in the pair-correlated ground state in nuclei near the drip
line. It is found that correlated neutron pairs exhibit a strong
concentration of the probability of about 30–60% at short
relative distances |r − r ′| <∼2−3 fm, which is much smaller
than the nuclear radius. This di-neutron correlation enhances in
the surface and skin regions in near-drip-line nuclei, although
it also exists inside the nucleus and in stable nuclei along
the isotopic chain. The di-neutron correlation originates from
coherent superposition of the single-particle (quasiparticle)
orbits with large orbital angular momenta, which are embedded
in the continuum energy region.

We have analyzed the soft dipole excitation to search for the
di-neutron correlation in this mode. It is found that the particle-

pair transition density of neutrons in the soft dipole excitation
is quite large outside the nuclear surface. This originates from
the dynamical pairing correlation among neutrons moving in
the external region, i.e., the RPA correlation for the excited
state caused by the pairing interaction. Indeed the dynamical
pair correlation is responsible for enhancing the particle-pair
transition density by a factor of about 2 or more. This indicates
that the soft dipole excitation under the influence of the neutron
pairing correlation has a dominant particle-particle character,
rather than an uncorrelated particle-hole excitation from a
weakly bound orbit to continuum orbits. We find also that two-
quasiparticle configurations [l × (l + 1)]L=1 involving contin-
uum high-l orbits up to around l ∼ 10 accumulate coherently
to bring about the large particle-pair transition density. This
strongly suggests that the di-neutron correlation occurs among
neutrons participating in the soft dipole excitation. We are
thus led to a picture that in the soft dipole excitation, a spin-
singlet di-neutron moves outside the nucleus against the A − 2
subsystem. Our analysis reveals also that the characteristic
neutron pairing effects are sensitive to the density dependence
of the effective pairing force. The influence of the neutron
pairing correlation on the dipole strength is sizable, but it dose
not always cause enhancement. The di-neutron correlation
emerges more clearly in the particle-particle channel.

We expect that the di-neutron correlation present in the
soft dipole excitation may be most easily and directly probed
in the two-particle correlation among two neutrons escaping
from the excited state, or in transfer of neutrons to the excited
state. These processes may also be used as a probe to study the
density dependence of the nuclear pairing correlations. These
issues are interesting subjects for future investigations.
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(1996).

[38] J. Dobaczewski, W. Nazarewicz, and P.-G. Reinhard, Nucl. Phys.
A693, 361 (2001).

[39] J. Dobaczewski and W. Nazarewicz, Prog. Theor. Phys.
Suppl. 146, 70 (2002); J. Dobaczewski, W. Nazarewicz, and
M. V. Stoitsov, Euro. Phys. J. A 15, 21 (2002).

[40] M. Grasso, N. Sandulescu, Nguyen Van Giai, and R. J. Liotta,
Phys. Rev. C 64, 064321 (2001).

[41] M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, and
D. J. Dean, Phys. Rev. C 68, 054312 (2003).

[42] E. Terán, V. E. Oberacker, and A. S. Umar, Phys. Rev. C 67,
064314 (2003).

[43] Yongle Yu and A. Bulgac, Phys. Rev. Lett. 90, 222501 (2003).
[44] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, Berlin, 1980).
[45] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems

(MIT, Cambridge, MA, 1986).
[46] J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, and

R. Surman, Phys. Rev. C 60, 014302 (1999).
[47] M. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz, Phys.

Rev. C 65, 054322 (2002).
[48] M. Matsuo, Nucl. Phys. A696, 371 (2001).
[49] E. Khan, N. Sandulescu, M. Grasso, and N. V. Giai, Phys. Rev.

C 66, 024309 (2002).

064326-23



MATSUO, MIZUYAMA, AND SERIZAWA PHYSICAL REVIEW C 71, 064326 (2005)

[50] E. Khan, N. Sandulescu, N. V. Giai, and M. Grasso, Phys. Rev.
C 69, 014314 (2004).

[51] M. Yamagami and N. V. Giai, Phys. Rev. C 69, 034301
(2004); M. Yamagami, Proceedings of the Fifth Japan-China
Joint Nuclear Symposium, March 7–10, 2004, Japan, preprint
nucl-th/0404030.

[52] J. Terasaki, J. Engel, M. Bender, J. Dobaczewski,
W. Nazarewicz, and M. Stoitsov, Phys. Rev. C 71, 034310
(2005).
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