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one-body density matrix evolution

Denis Lacroix
Laboratoire de Physique Corpusculaire, ENSICAEN and Université de Caen,
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We show that the dynamics of interacting fermions can be exactly replaced by a quantum jump theory in
the many-body density matrix space. In this theory, jumps occur between densities formed of pairs of Slater
determinants, Dab = |�a〉〈�b|, where each state evolves according to the stochastic Schrödinger equation given
by O. Juillet and Ph. Chomaz [Phys. Rev. Lett. 88, 142503 (2002)]. A stochastic Liouville-von Neumann equation
is derived as well as the associated. Bogolyubov-Born-Green-Kirwood-Yvon hierarchy. Due to the specific form
of the many-body density along the path, the presented theory is equivalent to a stochastic theory in one-body
density matrix space, in which each density matrix evolves according to its own mean-field augmented by a
one-body noise. Guided by the exact reformulation, a stochastic mean-field dynamics valid in the weak coupling
approximation is proposed. This theory leads to an approximate treatment of two-body effects similar to the
extended time-dependent Hartree-Fock scheme. In this stochastic mean-field dynamics, statistical mixing can be
directly considered and jumps occur on a coarse-grained time scale. Accordingly, numerical effort is expected to
be significantly reduced for applications.
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I. INTRODUCTION

The purpose of this paper is to discuss the possibility
of substituting the description of the evolution of quantum
interacting fermions by a stochastic mean-field dynamics of
one-body density matrices. In view of present computational
capabilities, stochastic methods appear as promising tools
for addressing exactly or approximately the problem of
correlated mesoscopic quantum systems such as nuclei, atomic
clusters, and Bose-Einstein condensates. Mean-field theories,
i.e., Hartree-Fock theories, are rarely able to describe the
large variety of phenomena occurring in quantum systems.
It is generally necessary to extend mean field theory by
including the effect of two-body correlations [2]. During the
past decades, several approximate stochastic theories have
been proposed to describe strongly interacting systems [3–11].
These approaches have in common that the noise is due to the
residual part of the interactions acting on top of the mean
field. However, they generally differ on the strategy used
to incorporate noise. In some cases, the residual interaction
is treated using statistical assumptions [4,6], while in other
cases the interaction induces fluctuations in the wave packets
either by random phase shifts [5] or by quantum jumps
according to the Fermi golden rule [9,11]. The influence of
correlations is sometimes treated using the notion of stochastic
trajectories in the one-body density matrix space [7,8]. This
latter is, among the different theories, the only one that has
been applied to large-amplitude collective motions in the
semiclassical limit [12]. Recently, its quantal version has
been used to describe small-amplitude collective vibrations in
nuclei [13]. However, the application of a stochastic approach
to the quantum many-body dynamics remains an open problem
both from a numerical and a conceptual point of view
[14,15].

In this work, a different strategy is used to obtain a
stochastic formulation of the many-body problem. During the
past 10 years, many efforts have been made using functional
integral techniques [16–18] to address the problem of nucleons
in strong two-body interactions. These theories provide an
exact stochastic formulation of quantum problems and lead
to the so-called quantum Monte Carlo methods [19]. Recent
applications to nuclear physics have shown that stochastic
methods can be applied successfully to describe the structure
of nuclei [20]. These methods can also be applied to the
description of dynamical properties [18]. However the self-
consistent mean field does not generally play a special role.
Indeed, the stochastic part is driven either by the kinetic energy
part of the Hamiltonian or by a fixed one-body potential in the
case of shell model Monte Carlo calculations [20]. Recently, a
new formulation [1,21] has been proposed that combines the
advantages of both the Monte Carlo methods and the mean-
field theories. Application of functional integral theories are of
great interest since they pave the way to a full implementation
of the nuclear static and dynamical many-body problem using
mean-field theories in a well-defined theoretical framework.
However, the direct application of exact stochastic dynamics to
realistic situations remains numerically impossible and proper
approximations should be developed.

The first part of the article presents the functional integral
method and the associated stochastic Schroedinger equation
(SSE) developed in [1] for many-body and one-body wave
functions. The theory is formulated in the more general
framework of exact stochastic dynamics in the many-body
and/or in the one-body density matrix space. The link between
the different formulations is underlined. In a second part,
guided by the exact stochastic theory, an extended mean-field
theory [14] taking into account two-body effects in the weak

0556-2813/2005/71(6)/064322(9)/$23.00 064322-1 ©2005 The American Physical Society



DENIS LACROIX PHYSICAL REVIEW C 71, 064322 (2005)

coupling regime is given in terms of a new stochastic one-body
evolution.

II. INTRODUCTION AND DISCUSSION OF
STOCHASTIC METHODS

Functional integral methods have been used for a long
time to provide a useful reformulation of complex quantum
systems [16,17] (for a review see [18]). This method has been
applied with success to describe static properties of nuclei [20].
However, it has seldom been used for dynamical problems.
Recently, an alternative formulation of the path integral
representation has been obtained in which the mean-field
theory plays a specific role. We consider a general many-body
system described by the wave function |�〉 which evolves
according to the Hamiltonian1

H =
∑
ij

Tij a
+
i aj + 1

4

∑
ijkl

Vijkla
+
i a+

j alak, (1)

where the first term corresponds to the kinetic part of the
Hamiltonian, while the second part is the two-body interaction.
We use the convention of [22] concerning the labeling, of one-
and two-body operators. We denote Vijkl = 〈ij |̃v12|kl〉, where
ṽ12 is the antisymmetrized two-body interaction.

A. Action of a quadratic Hamiltonian on a Slater determinant

In Ref. [20], the general strategy to obtain ground state
properties of a many-body system using Monte Carlo methods
is described. The new aspect developed in Ref. [1] is the
introduction a self-consistent mean-field before the application
of functional integral. In that case, only the residual part of
the interaction that is not taken into account in mean-field
Hamiltonian is treated stochastically. In this section, we
summarize how a general two-body Hamiltonian applied to a
Slater determinant can be separated into a mean-field part and
a residual two-body contribution. Details are given in Ref. [1].

We consider a Slater determinant |�〉 defined as |�〉 =
�αa+

α |0〉, where the single-particle states |α〉 may not be
orthogonal. Starting from the Hamiltonian (1), we have

H |�〉 = (H1 + Hres)|�〉, (2)

with

H1|�〉 =
(

E0 +
∑
α1α1

〈ᾱ1|hMF (ρ1)|α1〉a+
ᾱ1

aα̂1

)
|�〉, (3)

where we denote by |ᾱ1〉 the particle states (i.e., the unoccupied
states) and where ρ1 = ∑ |α1〉〈α̂1| is the one-body density
associated with |�〉. The states |α̂1〉 are defined by 〈α̂1|.α2〉 =
δα1α2 . In this expression, hMF(ρ1) is the mean-field Hamiltonian

hMF (ρ1) = T1 + v (ρ1). (4)

1Note that three-body (or higher) interactions are not considered
here.

In this equation, v(ρ1) = Tr2(̃v12ρ2) is the mean-field potential,
where Tr2(.) denotes the partial trace on the second particle.
In Eq. (3), we denote

E0 = Tr
(
ρ1hMF(ρ1) − 1

2ρ1v(ρ1)
)
. (5)

In the single-particle basis defined above, it could be shown
that

〈ᾱ1ᾱ2 |̃v12|α1α2〉 = −
∑

s,α1α2ᾱ1ᾱ2

h̄ωs〈ᾱ1|Os | α1〉〈ᾱ2|Os |α2〉,
(6)

where Os is a one-body operator.2 Note that the latter transfor-
mation of the two-body matrix elements is a particular case of
the more general transformations given in Ref. [20]. When the
single-particle basis is not the particle-hole state of the Slater
determinant, additional terms should be accounted for. Using
this transformation, the residual part of the Hamiltonian is

Hres|�〉 = 1

4

∑
s,α1α2ᾱ1ᾱ2

h̄ωs〈ᾱ1|Os |α1〉

× 〈ᾱ2|Os |α2〉a+
ᾱ1

a+
ᾱ2

aα̂1aα̂2 |�〉. (7)

In the next section, this expression is the starting point
for deriving the stochastic Schroedinger equations using
functional integral techniques.

B. Functional integrals and stochastic many-body dynamics

Functional integral methods applied to quantum fermionic
systems in interaction [16,17] lead to general stochastic
formulations of the quantum many-body problem. However,
they also lead to specific difficulties. For instance, the
semiclassical limit of the functional integral does not give
naturally the Hartree-Fock theory, but only the Hartree theory.
The interesting idea proposed in [1] is to use the functional
integral already accounting for the fact that the Hamiltonian is
applied to a Slater determinant. In this case, only the residual
(2 particle-2 hole) part of the Hamiltonian is interpreted as a
source of noise. This procedure is summarized now.

We consider the evolution of the system during a small time
step �t . Denoting by |��〉 the associated evolution, we have

|� + ��〉 = U (�t)|�〉 = exp

(
�t

ih̄
H

)
|�〉, (8)

where U (�t) is the propagator associated to H. Using
the Hubbard-Stratonovitch [23,24] functional integral on the
residual part only, the exact propagator transforms into an
integral equation [1]:

U (�t)|�〉 =
∫

d
−→
σG(

−→
σ ) exp

[
�t

ih̄
H1 + �B(

−→
σ )

]
|�〉. (9)

2Following Ref. [22], we will sometimes make use of the identity
ṽ12 = −∑

s h̄ωsO
1
s O

2
s which is compact notation for matrix elements

and is only valid in the particle-hole basis. Here, we use the same
notations as in Ref. [14], where 1 and 2 refer to the particles on which
the operator is acting.
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H1 is given by Eq. (3), while �B(
−→
σ ) is a one-body operator

written as

�B(
−→
σ )|�〉 =

∑
αᾱ,s

λs〈α|Os |α〉�Wsa
+
ᾱ aα̂|�〉, (10)

where

λs = √
ωs[1 + i sgn(ωs)]/2, (11)

and �Ws = √
�t σs , with σs the component of the vector−→

σ . In Eq. (9), G(
−→
σ ) = �sg(σs) represents the product of

normalized Gaussian probabilities of width 1 for the σs

variables. As in other functional integral formulations, we
recover that the original propagator associated to the exact
evolution can be replaced by an ensemble of propagators
that depend on

−→
σ . Equivalently, in the limit of infinitesimal

time step (�t −→ dt), this equation can be interpreted as a
stochastic Schroedinger equation for the initial state. Using the
standard notation for stochastic processes in Hilbert space [25],
we have

|�〉 + |d�〉 = exp

[
dt

ih̄
H1 + dB(t)

]
|�〉. (12)

Here |d�〉 has to be interpreted as a stochastic wave function.
Since Eq. (9) is exact, it shows that the exact dynamics
of a Slater determinant can be replaced by an average
over stochastic evolution operators. In this expression, dB(t)
is a stochastic operator which depends on the stochastic
variable dWs according to Eq. (10).3 To obtain this equa-
tion, the Ito rules for stochastic calculus have been used
[25] with

dWs1dWs2 = δs1s2dt. (13)

Using the latter properties in combination with the expression
of dB(t), we obtain an equivalent of the fluctuation-dissipation
theorem that gives the link between the stochastic operator and
the residual part of the Hamiltonian:

1

2
dB (t) dB (t) |�〉 = +dt

ih̄
Hres (t) |�〉. (14)

Expression (12) is of particular interest. Indeed, according
to the Thouless theorem [26,27], the application of an operator
of the form (12) to a Slater determinant gives another Slater
determinant. Therefore, the evolution of correlated systems
of fermions can be replaced by stochastic evolutions of an
ensemble of Slater determinants. Since each evolution can be
solved with numerical techniques used in mean-field theories,
SSE offers a chance to solve exactly the dynamics of strongly
interacting fermionic systems. This property has already been
noted in several pioneering works [16–18]. A very similar
conclusion has been reached for the description of interacting
bosons using Monte Carlo wave function techniques [21]. In
this case and more generally in the context of the stochastic
description of open quantum systems, jumps between wave

3Note that in the limit �t −→ dt, dWs plays directly the role of the
Gaussian normalized stochastic variable, and the introduction of σs

is not required.

packets are generally described using differential stochastic
dynamics in Hilbert space [28–30]. Then, the evolution of
|d�〉 is directly considered.

The equivalent differential equation associated to the jump
process described here can be obtained by developing the
exponential in Eq. (12) in powers of dt. Using Ito rules, we
obtain

|�〉 + |d�〉 =
[

1 + dt

ih̄
H1 + 1

2
dB(t)dB(t) + dB(t)

]
|�〉.

(15)

Using Eqs. (2) and (14), we finally obtain a stochastic
Schroedinger equation for the many-body wave function:

|d�〉 =
[
dt

ih̄
H + dB(t)

]
|�〉. (16)

In the following, this equation is referred to as the many-body
SSE. Equation (16) is strictly equivalent to (12) and thus
preserves the Slater determinant nature of the states along the
stochastic trajectory. This might appear surprising because of
the appearance of the complete Hamiltonian H in Eq. (16). This
is a specific aspect of the stochastic many-body theory using
Ito stochastic calculus. Indeed, although H (which contains
the complete two-body interaction) drives the initial state out
from the Slater determinant space, the stochastic part of the
equation of evolution compensates this effect exactly. The
exponential form (12) and the differential form (16) describe
the same stochastic process. However, differential equations
are generally easier to manipulate [28–30].

C. Equivalent quantum jump for single-particle states

Up to now, we have introduced notions associated with
the stochastic mechanics of many-body wave functions. This
formulation is of great interest for applications since the
stochastic evolution of the many-body wave function can
be replaced by the stochastic evolution of its single-particle
components. For completeness, the equivalent differential
equation of the single-particle wave function is given below.
It has been shown in Ref. [1] that Eq. (12) leads to the
single-particle equation of motion

|dα〉 = dt

ih̄
h (ρ1)|α〉 +

∑
s

λs(1 − ρ1)Os |α〉 dWs, (17)

where h(ρ1) is a one-body operator given by

h(ρ1) = hMF(ρ1) − 1
2ρ1v(ρ1) . (18)

Equation (17) will be referred to as the one-body SSE. We
would like to stress again that Eq. (16) and the set of single-
particle evolutions [Eq. (17)] are strictly equivalent.

In this section, we have summarized the equivalence
between quantum jump approaches in many-body and one-
body spaces of wave packets in order to describe interacting
fermions. An equivalent formulation in terms of density
matrices is highly desirable to compare the exact treatment
with other stochastic methods.
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III. DENSITY MATRIX FORMULATION

In the previous section, we considered the stochastic
formulation of the many-body problem using the stochastic
Schroedinger equation. In this approach, all trajectories start
from a Slater determinant and follow a stochastic path in
the Slater determinant space. Stochastic theories can also
be applied if the system is initially correlated. In this case,
it is helpful to generalize the theory by introducing density
matrices. It has been shown in Ref. [1] that the many-body
density matrix D(t) associated with the system at all times can
be properly described by the average over an ensemble of pairs
of nonorthogonal Slater determinant state vectors,

D (t) = |�a〉〈�b|, (19)

each of them evolving according to Eq. (16). Here, the average
over the initial ensemble has been introduced. In that case,
the notion of a quantum jump between the wave functions is
replaced by a quantum jump in the space of Slater determinant
pairs. In the following, the properties of Slater determinant
dyadics are recalled and a stochastic BBGKY hierarchy
[31–33] is derived.

A. Slater determinant dyadics: Notations

Let us consider a many-body density formed of two distinct
Slater determinants

Dab = |�a〉〈�b|, (20)

in which each Slater determinant is an antisymmetrized
product of not necessarily orthogonal single-particle states{

|�a〉 = �αa+
α |0〉

|�b〉 = �βa+
β |0〉 . (21)

Note that Dab is neither Hermitian nor normalized. However,
for convenience we will still call it a density matrix. Starting
from the many-body density matrix, one can obtain the
generalized k-body density matrix (denoted by ρ1,...,k) by
taking successive partial traces. Using the same notation as
in [22], we have

ρ
(ab)
1,...,k = T r

k+1,...,A
(Dab), (22)

where A is the size of the system. One can obtain the expression
of density matrices in terms of single-particle states of the
two Slater determinants by introducing the overlap matrix
elements between single-particle states, denoted by f. The
matrix elements of f are defined by fβiαj

= 〈βi |αj 〉. For
instance, the one-body density matrix is

ρ
(ab)
1 = det(f )

∑
αiβj

|αi〉f −1
αiβj

〈βj | ≡ det(f )u(ab)
1 . (23)

More generally, the k-body density matrix is the antisym-
metrized product of single-particle densities [34]

ρ
(ab)
1,...,k = det(f )A

(
u

(ab)
1 × · · · × u

(ab)
k

)
, (24)

where A(·) corresponds to the antisymmetrization operator.
Introducing the two-body correlation operator defined by

C
(ab)
12 = ρ

(ab)
12 − A

(
u

(ab)
1 ρ

(ab)
2

)
, (25)

we have C
(ab)
12 = 0 for any state defined by Eq. (20).

B. Stochastic evolution of many-body density matrices

The BBGKY hierarchy [31–33] has been widely used
as a starting point for obtaining approximations [22] on
the evolution of complex systems. Therefore, an equivalent
hierarchy associated with the exact stochastic mean-field
deduced from functional integrals is highly desirable to specify
the possible links with other theories. In this section, starting
from the stochastic Schroedinger equation for the many-body
wave function, we give the associated stochastic formulation of
the BBGKY hierarchy. In the stochastic many-body dynamics,
we consider the quantum jump between two different density
matrices Dab and D′

ab. Starting from Dab given by Eq. (20),
there are transitions toward another density matrix given by
D′

ab = |�a + d�a〉〈�b + d�b|. The rules for transitions are
directly obtained from the rules for the jumps in the wave
function space:{

|d�a〉 = dt
ih̄

H |�a〉 + dBa|�a〉,
〈d�b| = − dt

ih̄
〈�b|H + 〈�b|dB+

b .
(26)

with

dBa =
∑

s

λs

∑
α̂α

a+
α 〈α|Os |α〉aα̂dWsa

,

(27)
dB+

b =
∑

s

λ∗
s

∑
β̂β

a+
β̂
〈β|Os |β〉aβdWsb

.

The notations dWsa
and dWsb

are introduced to emphasize that
stochastic variables associated respectively with |�a〉 and |�b〉
are statistically independent, i.e.,

dWsa
dWsb

= 0. (28)

This completes Eq. (13) verified both by dWsa
and dWsb

. With
these rules, the evolution of the many-body density matrix
along the stochastic path is given by

dDab = dt

ih̄
[H,Dab] + dBaDab + DabdB+

b . (29)

This equation is a stochastic version of the Liouville-von
Neumann equation for the density matrix. The evolution of the
k-body density matrix can be directly derived from expression
(29), and one obtains

dρ
(ab)
1,...,k = dt

ih̄
Trk+1,...,A([H,Dab]) + dWk

ab. (30)

The additional term corresponds to the stochastic part acting
on the k-body density matrix evolution:

dWk
ab = T rk+1,...,A(dBaDab + DabdB+

b ). (31)

The first part of Eq. (30) is nothing but the standard expression
of the kth equation of the BBGKY hierarchy whose explicit
form can be found in review articles [22,35,36]. The equation
of motion for the k-body density matrix in the framework
of the stochastic many-body theory proposed in Ref. [1]
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corresponds to the standard BBGKY term augmented by a
one-body stochastic noise.

C. Evolution of the one-body density matrix

Starting from (30), an explicit form of the one-body density
evolution can be found. Since for any Dab, we have C

(ab)
12 = 0,

the first term in Eq. (30) reduces to

Tr2,...,A([H,Dab]) = Tr2
([

H, ρ
(ab)
12

])
= [

hMF
(
u

(ab)
1

)
, ρ

(ab)
1

]
. (32)

The stochastic part reads

Tr2,...,A(dBaDab) =
∑

s

λs

∑
αᾱ

〈ᾱ|Os |α〉

× Tr2,...,A(a+
ᾱ aα̂Dab) dWsa

. (33)

Let us introduce a complete single-particle basis. For any state
|i〉 and |j 〉 of the basis, we have

〈i|Tr2,...,A(a+
ᾱ aα̂Dab)|j 〉 = Tr(a+

j aia
+
ᾱ aα̂Dab)

=
∑
kl

〈k|ᾱ〉〈α̂|l〉Tr(a+
j aia

+
k alDab).

(34)

Using the fermionic commutation rules on creation/
annihilation operators together with the definition of the one-
and two-body density matrices, we obtain

〈i|Tr2,...,A(a+
ᾱ aα̂Dab)|j 〉 =

∑
kl

〈k|ᾱ〉〈α̂|l〉〈li|ρ(ab)
12 |kj 〉

+
∑

l

〈i|ᾱ〉〈α̂|l〉〈l|ρ(ab)
1 |j 〉. (35)

Using the fact that ρ12 = A(u1ρ2), we finally obtain

Tr2,...,A(dBaDab) =
∑

s

λs

(
1 − u

(ab)
1

)
Osρ

(ab)
1 dWsa

+
∑

s

λsTr
[
u

(ab)
1 (1 − ρa)Os

]
ρ

(ab)
1 dWsa

,

(36)

where the one-body density ρa associated with |�a〉 has been
introduced. The same treatment can be performed for the
second part of the stochastic term, and the evolution of the
one-body density matrix finally reads:

dρ
(ab)
1 = dt

ih̄

[
hMF

(
u

(ab)
1

)
, ρ

(ab)
1

] + db
(ab)
1 , (37)

with

db
(ab)
1 =

∑
s

λs

(
1 − u

(ab)
1

)
Osρ

(ab)
1 dWsa

+
∑

s

λsTr
[
u

(ab)
1 (1 − ρa)Os

]
ρ

(ab)
1 dWsa

+
∑

s

λ∗
s ρ

(ab)
1 Os

(
1 − u

(ab)
1

)
dWsb

+
∑

s

λ∗
s Tr

[
Os(1 − ρb)u(ab)

1

]
ρ

(ab)
1 dWsb

. (38)

It is interesting to note that although the single-particle states
entering in ρ

(ab)
1 do not evolve according to mean-field theory

but according to h(ρ(ab)
1 ) given by (18), the deterministic

part associated with the evolution of the one-body density
reduces to the standard mean-field propagation. Eq. (37) points
out the central role played by the mean-field Hamiltonian in
the stochastic many-body theory. In particular, it shows that
any evolution of a correlated physical system submitted to a
two-body interaction can be replaced by a set of mean-field
evolutions augmented by a one-body noise. Finally, it is worth
noticing that expression (37) can alternatively be obtained by
differentiating directly ρ

(ab)
1 = det(f )

∑
αiβj

|αi〉f −1
αiβj

〈βj |.

D. k-body density evolution from one-body density

The stochastic evolution transforms a pair of Slater deter-
minants into another pair of Slater determinants. Thus, all the
information on a single stochastic trajectory is contained in
the stochastic evolution of the one-body density evolution in
Eq. (37). Indeed, the evolution of the k-body density matrix
can be directly obtained from the relation (24), which is valid
all along the stochastic path. Using the Ito rules, we have

dρ
(ab)
1,...,k = d[det(f )]A

(
u

(ab)
1 × . . . ×u

(ab)
k

)
+ det(f )

∑
i

A
(
u

(ab)
1 × . . . ×du

(ab)
i × . . . ×u

(ab)
k

)
+ d[det(f )]

∑
i

A
(
u

(ab)
1 × . . . ×du

(ab)
i × . . . ×u

(ab)
k

)
+ det(f )A

∑
i �=j

u
(ab)
1 × . . . ×du

(ab)
i × . . . ×du

(ab)
j × . . . ×u

(ab)
k

.

(39)

It can be checked that the terms which are linear in dt
correspond to the deterministic part of Eq. (30). The latter
expression is also useful in order to have an explicit form
of the stochastic noise to all order in k. In expression (39),
d[det(f )] is deduced from Eqs. (26). We have

d det(f ) = 〈d�b|�a〉 + 〈�b|d�a〉 (40)

= 〈�b|dBa + dB+
b |�a〉, (41)

which gives

d det(f ) =
∑

s

λsTr
[
u

(ab)
1 (1 − ρa)Os

]
dWsa

+
∑

s

λ∗
s Tr

[
Os(1 − ρb)u(ab)

1

]
dWsb

. (42)

In addition, the equation on du
(ab)
i is deduced from (37).

Altogether, we obtain

dWk
ab =

∑
i,s

λs

[(
1 − u

(ab)
i

)
Oi

s

]
dWsa

ρ
(ab)
1,...,k

+ ρ
(ab)
1,...,k

∑
i,s

λ∗
s

[
Oi

s

(
1 − u

(ab)
i

)]
dWsa

+
∑

s

λsTr
[
u

(ab)
1 (1 − ρa)Os

]
dWsa

ρ
(ab)
1,...,k

+
∑

s

λ∗
s Tr

[
Os(1 − ρb)u(ab)

1

]
dWsb

ρ
(ab)
1,...,k. (43)
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Many-Body 
Stochastic Schrodinger equation

One-Body 
Stochastic Schrodinger equation

Stochastic evolution 
of many-body density

Stochastic evolution 
of one-body density

⋅⋅

⋅⋅

FIG. 1. Four different ways of considering the exact reformulation of the quantum many-body problem using stochastic mechanics. Single
arrow indicates that the density matrix formulation can be derived from the stochastic Schroedinger equations. Double arrows show that for
wave function or density matrix formulations, a strict equivalence exists between the many-body and the one-body stochastic equations of
motion.

Here, we introduced the notation Oi
s to denote that the

one-body operator Os is applied to particle i. The possibility
to derive the evolution of ρ1,...,k for all k from the evolution
of ρ1 is an illustration of an attractive aspect of this theory.
Indeed, since we are considering pairs of Slater determinants,
all the information on the dynamics is contained in their
one-body densities. This proves that the exact evolution of
the density matrix of a correlated system through a two-body
Hamiltonian can always be replaced by the average evolution
of uncorrelated states each of them evolving in the one-body
space according to its own mean-field augmented by a one-
body stochastic noise.

E. Summary

Functional integral methods are attractive since they pro-
vide a rather transparent and systematic way of transforming
the exact dynamics of a correlated system into a stochastic
mean-field dynamics. In this work, we discussed the link
between the different one-body and many-body SSEs on one
side and the stochastic one-body and many-body density evo-
lution on the other side. The equivalence and the relationship
between the various ways of considering stochastic mechanics
are displayed in Fig. 1.

The exact stochastic formulation of the dynamics of com-
plex systems provides a well-defined framework to introduce
stochastic theories. However, the stochastic dynamics as
proposed is still rather cumbersome for numerical applica-
tions. Indeed, due to the increasing number of trajectories
with the number of degrees of freedom, exact stochastic
many-body theories have only been applied to dynamics
of rather schematic models [1]. With present computational
facilities, there is no chance to apply the exact theory to
realistic mesoscopic systems and approximate formulations
are necessary. The stochastic theory provides, however, a
natural way to replace the dynamics of an interacting system
by one-body dynamical evolutions. In the following, we will
transform the stochastic equation to account approximately for
the correlation and reduce the numerical effort.

IV. APPROXIMATE STOCHASTIC MANY-BODY
DYNAMICS

A number of approximations of the many-body problem can
be found in the literature. Among them, the mean-field theory
is certainly the most widely used. Correlations beyond the
mean-field are often required to have a realistic description of
dissipative aspects in mesoscopic systems. A general strategy
to obtain extensions of the mean-field dynamics consists in
performing successive truncations of the BBGKY hierarchy
[14,35,37]. The first-order truncation of the hierarchy leads for
instance to the standard mean-field theory. An extension of the
mean-field can be obtained by considering the first and second
equations of the hierarchy. This has led to different levels
of approximation of the nuclear many-body problem as, for
instance, the so-called extended time-dependent Hartree-Fock
[38–40] (for a recent review see Ref. [14]). In the following,
we will show that the stochastic evolution described previously
can be adapted to a stochastic one-body theory for correlated
systems equivalent to the extended TDHF.

A. Extended mean-field dynamics

Theories beyond mean-field [35,41] are valid when the dy-
namical effect of the residual interaction is weak. In the weak
coupling regime, correlations can be treated perturbatively
on top of the mean-field. These theories are valid under the
assumption that different time scales associated to two-body
collisions and to the mean-field propagation exist. Consider
τcoll, the time scale for an in-medium two-body collision, and
τfree, the time between two collisions. In the weak coupling
approximation, one can assume that there exists a time interval
�t verifying the condition

τcoll 	 �t 	 τfree. (44)

An estimate and a discussion of these time scales can be found
in Refs. [41,42]. The physical picture to interpret the separation
of time scales is that each single-particle state evolves
according to the average mean-field and rarely “encounters”
a two-body collision. From the many-body problem point of
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view, the role of the residual part of the interaction is to account
for two-body collisions.

Besides time scales, extended TDHF remains a one-body
theory. Indeed, it is assumed that part of the two-body corre-
lations can be neglected and that the two-body density matrix
can be instantaneously approximated by an antisymmetrized
product of one-body density matrices, ρ12(t) = A[ρ1(t)ρ2(t)].
This is of special interest for practical applications since only
one-body degrees of freedom are followed in time.

B. Approximate stochastic dynamics

In this section, we propose a formulation of extended one-
body dynamics in terms of quantum jumps in the space of
one-body density using the same hypothesis as in extended
TDHF. We start from a system described at time t0 by its
one-body density given by

ρ1(t0) =
∑

α

|α〉nα〈α|. (45)

The system is assumed to be initially uncorrelated so that
ρ12(t0) = A[ρ1(t0)ρ2(t0)]. Let us now consider an ensemble of
one-body density matrices, noted ρ

(n)
1 with initial conditions

ρ
(n)
1 (t0) = ρ1(t0). The time interval �t is divided into N

time steps (�t = N�s) and at each time step, ρ
(n)
1 evolves

according to its mean-field augmented by a stochastic term

�ρ
(n)
1 = �s

ih̄

[
hMF

(
ρ

(n)
1

)
, ρ

(n)
1

] + �K
(
ρ

(n)
1

)
. (46)

However, contrary to the strategy of the previous section, and
following the hypothesis of extended mean-field theory, jumps
are supposed to occur only once in the time interval �t . For
a jump occurring at a time τ = k�s, the stochastic term is
written as

�K
[
ρ

(n)
1 (t)

] = δt,τ

{∑
s

λs

[
1 − ρ

(n)
1 (t)

]
Osρ

(n)
1 (t)�Ws

+
∑
s ′

λ∗
s ′ρ

(n)
1 (t)Os

[
1 − ρ

(n)
1 (t)

]
�Ws ′

}
, (47)

where λs and Os are defined in the previous section, while �Ws

and �Ws ′ are two independent Gaussian stochastic variables
that follow Ito stochastic rules, with

�Ws1�Ws2 = δs1s2�s,

�Ws ′
1
�Ws ′

2
= δs ′

1s
′
2
�s.

(48)

We consider the ensemble of trajectories with a quantum
jump occurring at a specific time τ . ρτ

12(t) denotes the

two-body density obtained by averagingA[ρ(n)
1 ρ

(n′)
2 ] over these

trajectories.
Before time τ , all trajectories follow the same path

corresponding to the mean-field propagation with the initial
condition ρ1(t0). We note, respectively, ρmf

1 and Umf the
associated one-body density and propagator. We have

ρmf
1 (t ′) = Umf(t

′, t0)ρ1(t0)U+
mf(t

′, t0), (49)

with

Umf(t
′, t0) = T exp

{
+ 1

ih̄

∫ t ′

t0

hmf
[
ρmf

1 (s)
]
ds

}
. (50)

Using these definitions, the evolution between τ and τ + �s

of the product (ρ(n)
1 ρ

(n′)
2 ) is

�
(
ρ

(n)
1 ρ

(n′)
2

) = (
�ρ

(n)
1

)
ρ

(n′)
2 + ρ

(n)
1

(
�ρ

(n′)
2

) + (
�ρ

(n)
1

)(
�ρ

(n′)
2

)
.

(51)

Using expression (46) and Ito rules, we obtain

�ρ
(n)
1 ρ

(n′)
2 (τ ) = �s

ih̄

{
hmf

[
ρmf

1 (τ )
]

+ hmf
[
ρmf

2 (τ )
]
, ρmf

1 (τ )ρmf
2 (τ )

}
+ �K

(
ρ

(n)
1

)
�K

(
ρ

(n′)
2

) + �K
(
ρ

(n)
1

)
+ �K

(
ρ

(n′)
2

)
. (52)

We have used the fact that for all considered trajectories, no
collision occurs before time τ leading to ρ

(n)
1 (τ ) = ρ

(n′)
1 (τ ) =

ρmf
1 (τ ). The last two terms of Eq. (52) do not contribute to the

average evolution. We thus see that, in addition to the mean-
field, an extra deterministic term will appear in the average
evolution (52). Using Eq. (48),we have

�K
(
ρ

(n)
1

)
�K

(
ρ

(n′)
2

) = �s
∑

s

(λs)
2
[
1 − ρmf

1 (τ )
]

×[
1 − ρmf

2 (τ )
]
O1

s O
2
s ρ

mf
1 (τ )ρmf

2 (τ )

+ �s
∑

s

(λ∗
s )2ρmf

1 (τ )ρmf
2 (τ )O1

s O
2
s

×[
1 − ρmf

1 (τ )
][

1 − ρmf
2 (τ )

]
. (53)

Using finally the fact that λ2
s = iωs/2 and relation (6) and

introducing the antisymmetrization operators, we obtain the
average evolution

�A
(
ρ

(n)
1 ρ

(n′)
2

)
(τ ) = �s

ih̄

{
hmf

[
ρmf

1 (τ )
]

+ hmf
[
ρmf

2 (τ )
]
,A

[
ρmf

1 (τ )ρmf
2 (τ )

]}
+ �s

ih̄
F12(τ ). (54)

In this equation, F12 reads

F12(τ ) = [
1 − ρmf

1 (τ )
][

1 − ρmf
2 (τ )

]̃
v12ρ

mf
1 (τ )ρmf

2 (τ )

− ρmf
1 (τ )ρmf

2 (τ )ṽ12
[
1 − ρmf

1 (τ )
][

1 − ρmf
2 (τ )

]
. (55)

As discussed in [15], the effect of a single collision is expected
to be weak during the time interval �t , and we can assume
that for all trajectories, the mean-field propagation coincides
with Umf after the jump. Therefore, the average density at the
final time tf = t0 + �t is given by

ρτ
12(tf ) = A

[
ρmf

1 (tf )ρmf
2 (tf )

]
+ �s

ih̄
U 12

mf (tf , τ )F12 (τ ) U 12+
mf (tf , τ ), (56)

where U 12
mf = U 1

mf ⊗ U 2
mf. The complete average density

ρ12(tf ) is obtained by summing different possible times τ for
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collisions

ρ12(tf ) = A
[
ρmf

1 (tf )ρmf
2 (tf )

]
+ 1

ih̄

∫ tf

t0

dsU 12
mf (tf , s)F12 (s) U 12+

mf (tf , s), (57)

where the limit �s → ds has been taken. This two-body den-
sity matrix corresponds to the standard mean-field propagation
augmented by the incoherent contribution of nucleon-nucleon
collisions entering generally in extended mean-field theories
[14].

As mentioned previously, an interesting aspect of extended
TDHF is that it contains only one-body degrees of freedom.
This can only be achieved by projecting correlation effects in
the single-particle space. In the stochastic dynamics presented
here, this is equivalent to assuming that the final two-body
density can be approximated by A[ρ1(tf )ρ2(tf )], where ρ1(tf )
is given by

ρ1(tf ) = Tr2 [ρ12 (tf )]. (58)

The density obtained in this way differs from the density
propagated by the mean-field alone and contains the effect
of incoherent nucleon-nucleon collisions. The procedure can
then be iterated using the new density as a starting point for
future stochastic propagation.

In this section, we presented a method to approximately
include two-body effects by means of a stochastic one-body
theory. As in the exact formulation presented in the previous
section, the stochastic theory can be equivalently formulated as
a stochastic Schroedinger equation. It is important to note that
the numerical effort required for the approximate dynamics is
expected to be much less than for the exact one for at least two
reasons. The first one is that quantum jumps occur on a “coarse-
grained” time scale. The second reason lies in the possibility
of directly propagating densities formed by a statistical mixing
[Eq. (45)] without invoking pairs of Slater determinants. As a
counterbalance, we would like to mention that the approximate
stochastic formulation has the same limitations as the extended
TDHF and can only be applied to problems for which the
residual correlations are weak.

V. CONCLUSION

The main result of our work is the proof that the exact
dynamics of a correlated system evolving through a two-
body Hamiltonian can be replaced by a set of stochastic
evolutions of one-body density matrices where each density
evolves according to its own mean-field augmented by a
one-body noise. Guided by the exact stochastic formulation,
an approximate stochastic mean-field theory valid in the weak
coupling limit is proposed. In this theory, jumps occur on a
coarse-grained time scale.

The alternative stochastic formulation presented here does
avoid some of the ambiguities present in other stochastic

theories. A first remarkable aspect comes from the justification
of the noise source. Indeed, since the starting point of our work
is an exact formulation of the many-body problem, the noise
has an unambiguous mathematical and physical interpretation.

In addition, from a practical point of view, it has clearly
some advantages. In all applications to quantum problems
of extended mean-field theory, it has been shown that the
memory effect is important (see discussions in [14,15]). This
memory effect corresponds to the nonlocal action in time of
the past history collisions on the future dynamics. Although
the noise is Markovian, it accounts also for this non-Markovian
effect through the instantaneous average over trajectories. In
addition, as noted in Ref. [15], in order to apply stochastic
theories proposed in Refs. [8,36] to large-amplitude motions,
one should be able to guess what will be the important states in
the future evolution. This is in particular necessary to reduce
the number of trajectories. For instance, it has been guessed in
Ref. [10] that jumps can be optimized due to the 2 particle-2
hole (2p-2h) nature of the residual interaction. In the theory
developed here, the system is driven naturally toward the
important states. Indeed, as can be seen from Eq. (17), these
states are self-consistently defined without ambiguity, and the
2p-2h character of the residual interaction directly shows up
in the stochastic part of the propagator.

The exact treatment of the many-body problem with
stochastic theories is still not possible for realistic large-
amplitude dynamics because of the required numerical effort.
However, an alternative formulation of the stochastic theory
has been proposed in the second part of this article which
should make the numerical applications easier. This stochastic
theory provides a suitable framework for the description of
interacting systems in the weak coupling regime. In particular,
it keeps the advantages discussed above and it is expected
to significantly reduce the numerical efforts for practical
applications. Such a theory could a priori be applied to nuclear
systems where quantum and dissipative effects are important
such as giant resonances, fusion reactions, or thermalization
in nuclear reactions.

Finally, we would like to mention that an additional
difficulty may be encountered due to the possible progres-
sive entanglement of the initial state. Indeed, starting from
an initial simple state, the states propagated with stochas-
tic Schroedinger equation will progressively become more
complicated and fragmented over phase space. If such an
entanglement occurs, the method proposed here might be very
difficult or even impossible to use.
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