
PHYSICAL REVIEW C 71, 064325 (2005)

Critical point symmetry in a fermion monopole and quadrupole pairing model
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Recent interest in symmetries at a critical point of phase transitions in nuclei prompts a revisit to the fermion
monopole and quadrupole pairing model. This model has an exactly solvable symmetry limit that is transitional
between spherical nuclei and γ -unstable deformed nuclei. The eigenenergies, eigenfunctions, pairing strength,
and quadrupole transtion rates in this limit are derived. Comparison with empirical quadrupole transition rates
suggest that the Xe isotopes may have this symmetry.
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I. INTRODUCTION

Nuclei can undergo phase transitions associated with a
change of shape of their equilibrium configuration as a
function of neutron number. A second-order shape phase
transition between spherical and deformed γ -unstable (axially
symmetric) nuclei has been suggested [1] to exist for which
empirical examples have been found in 134Ba [2,3] and
possibly in 104Ru [4], 102Pd [5], 108Pd [6], and 128Xe [7]. This
phase transition has been studied within the interacting boson
model (IBM) [8].

The SO(8) fermion monopole and quadrupole pairing
model [9] has an SO(7) dynamical symmetry. This dynamical
symmetry limit has been shown to describe the phase transition
between the spherical limit and the γ -unstable limit of the
model [10,11], with the nucleon number being the control
parameter. In fact, the energy surface in the SO(7) symmetry
limit, obtained by the method of coherent states [10,11],
is independent of the deformation angle γ and exhibits a
flat-bottomed behavior in the deformation value β, particularly
at midshell, which resembles the infinite-square-well potential
used in the geometric approach to this phase transition [1]. An
example of this energy surface versus the deformation for
different values of the number of pairs of nulceons, N, for
� = 16, where 2� is the number of single-nucleon valence
states, is given in Fig. 1.

The SO(8) fermion monopole and quadrupole pairing
model has two other dynamical symmetry limits, one relating
to monopole pairing [SU(2) ⊗ SO(5)] and one to a γ -unstable
rotor [SO(6)]. The detailed eigenfunctions, eigenfunctions,
and quadrupole transition rates have been published for these
limits [9]. In this paper we derive the detailed eigenfunctions,
eigenfunctions, and quadrupole transition rates for the SO(7)
limit in light of the recent interest in phase transitions in nuclei.

II. THE SO(8) FERMION MONOPOLE AND
QUADRUPOLE PAIRING MODEL

In the SO(8) fermion monopole and quadrupole pairing
model, fermions interact in a shell model space with orbitals
that have angular momentum j = k + 3

2 , k + 1
2 , k − 1

2 , k − 3
2 ,

where k is the integer pseudo-angular momentum. The total
number of single-particle states is 2� = 4(2k + 1). Within the

entire shell model space, there is a subspace composed solely
of collective monopole and quadrupole pairs, and there exists
shell model Hamiltonians that do not connect this subspace
with the rest of the shell model space. The collective pairs are
given by [9]

S† = 1

2
�j,m(−1)j−m a

†
j,ma

†
j,−m, (1)

D†
µ=�j,j ′(−1)j+k+ 3

2

√
(2j + 1)(2j ′ + 1)

{
j j ′ 2
3
2

3
2 k

}
[a†

j a
†
j ′ ](2)
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(2)

where a
†
j,m creates a nucleon in the orbital angular momentum

j and projection m, [a†
j a

†
j ′ ](J )

µ creates a pair of nucleons coupled
to angular momentum J and projection µ, and{

� �′ L
3
2

3
2

3
2

}

is the 6-j symbol. The multipole operators of rank � = 0, 1, 2, 3
are

P (�)
µ = �j,j ′(−1)�+j+k+ 3

2

√
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×
{

j j ′ �

3
2

3
2 k

}
[a†

j ãj ′ ](�)
µ , (3)

where ãj,m = (−1)j+maj,−m [12].
The pair creation and destruction operators and multipole

operators form an SO(8) algebra:

[S, S†] = � − 2N̂, (4)

[D̃,D†](L)
µ = (� − 2N̂ )

√
5δL,0 + 2

{
2 2 L
3
2

3
2

3
2

}
P (L)

µ , (5)

[D†
µ, S] = 2P (2)

µ , (6)

[
P (�)

µ , S†] = δ�,2D
†
µ + δ�,0δµ,0S

†, (7)

[P (�),D†](L)
µ = −2

√
5(2� + 1)δL,2
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2 2 �
3
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3
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3
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}
D†
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5δ�,2 δL,0S
†, (8)
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FIG. 1. The SO(7) energy surface vs the deformation for different
values of the number of pairs of nucleons, N, for � = 16.

[P (�),P (�′)](L)
µ = (−1)�+�′

[1 − (−1)�+�′+L]
√

(2� + 1)(2�′ + 1)

×
{

� �′ L
3
2

3
2

3
2

}
P (L)

µ , (9)

where [P (�), P (�′)](L)
µ is the commutator coupled to angular

momemtum rank L,

[P (�), P (�′)](L)
µ = [P (�)P (�′)](L)

µ − (−1)�+�′+L[P (�′)P (�)](L)
µ ,

(10)

and N̂ counts the number of pairs and is related to the monopole
multipole operator, N̂ = 1

2�j,ma
†
jmajm = P

(0)
0 . There are three

dynamical subgroup chains that conserve the angular mo-
mentum [SO(3)] generated by the angular momenta operators
Jµ = √

5 P (1)
µ :

SO(8) ⊃ SO(5) ⊗ SU(2)

⊃ SO(3) ⊗ SU(2) (the vibrational limit), (11)

SO(8) ⊃ SO(6) ⊗ U(1) ⊃ SO(5) ⊗ U(1)

⊃ SO(3) ⊗ U(1) (the γ -unstable rotor limit), (12)

SO(8) ⊃ SO(7) ⊃ SO(5) ⊗ U(1)

⊃ SO(3) ⊗ U(1) (the transitional limit). (13)

The SO(5) group is generated by the multipole operators
P (L)

µ , L = 1, 3, and is conserved for γ -unstable nuclei. The
SU(2) group is the monopole pair subgroup generated by
S, S†, �

2 − N̂ . The SO(6) group is generated by the multipole
operators P (L)

µ , L = 1, 2, 3, whereas the U (1) group is gener-
ated by C1 = �

2 − N̂ . Finally, the SO(7) group is generated by
the quadrupole pairs Dµ,D†

µ and the generators of the SO(5)
and U(1) groups.

The SO(5) subgroup is common to all three of these
dynamical symmetries of the SO(8) model and therefore the
nuclei described by these dynamical symmetries will be γ

unstable [11].

The eigenstates, energy spectrum, and transition matrix
elements for the SO(5) ⊗ SU(2) and the SO(6) ⊗ U(1) dynam-
ical symmetry limits have been derived [9]. In this paper we
derive the eigenstates, energy spectrum, and transition matrix
elements for the SO(7) dynamical symmetry limit.

III. SO(7) DYNAMICAL SYMMETRY

A. Quantum numbers

The space of monopole and quadrupole pairs is in one
representation of SO(8), the symmetric irreducible representa-
tion (IR), (�

2 , 0, 0, 0). The allowed irreducible representations
of SO(7) in this space are also symmetric, (λ, 0, 0), where
λ = 0, 1, . . . , �

2 . The allowed values of N , the total number of
pairs, for a given λ are N = �

2 − λ, �
2 − λ + 1, . . . , �

2 + λ.
This means that the IR λ = �

2 occurs for all the number of
pairs N = 0, 1, . . . , �, λ = �

2 − 1 occurs for the number of
pairs N = 1, 2, . . . , � − 1, etc., and thus λ = 0 occurs only
at midshell, N = �

2 .
The additional quantum numbers of the dynamical symme-

try chain given in Eq. (13) are the SO(5) quantum numbers
τ and n	 and the SO(3) quantum numbers J and M, the total
angular momentum and its projection. The quantum number
τ is the number of quadrupole pairs not coupled to zero.
The allowed values of τ are τ = N − (�

2 − λ), N − (�
2 −

λ) − 2, . . . , 0, or 1 for N � �
2 and �

2 − N + λ, �
2 − N + λ −

2, . . . , 0 or 1 for N � �
2 . The quantum number n	 is the

number of quadrupole triplets not coupled to zero. The allowed
values of n	 are n	 = 0, 1, . . . , [ τ

3 ], where [x] is the largest
integer less than or equal to x. Finally, the allowed values
of the total angular momentum and its projection are J =
τ − 3n	, τ − 3n	 + 1, . . . , 2(τ − 3n	) − 2, 2(τ − 3n	) and
M = −J,−J + 1, . . . , J .

A schematic view of the quantum numbers as a function of
the number of pairs, N, is given in Fig. 2. On the bottom row
of Fig. 2 the number of pairs is plotted. The states belonging
to the same IR of SO(7) and lableled by λ are connected by a
straight line. On the vertical axis is plotted the allowed value
of τ , so that, in general, each horizontal line is a multiplet of
states. Since monopole pairing is attractive, the lowest state
for a given N is the one with the lowest λ as we shall see.
As N increases, the λ of the lowest state decreases from its
maximum value, λ = �

2 , at N = 0 to λ = 0 at the half-filled
shell, N = �

2 . Beyond the half-filled shell the value of the
lowest λ begins increasing until it becomes the highest value
allowed, λ = �

2 , for the filled shell, N = �. Hence there is a
symmetry in the pattern about the half–filled shell.

The fact that the ground state belongs to a different IR
of SO(7) differs from the monopole pairing limit [SO(5) ⊗
SU(2)] for which the ground state belongs to the same IR for
all N but is similar to the γ -unstable rotor limit [SO(6)] for
which the ground state belongs to a different IR for each N.

B. Casimir operators

The Casimir operator for the SO(8) group is

C8 = S†S + P (2) · P (2) + C7 + C1, (14)

where the scalar product is P (2) · P (2) = �µ(−1)µP 2
µP 2−µ.
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FIG. 2. A schematic view of the allowed
quantum numbers as a function of the number
of pairs of nucleons, N. See text for a detailed
explanation.

The Casimir operator for the SO(7) group is

C7 = D† · D̃ + C5 +
(

�

2
− N̂

)(
�

2
− N̂ + 5

)
, (15)

where the SO(5) Casimir operator is

C5 = ��=1,3P
(�) · P (�). (16)

The Casimir operator for SO(3) is C3 = 5 P (1) · P (1) = Ĵ · Ĵ
and the Casimir operator for U(1) is C1 = �

2 − N̂ .
The most general Hamiltonian in this dynamical symmetry

chain is

H7 = c8C8 + c7C7 + c5C5 + c3C3 + c1C1, (17)

which can be rewritten as

H7 = G0(S†S + P (2) · P (2)) + G2

[
D† · D̃ +

(
�

2
− N̂

)2
]

+ b3P
(3) · P (3) + b1Ĵ · Ĵ + b0

(
�

2
− N̂

)
, (18)

where G0 = c8,G2 = c8 + c7, b3 = c8 + c7 + c5, b1 = (c8 +
c7 + c5)/5 + c3, and b0 = 5c7 + 6c8 + c1. Thus the SO(7)
limit corresponds to equal strength for the monopole pairing
and quadrupole interaction and arbitrary strength for the
quadrupole pairing. For realistic Hamiltonians the monopole
pairing is attractive so we expect G0 < 0.

C. Energy eigenvalues

The eigenvalues of the Casimir operators are

〈N, λ, τ, n	, J,M|C8|N, λ, τ, n	, J,M〉 = �

2

(
�

2
+ 6

)
,

(19)

〈N, λ, τ, n	, J,M|C7|N, λ, τ, n	, J,M〉 = λ(λ + 5), (20)

〈N, λ, τ, n	, J,M|C5|N, λ, τ, n	, J,M〉 = τ (τ + 3), (21)

〈N, λ, τ, n	, J,M|C3|N, λ, τ, n	, J,M〉 = J (J + 1), (22)

〈N, λ, τ, n	, J,M|C1|N, λ, τ, n	, J,M〉 = �

2
− N, (23)

which gives for the energy eigenvalues of the Hamiltonian,

E7(N, λ, τ, n	, J ) = c8
�

2

(
�

2
+ 6

)
+ c7λ(λ + 5) + c5τ (τ + 3)

+ c3J (J + 1) + c1

(
�

2
− N

)
. (24)

For N = 0 the allowed value of λ is λ = �
2 whereas for

N = 1 the allowed values of λ are λ = �
2 , �

2 − 1. The λ = �
2

state with N = 1 is created by operating on the N = 0 state with
the generator of SO(7),D†

µ|0〉, where |0〉 is the vacuum state
with no valence nucleons. Thus the λ = �

2 − 1 state is S†|0〉,
which should be the lowest state to agree with experiment.
This state has τ = J = 0. Therefore, for it to be the lowest
in energy, c7 must be positive. This means that, in general,
the states with the smallest λ will be the lowest in energy.
For N � �

2 , the smallest λ is λ0 = �
2 − N whereas for N � �

2 ,
λ0 = N − �

2 ; that is,

λ0 = �

2
− N, N �

�

2
(25)

λ0 = N − �

2
, N �

�

2
, (26)

as illustrated in Fig. 2.
The excitation energy in a given nucleus is

E∗
7 (N, λ, τ, n	, J ) = E7(N, λ, τ, n	, J ) − E7(N, λ0, τ = 0,
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FIG. 3. The excitation energy E∗
7 (N, λ, τ, n	, J ) for τ =

0, 1, 2, 3 as a function of N with � = 16.

n	 = 0, J = 0), and so

E∗
7 (N, λ, τ, n	, J ) = c7(λ − λ0)(λ + λ0 + 5)

+ c5τ (τ + 3) + c3J (J + 1). (27)

For N � �
2 , λ0 = N − �

2 = �
2 − N̄ , where N̄ = � − N is the

number of hole pairs. Thus, the energy becomes

E∗
7 (N, λ, τ, n	, J ) = c7

[
λ −

(
�

2
− N

)](
λ + �

2
− N + 5

)

+ c5τ (τ + 3) + c3J (J + 1), N �
�

2
, (28)

E∗
7 (N, λ, τ, n	, J ) = c7

[
λ −

(
�

2
− N̄

)](
λ + �

2
− N̄ + 5

)

+ c5τ (τ + 3) + c3J (J + 1), N �
�

2
; (29)

that is, above midshell, the excitation energy is obtained by
replacing N by N̄ and, thus, the excitation energy will be
symmetrical about midshell.

In Fig. 3 we plot the excitation energy as a function of N
with c7 = 1, c5 = 0, and c3 = 0 for � = 16 to illustrate the N
dependence, ignoring the splittings within the multiplets. The
energy splitting among the multiplets decreases linearly until
midshell (N = 8 in this case) and then increases again to be
completely symmetrical about midshell.

IV. THE SO(7) EIGENFUNCTIONS

A. The ground state

We have just determined that the lowest state in the
spectrum for a given N belongs to the λ0 IR of SO(7) as
given in Eqs. (25) and (26). Only τ = 0 is allowed for λ = λ0.

Therefore, using the Casimir operator C7 in Eqs. (15) and (20),
we get

C7|N, λ, τ = 0, n	 = 0, J = 0〉
= λ(λ + 5)|N, λ, τ = 0, n	 = 0, J = 0〉, (30)

which, from Eq. (15), implies

D† · D̃|N, λ, τ = 0, n	 = 0, J = 0〉

=
(

λ − �

2
+ N

)(
λ + �

2
− N + 5

)

× |N, λ, τ = 0, n	 = 0, J = 0〉. (31)

1. The ground state for N � �/2

To determine the eigenfunctions in the representation, we
start first with the state with λ = λ0 = �

2 − N . The condition
in Eq. (31) becomes

D† · D̃|N, λ0, τ = 0, n	 = 0, J = 0 〉 = 0. (32)

This eigenfunction will be constructed from monopole pairs
and quadrupole pairs coupled to angular momentum zero since
they are SO(5) scalars:∣∣∣∣N = �

2
− λ, λ, τ = 0, n	 = 0, J = 0,M = 0

〉

= NN,λ,0�p=0α
λ
pS† �

2 −λ−2p(D† · D†)p|0〉, (33)

where P (�)|0〉 = S|0〉 = Dµ|0〉 = 0 and NN,λ,0 is the normal-
ization. The αλ

p are determined by the condition in Eq. (32)
using the commutation relations in Eqs. (4)–(9) and the double
commutation relations [9]:

[[S, S†], S†] = −2S†, (34)

[[S, S†],D†
µ] = [[S,D†

µ], S†] = −2D†
µ, (35)

[[S,D
†
µ′],D†

µ] = −2(−1)µδµ′,−µS†, (36)

[[Dµ, S†], S†] = −2(−1)µD
†
−µ, (37)

[[Dµ′, S†],D†
µ] = [[Dµ′,D†

µ], S†] = −2δµ′,µS†, (38)

[[Dµ1,D
†
µ2

],D†
µ3

] = 2(δµ2,−µ3 (−1)µ1+µ2D
†
−µ1

− δµ2,µ1D
†
µ3

− δµ3,µ1D
†
µ2

). (39)

[[Dµ, S†],D† · D†] = −4(−1)µS†D†
−µ, (40)

[[Dµ,D† · D†],D† · D†] = −8(−1)µD† · D†D†
−µ. (41)
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The condition in Eq. (32) gives

Dµ

∣∣∣∣N = �

2
− λ, λ, τ = 0, n	 = 0, J = 0,M = 0

〉

= NN,λ,0�p=0α
λ
p

[ (
�

2
− λ − 2p

)
S† �

2 − λ − 2p − 1(D† · D†)p[Dµ, S†]|0〉

+
(

�

2
− λ − 2p

) (
�

2
− λ − 2p − 1

)
2S† �

2 − λ − 2p − 2(D† · D†)p[[Dµ, S†], S†]|0〉

+p

(
�

2
− λ − 2p

)
S† �

2 − λ − 2p − 1(D† · D†)p−1[[Dµ, S†],D† · D†]|0〉

+pS† �
2 −λ−2p(D† · D†)p−1[Dµ,D† · D†]|0〉

+p
(p − 1)

2
S† �

2 − λ − 2p(D† · D†)p−2[[Dµ,D† · D†],D† · D†]|0〉
]

= 0.[−2pt] (42)

By using Eqs. (4)–(9) and (34)–(41) and

[Dµ, S†]|0〉 = 0, (43)
[Dµ,D† · D†]|0〉 = (2� + 6)(−1)µD

†
−µ|0〉 (44)

in Eq. (42), the condition in Eq. (32) then implies that(
�

2
− λ − 2p

) (
�

2
− λ − 2p − 1

)
αλ

p

= (4λ + 4p + 14)αλ
p+1. (45)

This recursion relation has the solution

αλ
p =

(
�
2 − λ

)
!(2λ + 5)!!

(2p)!!
(

�
2 − λ − 2p

)
!(2λ + 5 + 2p)!!

. (46)

The coefficient αλ
0 has been set equal to unity (αλ

0 = 1).
This state has no quadrupole pairs in the sense that it is

annihilated by the quadrupole destruction operator. However,
we note that we need quadrupole pairs to construct the state to
satisfy the condition in Eq. (32) because the pair operators are
a composite pair of fermions and are not bosons.

2. The ground state for N � �
2

To determine the eigenfunctions in the representation, we
start first with the state with λ = λ0 = N − �

2 . The condition
in Eq. (31) becomes

D† · D̃

∣∣∣∣N = �

2
+ λ, λ, τ = 0, n	 = 0, J = 0

〉
= 10λ|N, λ, τ = 0, n	 = 0, J = 0〉. (47)

Using similar manipulations as in the last subsection this
conditions leads to the ground state∣∣∣∣N = �

2
+ λ, λ, τ = 0, n	 = 0, J = 0

〉
= NN,λ,0

N �
2

− λ, λ, 0

× (D† · D†)λ
∣∣∣∣�2 − λ, λ, τ = 0, n	 = 0, J,M = 0

〉
.

(48)

Thus the ground state for N � �
2 is then the ground

state for N � �
2 with the same λ operated on by (D† · D†)λ.

Hence, for λ = 0, of course the ground state is the same. For
λ = 1 it is proportional to D† · D†|�

2 − 1, λ = 1, τ = 0, n	 =
0, J,M = 0〉, etc., so that, for λ = �

2 , N = �, the ground state

is proportional to (D† · D†)
�
2 |0〉, the closed shell.

B. The remaining states

The remaining states in the same IR are produced by
acting on the ground state with the quadrupole pairs, D†

µ|�
2 −

λ, λ, τ = 0, n	 = 0, J = 0,M = 0〉, which has N = �
2 −

λ + 1, D†
µ1

D†
µ2

|�
2 − λ, λ, τ = 0, n	 = 0, J = 0,M = 0〉,

which has N = �
2 − λ + 2, etc. These states have the same λ,

but have different N, because the quadrupole pair operators
D†

µ are generators of SO(7). The most general state in the IR
will then be given by

|N, λ, τ, n	, J,M〉 = NN,λ,τ (D† · D†)N+λ− �
2 − τ

2 [D†]τ,n	,J,M

×�p=0 αλ
pS† �

2 −λ−2p(D† · D†)p|0〉
= NN,λ,τ (D† · D†)N+λ− �

2 − τ
2 �p=0α

λ
p

× S† �
2 −λ−2p(D† · D†)p

× |τ,�/2, τ, n	, J,M〉, (49)

with λ = λ0, λ0 + 1, . . . , �
2 . The scalar products of a pair of

quadrupole pairs, D† · D†, are SO(5) and SO(3) scalars so they
do not contribute to τ but do increase the number of pairs by
two units. [D†]τ,n	,J,M represents τ quadrupole pairs coupled
to the SO(5) quantum numbers, and |τ, �

2 , τ, n	, J,M〉 =
[D†]τ,n	,J,M |0〉, which is assumed to be normalized to unity.
This state has λ = �

2 since it consists of quadrupole pairs op-
erating on the vacuum. NN,λ,τ is the normalization determined
in the next section. Now,

D̃ · D̃

∣∣∣∣τ, �

2
, τ, n	, J,M

〉
= S

∣∣∣∣τ, �

2
, τ, n	, J,M

〉
= 0,

(50)
because both D · D and S are SO(5) are SO(3) scalars and
therefore the resulting state is one with the number of pairs
less than τ but that belongs to the τ IR of SO(5), which
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is impossible. From Eq. (30) and the expression for the
coefficients αλ

p, we can also show that, for the ground states
with N � �

2 ,

D̃ · D̃

∣∣∣∣�2 + τ − λ, λ, τ, n	, J,M

〉
= 0. (51)

The states in Eq. (49) can be rewritten

|N, λ, τ, n	, J,M〉 = NN,λ,τ

N �
2 −λ+τ,λ,τ

(D† · D†)N+λ− �
2 − τ

2

×
∣∣∣∣�2 − λ + τ, λ, τ, n	, J,M

〉
,

with λ = λ0, λ0 + 1, . . . ,
�

2
. (52)

This set of states include the ground states and excited states
for all N as long as λ is limited to λ = λ0, λ0 + 1, . . . , �

2 . Note
that for N = �

2 + λ and τ = 0 the states in Eq. (52) reduce to
the ground states in Eq. (48) for N � �

2 .

C. The normalization

First we calculate the normalization of the state with no
quadrupole pairs coupled to zero, |�

2 +τ − λ, λ, τ, n	, J,M〉,〈�
2

+ τ − λ, λ, τ, n	, J,M

×
∣∣∣∣�2 + τ − λ, λ, τ, n	, J,M

〉
= 1

= N �
2 +τ−λ,λ,τ 〈τ, τ, τ, n	, J,M|S �

2 −λ

×
∣∣∣∣�2 + τ − λ, λ, τ, n	, J,M

〉
, (53)

which follows from Eq. (51). We use the overlaps from Ref. [9]:〈
τ,

�

2
, τ, n	, J,M

∣∣∣∣ SpS†p
∣∣∣∣τ, �

2
, τ, n	, J,M

〉

= p!(� − 2τ )!

(� − p − 2τ )!
, (54)

〈
τ,

�

2
, τ, n	, J,M

∣∣∣∣ (D̃ · D̃)p(D† · D†)p
∣∣∣∣τ, �

2
, τ, n	, J,M

〉

= 2pp!(2τ + 3 + 2p)!!(� − 2τ )!!(� + 3)!!

(2τ + 3)!!(� − 2τ − 2p)!!(� + 3 − 2p)!!
, (55)

〈
τ,

�

2
,τ,n	,J,M

∣∣∣∣SNS†N−2p(D† ·D†)p
∣∣∣∣τ, �

2
,τ,n	,J,M

〉

= (−1)pN !(2τ +3+2p)!!(� − 2τ)!!(�−2τ −2p−1)!!

(2τ +3)!!(�−2τ −N)!
.

(56)

These overlaps plus the expression for αλ
p given in Eq. (46)

leads to〈�
2

+ τ − λ, λ, τ, n	, J,M

×
∣∣∣∣�2 + τ − λ, λ, τ, n	, J,M

〉
= 1

=
N 2

�
2 +τ−λ,λ,τ

(
�
2 − λ

)
!(� − 2τ )!(

�
2 + λ − 2τ

)
!

× 3F2

[
τ + 5

2
,−

(
�
2 − λ + 1

)
2

,−
(

�
2 − λ

)
2

; λ + 7

2
,

−
(

� − 1

2
− τ

)
; 1

]
, (57)

where 3F2 is the generalized hypergeometric function that
originates from the summation in Eq. (33). Using the fact
that this hypergeometric function with unit argument is
known [13] and the fact that the normalization on the
left-hand side of Eq. (57) is unity, we can solve for
N �

2 +τ−λ,λ,τ :

N �
2 +τ−λ,λ,τ =

√
(� + 5 + λ)!(2λ − 2τ )!!(

�
2 − λ

)
!(� − 2τ )!!(� + 4)!!(2λ + 5)!!

.

(58)

Now we calculate the total normalization of the state in
Eq. (52). We use the overlap

〈
�

2
+ τ − λ, λ, τ, n	, J,M

∣∣∣∣ (D̃ · D̃)p(D† · D†)p

×
∣∣∣∣�2 + τ − λ, λ, τ, n	, J,M

〉

= 2pp!(2τ + 3 + 2p)!!(2λ − 2τ )!!(2λ + 3)!!

(2τ + 3)!!(2λ − 2τ − 2p)!!(2λ − 2p + 3)!!
(59)to get

NN,λ,τ =
√ (

�
2 + λ + 5

)
!(2τ + 3)!!

(
�
2 − N + λ − τ

)
!!

(
�
2 − N + λ + τ + 3

)
!!(

�
2 − λ

)
!
(
N + λ − τ − �

2

)
!!(2λ + 5)!!(� − 2τ )!!(� + 4)!!

(
N + λ − �

2 + τ + 3
)
!!(2λ + 3)!!

. (60)

So finally the eigenstates are

|N, λ, τ, n	, J,M〉 = NN,λ,τ�p=0
(

�
2 − λ

)
!(2λ + 5)!!S† �

2 − λ − 2p(D† · D†)p+ N+λ− �
2 −τ

2

(2p)!!
(

�
2 − λ − 2p

)
!(2λ + 5 + 2p)!!

∣∣τ, �
2 , τ, n	, J,M

〉 . (61)
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V. PAIRING STRENGTH

We can calculate the pairing strength in these states and we
find

〈N, λ, τ, n	, J,M|S†S|N, λ, τ, n	, J,M〉

=
(

�
2 − λ

)
(λ − τ + 1)(� + 2λ + 12)

2λ + 7
. (62)

The pairing strength in the monopole pairing limit is [9]

〈N, κ, τ, n	, J,M|S†S|N, κ, τ, n	, J,M〉M
= (N − κ)(� + 1 − N − κ), (63)

where κ is the number of pairs not coupled to angular
momentum zero and τ = κ, κ − 2, . . . , 0, or 1. The ground
state has κ = 0, the first excited state has κ = 1, etc. In
contrast to the pairing strength in the SO(7) limit, the pairing
strength in the monopole pairing limit does not depend
on τ .

We can ask what the pairing strength is in the SO(7) limit
compared to the monopole pairing limit. In Fig. 4 we plot the
ratio of the pairing strength in the SO(7) limit to the pairing
strength in the monopole pairing limit for four examples: the
pairing strength in the SO(7) ground state (λ = λ0, τ = 0)
divided by the pairing strength in the monopole pairing
ground state (κ = 0) (solid line); the pairing strength in the
SO(7) J = 21 excited state (λ = λ0 + 1, τ = 1) divided by
the pairing strength in the monopole pairing first excited state
(κ = 1), (long dashed line); the pairing strength in the SO(7)
J = 22, 41 excited states (λ = λ0 + 2, τ = 2) divided by the
pairing strength in the monopole pairing second excited state
(κ = 2) (short dashed line); and the pairing strength in the
SO(7) J = 02 excited state (λ = λ0 + 2, τ = 0) divided by
the pairing strength in the monopole pairing second excited
state (κ = 2) (medium dashed line).
For N = τ = κ , the SO(7) eigenfunctions are the same
as the monopole pairing eigenfunctions; therefore the

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20

J=0 , τ=0/κ=0
J=2 , τ=1/κ=1
J=2 , 4 , τ=2/κ=2
J=0 , τ=0/κ=2

N

1
1

2 1

2

< S  S >
+

7

< S  S >
M

+

FIG. 4. The ratio of the SO(7) pairing strength, 〈S†S〉7, to the
monopole pairing strength, 〈S†S〉M , as a function of the number of
pairs of nucleons, N. See text for details.

ratio for τ = κ starts out at unity, decreases until midshell,
rises after midshell, and then drops again at full shell. The
SO(7) pairing strength is symmetrical about midshell but the
monopole pairing strength is not, so the ratio is not. The ratio
for τ = κ has similar behavior for all κ , but the ratio for τ � κ

has a different N dependence (medium dashed line). In fact
that ratio is larger than unity for most N.

A study of two-nucleon pairing strength as a function of
mass number would be a test for the SO(7) limit.

VI. QUADRUPOLE TRANSITIONS

Operating with the quadrupole operator P (2)
µ on the eigen-

states in Eq. (61) and using the commutation relations in
Eqs. (4)–(9), we have

P (2)
µ |N, λ, τ, n	, J,M〉 = NN,λ,τ�p=0α

λ
p

{[
2

(
p + N + λ − �

2 − τ

2

)
S† �

2 −λ−2p+1(D† · D†)p+ N+λ− �
2 −τ

2 −1

+
(

�

2
− λ − 2p

)
S† �

2 −λ−2p−1(D† · D†)p+ N+λ− �
2 −τ

2

]
D†

µ

∣∣∣∣τ, �

2
, τ, n	, J,M

〉

+ S† �
2 −λ−2p(D† · D†)p+ N+λ− �

2 −τ

2 P (2)
µ

∣∣∣∣τ, �

2
, τ, n	, J,M

〉 }
. (64)

The quadrupole operator changes τ and λ each by one
unit. The last term cannot increase τ because P (2)

µ does not
change the total number of nucleons and it is operating on a
state with τ nucleons coupled to maximal SO(5). The first two
terms can be rewritten as

NN,,λ,τ�p=0

[
αλ

p+12

(
p + N + λ − �

2 − τ

2
+ 1

)

+αλ
p

(
�

2
− λ − 2p

) ]
,

S† �
2 −λ−2p−1(D† · D†)p+ N+λ− �

2 −τ

2 D†
µ

∣∣∣∣τ, �

2
, τ, n	, J,M

〉
. (65)

For the final state with τ increased by one unit the coefficients
must be a linear combination of the normalization N and
ampitudes α for the two states with λ ± 1:

NN,λ,τ

[
αλ

p+12

(
p + N + λ − �

2 − τ

2
+ 1

)

+αλ
p

(
�

2
− λ − 2p

) ]
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= aNN,λ+1,τ+1α
λ+1
p + bNN,λ−1,τ+1α

λ−1
p+1. (66) We solve for a, b and thus determine the reduced matrix

elements

〈N, λ + 1, τ + 1, n′
	, J ′||P (2)||N, λ, τ, n	, J 〉 =

√(
�
2 − λ

) (
�
2 + 6 + λ

) (
�
2 + 5 − N + λ + τ

) (−�
2 + 5 + N + λ + τ

)
(2λ + 7)(2λ + 5)(� − 2τ )(2τ + 5)

×
〈
τ + 1,

�

2
, τ + 1, n′

	, J ′
∣∣∣∣ |D†|

∣∣∣∣τ, �

2
, τ, n	, J

〉
, (67)

〈N, λ − 1, τ + 1, n′
	, J ′||P (2)||N, λ, τ, n	, J 〉 =

√(
N + λ − �

2 − τ
) (

�
2 − λ + 1

) (
�
2 + 5 + λ

) (
�
2 − N + λ − τ

)
(2λ + 5)(2λ + 3)(� − 2τ )(2τ + 5)

×
〈
τ + 1,

�

2
, τ + 1, n′

	, J ′
∣∣∣∣ |D†|

∣∣∣∣τ, �

2
, τ, n	, J

〉
. (68)

The values of the matrix elements of the quadrupole pair
operator with n	 = 0 and maximal J are〈

N = τ + 1, λ′ = �

2
, τ ′ = τ, J ′ = 2τ + 2

∣∣∣∣|D†|
∣∣∣∣N = τ,

λ = �

2
, τ, J = 2τ

〉
=

√
(� − 2τ )(τ + 1)(4τ + 5). (69)

The values of the matrix element of the quadrupole pair
operator for the states with τ ′ = 2 and any J ′ are〈

N = 2, λ = �

2
, τ ′ = 2, J ′

∣∣∣∣|D†|
∣∣∣∣N = 1, λ = �

2
,

τ = 1, J = 2

〉
=

√
2(� − 2)(2J ′ + 1), (70)

and for the state with τ ′ = 3, n	 = 0, and J = 0 the matrix
element is〈

N = 3, λ = �

2
, τ ′ = 3, n	 = 0, J ′ = 0

∣∣∣∣|D†|
∣∣∣∣N = 2,

λ = �

2
, τ = 2, J = 2

〉
=

√
3(� − 4). (71)

The transition strengths from the initial state i to the final
state f are

B(E2 : i → f ) = e2
eff

|〈f ‖P (2)‖i〉|2
2Ji + 1

(where eeff is the effective charge), and for the states with τ � 3
are then

B(E2 : N ; λ + 1, τ ′ = 1, J ′ = 2 → λ, τ = J = 0) = e2
eff

(
�
2 − λ

) (
�
2 + 6 + λ

) (
�
2 + 5 − N + λ

) (
N − �

2 + 5 + λ
)

5(2λ + 7)(2λ + 5)
, (72)

B(E2 : N ; λ + 1, τ ′ = 2, J ′ → λ, τ = 1, J = 2) = e2
eff

2
(

�
2 − λ

) (
�
2 + 6 + λ

) (
�
2 + 6 − N + λ

) (
N − �

2 + 6 + λ
)

7(2λ + 7)(2λ + 5)
, (73)

B(E2 : N ; λ + 1, τ ′ = 3, J ′ = 6 → λ, τ = 2, J = 4) = e2
eff

(
�
2 − λ

) (
�
2 + 6 + λ

) (
�
2 + 7 − N + λ

) (
N − �

2 + 7 + λ
)

3(2λ + 7)(2λ + 5)
, (74)

B(E2 : N ; λ + 1, τ ′ = 3, J ′ = 0 → λ, τ = 2, J = 2) = e2
eff

(
�
2 − λ

) (
�
2 + 6 + λ

) (
�
2 + 7 − N + λ

) (
N − �

2 + 7 + λ
)

3(2λ + 7)(2λ + 5)
, (75)

B(E2 : N ; λ, τ ′ = J ′ = 0 → λ − 1, τ = 1, J = 2) = e2
eff

(
�
2 − λ + 1

) (
�
2 + 5 + λ

) (
�
2 − N + λ

) (
N − �

2 + λ
)

(2λ + 5)(2λ + 3)
, (76)

B(E2 : N ; λ, τ ′=1, J ′=2→λ − 1, τ = 2, J ) = e2
eff

2(2J + 1)
(

�
2 − λ + 1

)(
�
2 + 5 + λ

)(
�
2 − N + λ − 1

)(
N − �

2 + λ − 1
)

35(2λ + 5)(2λ + 3)
.

(77)
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We note that the transition λ + 1, τ + 1, n′
	, J ′ → λ, τ, n	, J

is independent of n	 and J for the examples given and we
conjecture that this is true in general.

For the states lowest in the spectrum with λ = λ0 + 1, λ0 +
2, λ0 + 3, and, for N � �

2 , λ0 = �
2 − N , these transitions

become
B(E2 : N ; λ0 + 1, τ ′ = 1, J ′ = 2 → λ0, τ = J = 0)

= e2
eff

N (� + 6 − N )

� + 7 − 2N
, (78)

B(E2 : N ;λ0 + 2, τ ′ = 2,J ′ → λ0 + 1, τ = 1,J = 2)

= e2
eff

2(N − 1)(� + 7 − N )

� + 9 − 2N
, (79)

B(E2 : N ;λ0 + 2, τ ′ = J ′ = 0 → λ0 + 1, τ = 1,J = 2)

= e2
eff

2(N − 1)(� + 2 − 2N )(� + 7 − N )

(� + 9 − 2N )(� + 7 − 2N )
, (80)

B(E2 : N ;λ0 + 3, τ ′ = 3,J ′ = 6 → λ0 + 2, τ = 2,J = 4)

= e2
eff

3(N − 2)(� + 8 − N )

(� + 11 − 2N )
, (81)

B(E2 : N ;λ0 + 3, τ ′ = 3,J ′ = 0 → λ0 + 2, τ = 2,J = 2)

= e2
eff

3(N − 2)(� + 8 − N )

(� + 11 − 2N )
, (82)

B(E2 : N ; λ0 + 3, τ ′ = 1, J ′ = 2 → λ0 + 2, τ = 2, J )

= e2
eff

4(2J + 1)(N − 2)(� + 2 − 2N )(� + 8 − N )

35(� + 11 − 2N )(� + 9 − 2N )
.

(83)

For N � �
2 the transition rates are obtained by replacing

N → N̄ in Eqs. (78)–(83). The variation of the B(E2)s with
respect to the number of pairs, N, will then be symmetric
about midshell as are the excitation energies. In Fig. 5 we
show an example of this variation for � = 16. The transition
from the first excited state, τ = 1, Ji = 2+

1 , to the ground
state (solid line) increases monotonically as a function of
N to midshell and then decreases again. The transition from

0

5
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15

20

25

0 2 4 6 8 10 12 14 16

B(E2)

2     0
J     2
0     2

N

1 1
1
12

i

FIG. 5. B(E2) values as a function of the number of pairs of
nucleons, N. See text for a detailed explanation.

0
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B(E2:i      f)

B(E2:2+
1      01

+)

N

J     2
0     2

1
12
1

FIG. 6. The ratio of B(E2 : i → f )/B(E2 : 2+
1 → 0+

1 ) as a
function of the number of pairs of nucleons, N. See text for a detailed
explanation.

the τ = 2, Ji = 2+
2 , 4+

1 to the first excited state (dashed line)
increases even faster than this transition whereas the transition
from the τ = 0, Ji = 0+

2 to the first excited state (dotted line)
increases slower than either of these. In Fig. 6 the ratio of
the transition from the τ = 2, Ji = 2+

2 , 4+
1 to the first excited

state to the transition from the first excited state to the ground
state (solid line) and the ratio of the transition from the
τ = 0, Ji = 0+

2 to the transition from the first excited state
to the ground state (dashed line) are plotted as a function of
the number of pairs.

VII. COMPARISON WITH EXPERIMENT

Experimental evidence for SO(7) symmetry has been
observed in the Pd-Ru region of the periodic table [14]. The
Xe isotopes may also be good examples of SO(7) symmetry
in nuclei. In Fig. 7 the spectra of the Xe isotopes are plotted

0
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2015105
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E
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2

FIG. 7. The spectra of the Xe isotopes as a function of the number
of pairs of nucleons, N.

064325-9



JOSEPH N. GINOCCHIO PHYSICAL REVIEW C 71, 064325 (2005)

0

0.5

1

1.5

2

1050 15 20

B(E2:0
1
->2

1
)

(e
2
b

2
)

N

0 -> 2
0 -> 2 calc

1
1 1

1

FIG. 8. The B(E2 : 01 → 21) of the Xe isotopes as a function of
the number of pairs of nucleons, N. The solid dots are the empirical
values; the solid line is a fit using Eq. (78) with e2

eff determined by
fitting the B(E2 : 01 → 21) for 120Xe(N = 10).

versus the number of pairs of nucleons. The qualitative features
of the SO(7) spectrum of Fig. 3 are seen in this spectrum. The
excitation energy decreases to a minimum at N = 10(120Xe),
which implies an effective � = 20, and the SO(5) multiplets
are quasi-degenerate. However, the N dependence is not simply
linear as in the SO(7) example shown in Fig. 3.

The transition strengths are a better test of the eigenfunc-
tions. In Fig. 8 we compare the empirical transition strengths
[15] from the ground state to the first excited state with the
SO(7) limit given in Eq. (78) with eeff being fit to the empirical
strength at N = 10. The agreement is very good.

Recently, transitional nuclei have been analyzed in terms
of a Bohr Hamiltonian with a γ -independent potential that is
a square well in the deformation β. Table I summarizes the
characteristic features of the B(E2) values of this model in the
column labeled E(5). In the notation Ji,τ , i designates the ith
state with quantum numbers J, τ . The SO(7) B(E2) s are in
the next column for N = 14, which corresponds to 128Xe. The
empirical results are in the last column. The B(E2) values are
given relative to the transition from the first excited state to the

TABLE I. The B(E2) values of excited states relative to the
B(E2) from the first excited state to the ground state for the E(5)
model, the SO(7) model, and the experimental value.

E(5) SO(7) 128Xe
� = 20, N = 14 Expt. [16]

B(E2;4+
1,2→2+

1,1)

B(E2;2+
1,2→0+

1,1)
1.68 1.54 1.47(15)

B(E2;6+
1,3→4+

1,2)

B(E2;2+
1,2→0+

1,1)
2.21 1.74 1.94 (20)

B(E2;0+
2,0→2+

1,1)

B(E2;2+
1,2→0+

1,1)
0.86 1.03 —

ground state. Both the E(5) and SO(7) predictions agree with
experiment within the experimental error.

VIII. SUMMARY AND CONCLUSIONS

We have derived the energy spectrum, eigenfunctions,
pairing strength, and quadrupole transition strengths in the
SO(7) limit of a fermion monopole and quadrupole pairing
model that includes Pauli effects. This limit corresponds to
a transitional limit between spherical nuclei and γ -unstable
deformed nuclei and a shell model Hamiltonian with monopole
pairing and quadrupole interactions having equal strength.
The agreement of the trend of the quadrupole transition from
the first excited to the ground state with respect to atomic mass
for the Xe isotopes suggests that this region of the periodic
table may have SO(7) symmetry. More detail information
on both quadrupole transitions from other excited states and
two-nucleon transfer strengths as a function of mass number
could determine whether SO(7) symmetry has a wide empirical
validity.
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