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An analytic collective model in which the relative presence of the quadrupole and octupole deformations is
determined by a parameter (φ0), while axial symmetry is obeyed, is developed. The model [to be called the
analytic quadrupole octupole axially symmetric model (AQOA)] involves an infinite well potential, provides
predictions for energy and B(EL) ratios, which depend only on φ0, draws the border between the regions of
octupole deformation and octupole vibrations in an essentially parameter-independent way, and describes well
226Th and 226Ra, for which experimental energy data are shown to suggest that they lie close to this border. The
similarity of the AQOA results with φ0 = 45◦ for ground-state band spectra and B(E2) transition rates to
the predictions of the X(5) model is pointed out. Analytic solutions are also obtained for Davidson potentials of
the form β2 + β4

0 /β2, leading to the AQOA spectrum through a variational procedure.
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I. INTRODUCTION

Rotational nuclear spectra have long been attributed to
quadrupole deformations [1], whereas octupole deformations
[corresponding to reflection asymmetric (pearlike) shapes] are
supposed to occur in certain regions, most notably in the light
actinides [2–5]. The hallmark of octupole deformation is a
negative-parity band with levels Lπ = 1−, 3−, 5−, . . . , lying
close to the ground-state band and forming with it a single
band with Lπ = 0+, 1−, 2+, 3−, 4+, . . . , a negative-parity
band lying systematically higher than the ground-state band
is a footprint of octupole vibrations. The transition from the
regime of octupole vibrations into the region of octupole
deformation has been considered by several authors [6–8]. A
complete algebraic classification of the states occuring in the
simultaneous presence of the quadrupole and octupole degrees
of freedom has been provided in terms of the spdf-interacting
boson model (IBM) [9,10], involving free parameters.
(It should be noted, however, that an alternative interpretation
of the low-lying negative-parity states in the light actinides has
been provided in terms of clustering [11–13].)

However, the transitions from vibrational [U(5)] shapes to
axially symmetric deformed [SU(3)] and γ -unstable deformed
[SO(6)] shapes have been recently described in terms of the
X(5) [14] and E(5) [15] models respectively, which utilize
an infinite-well potential in the β degree of freedom, leading
to parameter-free (up to overall scale factors) predictions for
spectra and transition probabilities.
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It is the aim of the present work to provide an analytic
description of the light actinides lying near the border between
the regions of octupole vibrations and octupole deformation,
through the use of a model containing the minimum number
of free parameters. In this direction, the following steps are
taken:

1. Quadrupole and octupole deformations are taken into
account on equal footing, with their relative presence being
decided by the only free parameter in the model, φ0.

2. To keep the problem tractable, axial symmetry is assumed.
3. Symmetrization of the wave functions is carried out as in

Ref. [16], involving the irreducible representation (irrep) A
of the group D2 for the levels of even parity and the irrep
B1 of the same group for the levels of odd parity.

4. Separation of variables is achieved in a way analogous to
the one used in the framework of the X(5) model [14].

5. An infinite-well potential is assumed appropriate for the
description of the border region, as in the E(5) [15] and
X(5) [14] models.

The predictions of the model, to be called the analytic
quadrupole octupole axially symmetric (AQOA) model, are
compared to spectra and B(EL) ratios for 226Th and 226Ra,
for which evidence from systematics of experimental data is
presented, suggesting that they lie close to the border between
octupole deformation and octupole vibrations. This border
is found to be drawn by the AQOA model in an essentially
parameter-independent way.

In addition, solutions for Davidson potentials [17] of the
form β2 + β4

0/β2 are obtained, and a variational method
[18,19] leading from the Davidson results to the AQOA
predictions is worked out.

A different approach to the problem of phase transition in
the octupole mode has been recently given in Ref. [20], where
the starting point is the introduction of a new parametrization
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of the quadrupole and octupole degrees of freedom, using as
the intrinsic frame of reference the principal axes of the overall
tensor of inertia, as resulting from the combined quadrupole
and octupole deformation. Comparisons between the results of
the two methods are deferred to the appropriate sections. Three
main differences between the two models are the following:

1. The AQOA model is analytic, whereas the model of
Ref. [20] is not.

2. In the AQOA model the quadrupole and octupole degrees of
freedom are taken into account on equal footing, whereas
in the special form of the model of Ref. [20] used for
comparison to experiment, the octupole degree of freedom
remains active, while the quadrupole degree of freedom is
“frozen” to a constant value.

3. In the AQOA model the symmetry axes of the quadrupole
and octupole deformations are taken to coincide, to guaran-
tee axial symmetry, whereas in the more general framework
of Ref. [20] nonaxial contributions, small but not frozen to
zero, are taken into account.

In Sec. II the AQOA model is formulated. Numerical results
are given in Sec. III and these are compared to experiment
in Sec. IV. In Sec. V the variational procedure is described
Sec. VI contains discussion of the present results and plans for
further work.

II. THE AQOA MODEL

A. Formulation

We consider a nucleus in which quadrupole deformation
(β2) and octupole deformation (β3) coexist. We take only
axially symmetric deformations into account, which implies
that the γ degrees of freedom are ignored, as in the Davydov-
Chaban approach [21]. The body-fixed axes x ′, y ′, z′ are taken
along the principal axes of inertia of the (axially symmetric)
nucleus, and their orientation relative to the laboratory-fixed
axes x, y, z is described by the Euler angles θ = {θ1, θ2, θ3}.
The Hamiltonian reads [16,22]

H = −
∑
λ=2,3

h̄2

2Bλ

1

β3
λ

∂

∂βλ

β3
λ

∂

∂βλ

+ h̄2L̂2

6
(
B2β

2
2 + 2B3β

2
3

) + V (β2, β3), (1)

where B2, B3 are the mass parameters.
We seek solutions of the Schrödinger equation of the

form [16]

�±
L (β2, β3, θ ) = (β2β3)−3/2	±

L (β2, β3)|LM0,±〉, (2)

where the function |LM0,±〉 describes the rotation of an
axially symmetric nucleus with angular momentum projection
M onto the laboratory-fixed z axis and projection K = 0 onto
the body-fixed z′ axis. The moment of inertia with respect to
the symmetry axis z′ is zero, implying that levels with K �= 0
lie infinitely high in energy [16]. Therefore in this model
we are restricted to states with K = 0 only. The function
|LM0,+〉 transforms according to the irrep A of the group

D2; the function |LM0,−〉 transforms according to the irrep
B1 of the same group [16,22]. The general form of these
functions is [1]

|LMK,±〉 =
√

2L+1

16π2(1+δK0)

[
DL

K,M (θ)± (−1)LDL
−K,M (θ )

]
.

(3)

In the special case of K = 0 it is clear that |LM0,+〉 �= 0 for
L = 0, 2, 4, . . . , whereas |LM0,−〉 �= 0 for L = 1, 3, 5, . . ..
The functions 	+

L (β2, β3) and 	−
L (β2, β3) are, respectively,

symmetric and antisymmetric with respect to reflection in the
plane x ′y ′, and therefore they describe states with positive and
negative parity, respectively [22].

Using the solutions of Eq. (2) for the Hamiltonian of Eq. (1)
we can simplify the Schrödinger equation to[

− h̄2

2B2

∂2

∂β2
2

− h̄2

2B3

∂2

∂β2
3

+ h̄2L(L + 1)

6
(
B2β

2
2 + 2B3β

2
3

) + V (β2, β3)

+ 3h̄2

8

(
1

B2β
2
2

+ 1

B3β
2
3

)
− EL

]
	±

L (β2, β3) = 0. (4)

This equation is further simplified by introducing [16,22]

β̃2 = β2

√
B2

B
, β̃3 = β3

√
B3

B
, B = B2 + B3

2
, (5)

as well as reduced energies ε = (2B/h̄2)E and reduced
potentials u = (2B/h̄2)V [14,15], yielding the form[

− ∂2

∂β̃2
2

− ∂2

∂β̃2
3

+ L(L + 1)

3
(
β̃2

2 + 2β̃2
3

) + u(β̃2, β̃3)

+ 3

4

(
1

β̃2
2

+ 1

β̃2
3

)
− εL

]
	±

L (β̃2, β̃3) = 0. (6)

Further simplification occurs through the introduction of polar
coordinates (with 0 � β̃ < ∞ and −π/2 � φ � π/2) [16,22]

β̃2 = β̃ cos φ, β̃3 = β̃ sin φ, β̃ =
√

β̃2
2 + β̃2

3 , (7)

leading to[
− ∂2

∂β̃2
− 1

β̃

∂

∂β̃
+ L(L + 1)

3β̃2(1 + sin2 φ)
− 1

β̃2

∂2

∂φ2
+ u(β̃, φ)

+ 3

β̃2 sin2 2φ
− εL

]
	±

L (β̃, φ) = 0. (8)

It is clear that φ = 0 corresponds to quadrupole deformation
alone, whereas φ = ±π/2 corresponds to octupole deforma-
tion alone. It is worth noticing that the transformation of
Eq. (7) allows β3 to assume both positive and negative values,
whereas β2 takes only positive values.

Separation of variables in Eq. (8) can be achieved by
assuming the potential to be of the form u(β̃, φ) = u(β̃) +
u(φ̃±), where u(φ̃±) is supposed to be of the form of two very
steep harmonic oscillators centered at the values ±φ0, that is,

u(φ̃±) = 1
2c(φ ∓ φ0)2 = 1

2c(φ̃±)2, φ̃± = φ ∓ φ0, (9)

with c being a large constant. In other words, the nucleus is
supposed to be rigid with respect to the variable φ, implying
that φ remains close to ±φ0 and, therefore, the relative amount
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of quadrupole and octupole deformation remains constant,
as in Strutinsky-type potential-energy calculations [6]. This
assumption will be (partly) justified a posteriori by the fact
that the spectrum remains almost unchanged for values of φ0

between 30◦ and 60◦.
In this way Eq. (8) is separated into[

− ∂2

∂β̃2
− 1

β̃

∂

∂β̃
+ 1

β̃2

(
L(L + 1)

3(1 + sin2 φ0)
+ 3

sin2 2φ0

)

+ u(β̃) − εβ̃(L)

]
ψ±

L (β̃) = 0 (10)

and [
− 1

〈β̃2〉
∂2

∂(φ̃±)2
+ u(φ̃±) − εφ

]
χ (φ̃±) = 0, (11)

where 	±
L (β̃, φ) = ψ±

L (β̃)[χ (φ̃+) ± χ (φ̃−)]/
√

2, 〈β̃2〉 is the
average of β̃2 over ψ±(β̃), and εL = εβ̃(L) + εφ . It is worth
noticing that Eq. (10) has the same form for both +φ0 and
−φ0, since only even functions of φ0 appear in it.

B. The β̃ part of the spectrum

In the case in which u(β̃) is an infinite-well potential
[u(β̃) = 0 if β̃ � β̃W ; u(β̃) = ∞ if β̃ > β̃W ], using the def-
initions εβ̃ = k2

β̃
, and z = β̃kβ̃ , brings Eq. (10) into the form

of a Bessel equation:

d2ψ±
ν

dz2
+ 1

z

dψ±
ν

dz
+

[
1 − ν2

z2

]
ψ±

ν = 0, (12)

with

ν =
√

L(L + 1)

3(1 + sin2 φ0)
+ 3

sin2 2φ0
. (13)

Then the boundary condition ψ±
ν (β̃W ) = 0 determines the

spectrum

εβ̃,s,ν = εβ̃,s,φ0,L
= (ks,ν)2, ks,ν = xs,ν

β̃W

, (14)

and the eigenfunctions

ψ±
s,ν(β̃) = ψ±

s,φ0,L
(β̃) = cs,νJν(ks,ν β̃), (15)

where xs,ν is the sth zero of the Bessel function Jν(z),
and cs,ν are normalization constants, determined from the

condition
∫ β̃W

0 |ψ±
s,ν(β̃)|2β̃dβ̃ = 1 to be cs,ν = √

2/Jν+1(ks,ν).
The notation has been kept similar to that of Ref. [14].

Equation (10) is also exactly soluble [23,24] in the case of
the Davidson potentials [17]

u(β̃) = β̃2 + β̃4
0

β̃2
. (16)

In this case the second term of Eq. (16) is combined with
the third term of Eq. (10), leading to eigenfunctions that are
Laguerre polynomials:

FL
n (β̃) =

√
2n!

�(n + a + 1)
β̃aLa

n(β̃2)e−β̃2/2, (17)

where

a =
√

L(L + 1)

3(1 + sin2 φ0)
+ 3

sin2 2φ0
+ β4

0 , (18)

the energy eigenvalues are given by

En,L = 2n + a + 1

= 2n + 1 +
√

L(L + 1)

3(1 + sin2 φ0)
+ 3

sin2 2φ0
+ β4

0 . (19)

It is worth remarking that the excitation energies, E0,L − E0,0,
within the ground-state band (which is characterized by n =
0), divided by an appropriate normalization constant read

E′
0,L,exc =

√
1 + bHL(L + 1) − 1, (20)

with b−1
H = 3(1 + sin2 φ0)( 3

sin2 2φ0
+ β4

0 ). Equation (20) is the
Holmberg-Lipas formula [25].

In what follows, the infinite-well potential will be used
everywhere. Davidson potentials will be briefly employed in
Sec. V.

C. The φ part of the spectrum

Equation (11) for the potential of Eq. (9) takes the form[
− ∂2

∂(φ̃±)2
+ 1

2
c〈β̃2〉(φ̃±)2

]
χ (φ̃±) = εφ〈β̃2〉χ (φ̃±), (21)

where φ̃± = φ ∓ φ0. This is a simple harmonic oscillator
equation with energy eigenvalues

εφ =
√

2c

〈β̃2〉
(

nφ + 1

2

)
, nφ = 0, 1, 2, . . . (22)

and eigenfunctions

χnφ
(φ̃±) = Nnφ

Hnφ
(bφ̃±)e−b2(φ̃±)2/2, b =

(
c〈β̃2〉

2

)1/4

,

(23)

with normalization constant Nnφ
=

√
b/(

√
π2nφ nφ!).

The total energy in the present model is then

E(s, L, φ0, nφ) = E0 + Aεβ̃,s,φ0,L
+ Bnφ. (24)

D. B(EL) transition rates

In the axial case used here the electric quadrupole and
octupole operators are

T (E2)
µ = t2β2D(2)

µ,0(θ ), T (E3)
µ = t3β3D(3)

µ,0(θ ), (25)

and the electric dipole operator reads [16]

T (E1)
µ = t1β2β3D(1)

µ,0(θ ). (26)
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The total wave function in the case of the infinite-well potential
is

�±
L (β2, β3, θ ) = C(β2β3)−3/2Jν(ks,ν β̃)

[χnφ
(φ̃+) ± χnφ

(φ̃−)]√
2

×
√

2L + 1

32π2
[1 ± (−1)L]DL

0,M (θ ), (27)

where C is a constant; in the case of the Davidson potentials
the same expression holds with Jν(ks,ν β̃) replaced by FL

n (β̃).
B(EL) transition rates are given by

B(EL; Liai → Lf af ) = |〈Lf af ||T (EL)||Liai〉|2
(2Li + 1)

, (28)

where the reduced matrix element is obtained through the
Wigner-Eckart theorem

〈Lf µf af |T (EL)
µ |Liµiai〉 = (LiLLf |µiµµf )√

2Lf + 1

×〈Lf af ||T EL||Liai〉. (29)

In Eq. (28) the integration over the angles θ involves a
standard integral over three Wigner functions [26], which leads
to (LiLLf |000); the rest of the integrations are performed
over

∫∫
β3

2dβ2β
3
3dβ3, where the β3

2 , β3
3 factors come from

the volume element and cancel with the first factor of
Eq. (27). Using Eqs. (5) and (7), as well as the relevant
Jacobian, one finds (up to constant factors) that the integration
is over

∫
β̃dβ̃dφ.

In the integrals over φ, only the case of nφ = 0, correspond-
ing to H0 = 1, is considered. The results are factors depending
on the parameters b and φ0, as well as on the multipolarity of
the transition. Therefore in Sec. III, ratios of B(EL) transition
rates will be presented, in which these factors cancel out.

The integrals over β̃ are

I
(E2)
β̃

= I
(E3)
β̃

=
∫

β̃2Jνi
(ksi ,νi

β̃)Jνf
(ksf ,νf

β̃)dβ̃, (30)

I
(E1)
β̃

=
∫

β̃3Jνi
(ksi ,νi

β̃)Jνf
(ksf ,νf

β̃)dβ̃, (31)

in the case of the infinite-well potential, whereas for the
Davidson potentials the Bessel functions are replaced by
Laguerre polynomials, as before. The final result then reads

B(EL; Li → Lf ) = c(csi ,νi
csf ,νf

)2(LiLLf |000)2(I (EL)
β̃

)2
,

(32)

where L = 1, 2, 3 and all constant factors have been absorbed
in c.

III. NUMERICAL RESULTS

Spectra for the ground-state band and the negative-parity
band associated with it (s = 1), as well as for the first excited
band (s = 2) and the second excited band (s = 3), normalized
to the 2+

1 state of the ground-state band, are shown for several
values of φ0 in Table I. A few R(L) = E(L)/E(2) ratios are
also depicted as functions of φ0 in Fig. 1(a). It is clear that the
results are quite stable in the region 30◦ � φ0 � 60◦, whereas at

TABLE I. Spectra of the AQOA model for the ground-state band
and the associated negative parity band (s = 1), as well as for the first
excited band (s = 2) and the second excited band (s = 3), normalized
to the energy of the 2+

1 state, for different values of φ0. The second
column contains the values obtained slightly above 0◦ or slightly
below 90◦. In addition, the X(5) spectrum is shown for comparison.
See Sec. III for further discussion.

Lπ φ0

0◦, 90◦ 15◦ 30◦ 45◦ 60◦ 75◦ X(5)

s = 1
0+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1− 0.333 0.337 0.344 0.346 0.342 0.336
2+ 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3− 2.000 1.969 1.921 1.912 1.938 1.981
4+ 3.333 3.221 3.069 3.039 3.119 3.264 2.904
5− 5.000 4.734 4.414 4.351 4.513 4.832
6+ 7.000 6.490 5.935 5.829 6.098 6.667 5.430
7− 9.333 8.471 7.620 7.459 7.857 8.755
8+ 12.000 10.666 9.459 9.233 9.779 11.082 8.483
9− 15.000 13.065 11.445 11.144 11.857 13.635

10+ 18.333 15.659 13.574 13.187 14.082 16.406 12.027
11− 22.000 18.443 15.841 15.359 16.451 19.386
12+ 26.000 21.410 18.245 17.658 18.959 22.567 16.041
13− 30.333 24.557 20.782 20.081 21.605 25.943
14+ 35.000 27.881 23.452 22.626 24.384 29.510 20.514
15− 40.000 31.379 26.251 25.293 27.297 33.264
16+ 45.333 35.048 29.180 28.080 30.340 37.200 25.437
17− 51.000 38.886 32.237 30.985 33.513 41.315
18+ 57.000 42.892 35.421 34.009 36.814 45.607 30.804
19− 63.333 47.064 38.731 37.150 40.242 50.074
20+ 70.000 51.402 42.166 40.408 43.796 54.713 36.611

s = 2
0+ 13.292 8.983 9.351 12.410 23.896 5.649
2+ 14.893 10.726 11.133 14.160 25.502 7.450
4+ 18.384 14.204 14.630 17.763 29.098 10.689
6+ 23.392 18.820 19.209 22.649 34.410 14.751

s = 3
0+ 30.940 21.944 23.114 30.316 55.625 14.119

the limiting cases near φ0 = 0◦ and 90◦ the rigid rotor results
are obtained, corresponding to a pure rotational spectrum for
the ground-state band and the associated negative-parity band,
with the excited bands pushed to infinity.

B(E2) transition rates are listed in Table II for several
values of φ0, and a few B(E2) ratios are shown in Fig. 1(b)
as functions of φ0; their behavior is quite smooth in the region
30◦ � φ0 � 60◦. The same remark applies to B(E1) and B(E3)
transitions, which are listed in Tables III and IV and shown in
Fig. 1(c).

It is worth remarking that the minima of energy ratios
related to the ground-state band, as well as the maxima
of B(EL) ratios regarding the ground-state band and the
associated negative-parity band, reported in the caption of
Fig. 1, are all located between φ0 = 40◦ and 43◦, whereas
the minima of energy ratios regarding the excited (s = 2, 3)
bands are located near φ0 = 35◦.
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FIG. 1. (Color online) (a) Energy ratios R(L) = E(L)/E(2+
1 ) as a function of the angle φ0. The minima appear as follows: R(4) at

41.19◦, R(12) at 42.03◦, R(20) at 42.61◦, R(02) at 34.99◦, and R(03) at 34.13◦. (b) Same as (a) but for the B(E2) ratios R{42} =
B(E2; 4+ → 2+)/B(E2; 2+ → 0+) (40.5◦), R{1210} = B(E2;12+ → 10+)/B(E2; 2+ → 0+) (41.0◦), R{2018} = B(E2; 20+ → 18+)/
B(E2; 2+ → 0+) (42.0◦), R{53} = B(E2; 5− → 3−)/B(E2; 3− → 1−) (40.5◦), R{1311} = B(E2; 13− → 11−)/B(E2; 3− → 1−) (41.5◦)
and R{2119} = B(E2; 21− → 19−)/B(E2; 3− → 1−) (42.0◦). After each ratio, the position of the maximum (with accuracy ±0.5◦) appears
in parentheses. (c) Same as (a) but for the B(E1) ratios R{21} = B(E1; 2+ → 1−)/B(E1; 1− → 0+) (40.0◦), R{1211} = B(E1; 12+ →
11−)/B(E1; 1− → 0+) (40.5◦), R{2019} = B(E1; 20+ → 19−)/B(E1; 1− → 0+) (41.5◦), and for the B(E3) ratios R{41} = B(E3; 4+ →
1−)/B(E3; 3− → 0+) (41.0◦), R{129} = B(E3; 12+ → 9−)/B(E3; 3− → 0+) (41.0◦), and R{2017} = B(E3; 20+ → 17−)/B(E3; 3− → 0+)
(41.5◦). Again, each ratio is followed by the position of the maximum (with accuracy ±0.5◦) in parentheses.

The tables and figures mentioned so far indicate that the
region of interest in the present model, in which smooth
and essentially parameter-independent behavior of spectra and
B(EL) rates is observed, is the region 30◦ � φ0 � 60◦, to which
further considerations will be limited.

In addition to the results of the AQOA model, the X(5)
spectrum is included in Table I for comparison. It is clear
that the ground-state band of X(5) lies a little lower than the
ground-state band of the AQOA model with φ0 = 45◦, whereas
for the s = 2 and s = 3 bands the AQOA model predictions
for φ0 = 45◦ are larger than the X(5) values by almost a factor
of 2. Furthermore, in Table II the B(E2) transitions within the
ground-state band of X(5) are shown for comparison. It is clear
that the X(5) values are slightly higher than the corresponding
predictions of the AQOA model for φ0 = 45◦.

The similarities between the ground-state bands of the
AQOA and X(5) models are understandable because both
models originate from the Bohr Hamiltonian and use an

infinite-well potential; moreover, for the properties of the
ground-state band, the quadrupole degree of freedom, included
in both models, is expected to be important. In contrast, the
excited bands appear to be more sensitive to the inclusion
of the octupole degree of freedom. The position of the 0+

2
state becomes therefore an important factor in the process of
comparison to experiment. One can also think of the AQOA
model as an extension of the X(5) framework, in which
the negative-parity states, as well as the B(EL) transitions
involving them, are included.

IV. COMPARISON TO EXPERIMENT

Experimental data for the ground-state and related negative-
parity bands of 220−234Th are shown in Fig. 2(a). It is clear that
226Th lies on the border between two different regions. Below
226Th the odd-even staggering is very small, whereas from
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TABLE II. B(E2; Li → Lf ) values between states of the AQOA model with
s = 1. B(E2)s with Li and Lf even are normalized to the 2+

1 → 0+
1 transition,

B(E2)s with Li and Lf odd are normalized to the 3−
1 → 1−

1 transition. The X(5)
results are also shown for comparison. See Sec. III for further discussion.

Lπ
i Lπ

f φ0

1◦ 15◦ 30◦ 45◦ 60◦ 75◦ X(5)

2+ 0+ 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4+ 2+ 1.429 1.475 1.530 1.539 1.509 1.457 1.599
6+ 4+ 1.574 1.701 1.834 1.855 1.786 1.656 1.982
8+ 6+ 1.648 1.870 2.072 2.104 2.005 1.797 2.276

10+ 8+ 1.693 2.011 2.268 2.309 2.187 1.915 2.509
12+ 10+ 1.723 2.131 2.431 2.480 2.342 2.019 2.697
14+ 12+ 1.746 2.236 2.569 2.626 2.476 2.111 2.854
16+ 14+ 1.762 2.327 2.687 2.751 2.593 2.194 2.987
18+ 16+ 1.776 2.407 2.790 2.860 2.695 2.269 3.101
20+ 18+ 1.787 2.478 2.881 2.955 2.785 2.337 3.200

3− 1− 1.000 1.000 1.000 1.000 1.000 1.000
5− 3− 1.179 1.227 1.278 1.286 1.260 1.210
7− 5− 1.257 1.374 1.479 1.496 1.444 1.335
9− 7− 1.301 1.491 1.642 1.665 1.595 1.433

11− 9− 1.329 1.591 1.777 1.806 1.723 1.518
13− 11− 1.350 1.677 1.890 1.924 1.832 1.594
15− 13− 1.365 1.752 1.986 2.026 1.927 1.661
17− 15− 1.376 1.817 2.069 2.114 2.010 1.722
19− 17− 1.386 1.875 2.142 2.190 2.082 1.777

228Th up the odd-even staggering is becoming much larger,
increasing with neutron number N. A quantitative measure of
the odd-even staggering and related figures can be found in

TABLE III. B(E1; Li → Lf ) values between states with s = 1,
normalized to the 1−

1 → 0+
1 transition.

Lπ
i Lπ

f φ0

1◦ 15◦ 30◦ 45◦ 60◦ 75◦

1− 0+ 1.000 1.000 1.000 1.000 1.000 1.000
2+ 1− 1.200 1.227 1.264 1.269 1.247 1.215
3− 2+ 1.286 1.358 1.455 1.469 1.414 1.328
4+ 3− 1.334 1.467 1.633 1.657 1.564 1.413
5− 4+ 1.364 1.570 1.807 1.842 1.712 1.489
6+ 5− 1.385 1.670 1.977 2.022 1.857 1.562
7− 6+ 1.401 1.768 2.141 2.196 2.000 1.634
8+ 7− 1.413 1.864 2.299 2.364 2.139 1.705
9− 8+ 1.423 1.957 2.449 2.523 2.273 1.777

10+ 9− 1.431 2.048 2.592 2.676 2.403 1.847
11− 10+ 1.437 2.135 2.727 2.821 2.527 1.917
12+ 11− 1.443 2.220 2.856 2.959 2.646 1.985
13− 12+ 1.448 2.300 2.979 3.090 2.760 2.052
14+ 13− 1.452 2.377 3.095 3.215 2.870 2.117
15− 14+ 1.456 2.451 3.206 3.334 2.974 2.181
16+ 15− 1.460 2.522 3.311 3.447 3.075 2.242
17− 16+ 1.463 2.590 3.411 3.555 3.171 2.302
18+ 17− 1.466 2.655 3.507 3.659 3.263 2.360
19− 18+ 1.469 2.718 3.598 3.757 3.351 2.417
20+ 19− 1.471 2.778 3.685 3.852 3.436 2.471

Ref. [37]. It is clear that below 226Th the situation corresponds
to octupole deformation, in which the ground state band and
the negative-parity band merge into a single band, whereas
above 226Th the picture corresponds to octupole vibrations;
that is, the negative-parity band is a rotational band built on an
octupole bandhead, thus lying systematically higher than the
ground-state band. Theoretical predictions for φ = 45◦ lie a
little below 226Th, whereas the φ = 60◦ results follow the 226Th
data very closely. It is worth remarking that the procedure of
Ref. [20], which is quite different from the present one, also
leads to the identification of 226Th as the nucleus lying closest
to the transition point from octupole deformation to octupole
vibrations.

A similar picture is observed in 218−228Ra, shown in
Fig. 2(b). In this case octupole deformation appears below
226Ra, whereas 228Ra is already in the regime of octupole
vibrations. Theoretical predictions for φ0 = 45◦ again lie a
little below 226Ra, whereas the 226Ra data are followed quite
closely by the predictions of φ0 = 56◦.

The behavior observed in Fig. 2(a) can be better understood
by considering Figs. 3(a) and (b), where the experimental
energy levels of the ground-state band and the associated
octupole band are shown, for the same thorium isotopes.
Although the even-parity levels, shown in Fig. 3(a), smoothly
decrease with increasing neutron number N, as a result
of increasing quadrupole collectivity, the odd-parity levels,
shown in Fig. 3(b), exhibit a minimum, which is located at
N = 136 up to L = 9, while moving to N = 138 for higher
L. This change of behavior is then attributed to the octupole
degree of freedom, showing that 226

90 Th136 lies near the border
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TABLE IV. B(E3; Li → Lf ) values between states with s = 1,
normalized to the 3−

1 → 0+
1 transition.

Lπ
i Lπ

f φ0

1◦ 15◦ 30◦ 45◦ 60◦ 75◦

3− 0+ 1.000 1.000 1.000 1.000 1.000 1.000
4+ 1− 1.333 1.351 1.369 1.373 1.364 1.345
5− 2+ 1.515 1.563 1.613 1.623 1.596 1.547
6+ 3− 1.632 1.719 1.809 1.825 1.778 1.690
7− 4+ 1.714 1.847 1.979 2.001 1.934 1.804
8+ 5− 1.774 1.958 2.130 2.158 2.073 1.900
9− 6+ 1.821 2.058 2.267 2.300 2.199 1.986

10+ 7− 1.859 2.149 2.390 2.429 2.314 2.063
11− 8+ 1.889 2.233 2.502 2.546 2.420 2.135
12+ 9− 1.915 2.310 2.605 2.653 2.517 2.202
13− 10+ 1.936 2.381 2.699 2.752 2.607 2.264
14+ 11− 1.955 2.447 2.786 2.842 2.691 2.323
15− 12+ 1.971 2.509 2.865 2.926 2.768 2.379
16+ 13− 1.985 2.567 2.939 3.004 2.841 2.431
17− 14+ 1.998 2.621 3.008 3.076 2.908 2.481
18+ 15− 2.009 2.671 3.072 3.143 2.971 2.528
19− 16+ 2.019 2.719 3.132 3.207 3.031 2.573
20+ 17− 2.028 2.763 3.188 3.266 3.087 2.615

2+ 1− 1.800 1.794 1.797 1.797 1.793 1.795
3− 2+ 1.333 1.353 1.386 1.390 1.370 1.344
4+ 3− 1.273 1.321 1.383 1.391 1.356 1.301
5− 4+ 1.259 1.338 1.429 1.441 1.393 1.308
6+ 5− 1.257 1.370 1.486 1.503 1.442 1.329
7− 6+ 1.258 1.406 1.545 1.565 1.495 1.355
8+ 7− 1.261 1.443 1.602 1.625 1.547 1.383
9− 8+ 1.264 1.480 1.656 1.683 1.598 1.413

10+ 9− 1.267 1.516 1.707 1.736 1.646 1.442
11− 10+ 1.270 1.550 1.754 1.786 1.691 1.471
12+ 11− 1.272 1.582 1.798 1.833 1.734 1.498
13− 12+ 1.275 1.612 1.840 1.876 1.774 1.526
14+ 13− 1.277 1.641 1.878 1.917 1.812 1.552
15− 14+ 1.279 1.669 1.914 1.955 1.848 1.577
16+ 15− 1.281 1.695 1.948 1.991 1.881 1.601
17− 16+ 1.283 1.719 1.979 2.025 1.913 1.624
18+ 17− 1.285 1.742 2.009 2.056 1.943 1.646
19− 18+ 1.287 1.764 2.037 2.086 1.971 1.667
20+ 19− 1.288 1.785 2.064 2.114 1.998 1.688

between octupole deformation and octupole vibrations. The
change of behavior is not abrupt, since the effect resulting
from octupole deformation is “moderated” by the quadrupole
deformation also setting in.

In a similar manner the behavior observed in Fig. 2(b)
can be clarified by considering Figs. 3(c) and (d), where the
experimental data for the same radium isotopes are presented.
Again, the even-parity levels decrease with increasing N,
whereas the odd-parity levels exhibit a minimum, located at
N = 136 up to L = 5, while moving to N = 138 for higher
L, showing that 226

88 Ra138 lies close to the border between the
regions of octupole deformation and octupole vibrations.

The transition from octupole deformation to octupole
vibrations can also be seen by considering the simplest quantity
measuring the relative displacement of the negative-parity
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FIG. 2. (Color online) (a) Experimental energy ratios R(L) =
E(L)/E(2+

1 ) for 220Th [27], 222Th [28], 224Th [29], 226Th [30], 228Th
[31], 230Th [32], 232Th [32,33], and 234Th [32], compared to theoretical
predictions for φ = 45◦ and φ = 60◦. (b) Same as (a) but for 218Ra
[34,35], 220Ra [27], 222Ra [32,36], 224Ra [32,36], 226Ra [32,36], and
228Ra [32], compared to theoretical predictions for φ = 45◦ and
φ = 56◦.

levels with respect to the even-parity ones,

�E(L) = E(L) − E(L − 1) + E(L + 1)

2
. (33)

Results for the Th and Ra isotopes are shown in Figs. 4(a)
and (b), respectively. In Fig. 4(a) it is clear that in 222−226Th
the staggering is decreasing rapidly with increasing angular
momentum, reaching a vanishing value and staying close to it,
which is the hallmark of octupole deformation [2,38]; however,
in 228−234Th the decrease is much slower and vanishing values,
if any, correspond to very high angular momenta, a behavior
expected for octupole vibrations. Again 226Th appears closest
to the border between the two regions. In Fig. 4(b), 220−226Ra
exhibit a rapid decrease of staggering and stick to values close
to zero beyond the first vanishing value, whereas 228−230Ra
follow the slowly decreasing pattern. As a result, 226Ra appears
to be closest to the border between the two regions.

As far as the 0+
2 bandhead is concerned, the experimental

values (normalized to the 2+
1 state) are 12.186 for 226Ra and

11.152 for 226Th, in good agreement with the 11.226 and
12.410 values predicted by the AQOA model for the φ0 values
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FIG. 3. (Color online) (a) Experimental energy levels of the ground-state bands of 220Th [27], 222Th [28], 224Th [29], 226Th [30], 228Th [31],
230Th [32], 232Th [32,33], and 234Th [32], as a function of the neutron number. (b) Same as (a) but for the associated negative-parity bands.
(c) Same as (a) but for 218Ra [34,35], 220Ra [27], 222Ra [32,36], 224Ra [32,36], 226Ra [32,36], 228Ra [32], and 230Ra [32]. (d) Same as (c) but for
the associated negative-parity bands.

of 56◦ and 60◦ used in Fig. 2. (The model of Ref. [20] provides
a value of 8.528 for 226Th.) It should be noticed that the
normalized 0+

2 bandhead lies close to this height for all Ra
and Th isotopes for which data exist, namely, 222Ra (8.225),
224Ra (10.861), 228Ra (11.300), 228Th (14.402), 230Th (11.934),
232Th (14.794), and 234Th (16.347), with data taken from the
references used in Fig. 2.

If we consider the AQOA model as an extension of the
X(5) framework involving negative-parity states, as remarked
at the end of Sec. III, than the search for X(5)-like nuclei in the
light actinides, where the presence of low-lying negative-parity
bands is important, should be focused on nuclei with R(4) ratio
close to 3.0 and 0+

2 bandhead higher than the X(5) value of
5.65.

Detailed comparisons to B(EL) transition rates are not
feasible, because of lack of experimental data. We therefore use
ratios of B(EL) transitions, also used in earlier work [20,39].
Thus in Table V and Fig. 5(a) the experimental B(E1; L →
L − 1)/B(E2; L → L − 2) ratios used in Ref. [20] are shown,
together with theoretical predictions from the same source,
and predictions for φ = 45◦ and 60◦, the values also used
in Fig. 2(a). The present theoretical predictions for the two

different values of φ0 practically coincide (indicating that the
predictions are essentially parameter free) and are in most
cases within the error bars of the experimental points, whereas
the predictions of Ref. [20] grow a little faster as a function of
angular momentum.

Furthermore, in Table VI and Fig. 5(b) the experimental
B(E1; L → L + 1)/B(E1; L → L − 1) ratios [40] used in
Ref. [39] are shown, together with three sets of theoretical
predictions in the framework of the extended coherent states
model (ECSM) [41] from the same source, corresponding to
the lowest order choice for the E1 transition operator (R-h), as
well as to two different choices of the E1 transition operator,
including anharmonic terms assumed suitable for the transition
region (R-I, R-II) [39]. In addition, predictions for φ0 = 45◦
and 56◦, the same values used in Fig. 2(b), are shown. It
is clear that the predictions for the two different values of
φ0 practically coincide (indicating that the predictions are
essentially parameter free) and in all cases are within the error
bars of the experimental points, being in very close agreement
to the R-I predictions of Ref. [39].

Given the results presented in this section, the following
additional comments apply.
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FIG. 4. (Color online) (a) Experimental energy staggering �E

[Eq. (33)], normalized to the 2+
1 state of each nucleus, for 220Th

[27], 222Th [28], 224Th [29], 226Th [30], 228Th [31], 230Th [32], 232Th
[32,33], and 234Th [32], as a function of the angular momentum.
(b) Same as (a) but for 218Ra [34,35], 220Ra [27], 222Ra [32,36],
224Ra [32,36], 226Ra [32,36], 228Ra [32], and 230Ra [32].

1. Figures 2 and 5 indicate that 226Th (226Ra) can be well
described using the AQOA model with φ0 = 60◦ (φ0 =
56◦), which provides results quite similar to the φ0 = 45◦
case. In all these cases, Eq. (7) [together with Eq. (5)]
indicates that the quadrupole and octupole deformations
are present in comparable amounts. This is in agreement
with Strutinsky-type potential-energy calculations [6,42],
resulting in comparable β2 and β3 values for these nuclei.
The presence of octupole deformation in 226Ra has also
been realized in a study [43] within the framework of the
spdf-IBM [9,10].

2. Figures 2–4 suggest that 226Th and 226Ra lie close to the
border between octupole deformation and octupole vibra-
tions. This is in agreement with Woods-Saxon-Bogolyubov
cranking calculations [7] for the Ra and Th isotopes,
suggesting shape changes from nearly spherical (N �
130) to octupole-deformed (N � 134) to well-deformed
reflection-symmetric (N � 140) shapes, in which negative-
parity bands can be interpreted in terms of octupole
vibrations.

3. One can easily see that no odd-even staggering is predicted
by the AQOA model. This is in agreement with the

TABLE V. Experimental B(E1;L → L− 1)/B(E2;L → L − 2)
ratios (multiplied by 105) [20] of B(E1) and B(E2) values originating
from the same level of 226Th, compared to theoretical predictions for
φ0 = 45◦, 60◦, as well as to theoretical predictions by Bizzeti and
Bizzeti-Sona [20] (labeled BBS). As in Ref. [20], asterisks indicate
the values used for normalization.

Lπ Experimental 45◦ 60◦ BBS

8+ 2.0 (8) 1.454 1.457 1.3
9− 1.7 (2) 1.649 1.652 1.3

10+ 1.5 (1)∗ 1.500∗ 1.500∗ 1.6∗

11− 1.7 (1)∗ 1.700∗ 1.700∗ 1.6∗

12+ 1.6 (1) 1.544 1.542 1.8
13− 1.747 1.746 1.8
14+ 1.4 (1) 1.585 1.582 1.9
15− 1.7 (3) 1.791 1.789 2.0
16+ 1.622 1.619 2.1
17− 1.5 (3) 1.831 1.829 2.1
18+ 1.656 1.653 2.2
19− 1.7 (4) 1.867 1.865 2.3

well-known fact that odd-even staggering is produced when
the potential in β3 is a double well with two symmetric
minima [44], with the staggering being sensitive to the
angular momentum dependence of the height of the
potential barrier [45]. An infinitely high barrier leads to
no odd-even staggering [44], which is indeed the case here.
The introduction of a finite barrier in the present model
will lead to staggering, but it will require the addition of
at least one new parameter, in contrast to the main goal
of the present work, which is the description of the border
between octupole deformation and octupole vibrations with
the minimum number of parameters possible. As shown
in Figs. 2(a) and (b), the model does predict the border
between the regions of octupole deformation and octupole
vibrations in an essentially parameter-independent way.

4. It should be noticed that the transition examined here is
the one from octupole deformation to octupole vibrations
as a function of the neutron number in a chain of isotopes,
which is different from the gradual setting in of octupole
deformation as a function of angular momentum in a

TABLE VI. Experimental B(E1;L → L + 1)/B(E1;L → L− 1)
ratios [40] of B(E1) values originating from the same level of 226Ra,
compared to theoretical predictions for φ0 = 45◦, 56◦, as well as to
three different theoretical predictions from Ref. [39], labeled R-h,
R-I, R-II. See Sec. IV for further discussion.

Lπ Experimental 45◦ 56◦ R-h R-I R-II

1− 1.85 ± 1.20 2.116 2.092 1.84 1.98 1.85
3− 0.87 ± 0.35 1.451 1.433 1.12 1.31 0.95
5− 1.297 1.288
7− 1.79 ± 1.59 1.220 1.215 0.86 1.12 0.99
9− 1.27 ± 0.68 1.172 1.170 0.83 1.10 1.13

11− 1.12 ± 0.79 1.140 1.139 0.83 1.10 1.26
13− 1.06 ± 0.68 1.117 1.117 0.85 1.11 1.35
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FIG. 5. (Color online) (a) Experimental B(E1; L → L − 1)/
B(E2; L → L − 2) ratios (multiplied by 105) [20] of B(E1) and
B(E2) values originating from the same level of 226Th, compared
to theoretical predictions by Bizzeti and Bizzeti-Sona [20] (labeled
BBS), as well as to predictions of the present work for φ0 = 45◦, 60◦.
The ratios corresponding to L = 10 and 11 have been used for
normalization, as in Ref. [20]. (b) Experimental B(E1; L → L + 1)/
B(E1; L → L − 1) ratios [40] of B(E1) values originating from
the same level of 226Ra, compared to three different theoretical
predictions from Ref. [39] (labeled R-h, R-I, R-II), as well as to
theoretical predictions of the present work for φ0 = 45◦, 56◦. See
Sec. IV for further discussion.

given nucleus, usually studied by considering the odd-even
staggering [2,38], as already discussed in relation to Fig. 4.

V. THE VARIATIONAL PROCEDURE

In Refs. [18,19] a variational procedure has been intro-
duced, leading from the results of one-parameter Davidson
potentials to the parameter-free E(5) and X(5) predictions.
The same procedure can be applied in the present case,
by considering (for given φ0) the R(L) = E(L)/E(2) ratios
predicted by the Davidson potentials of Eq. (16) for the
excitation energies of the ground-state band and the asso-
ciated negative-parity band and determining for each value

TABLE VII. Parameter values β0,max where the first derivative
of the energy ratios R(L) = E(L)/E(2) for the ground-state band
and the associated negative-parity band (s = 1) of the Davidson
potentials of Eq. (16) has a maximum, while the second derivative
vanishes, together with the R(L) ratios obtained at these values
(labeled var) and the corresponding ratios of the present model
(labeled oct), for several values of the angular momentum L.
In all cases φ0 = 45◦ has been used. See Sec. V for further
discussion.

Lπ β0,max RL

var oct

1− 1.200 0.347 0.346
2+ 1.000 1.000
3− 1.283 1.909 1.912
4+ 1.329 3.030 3.039
5− 1.374 4.333 4.351
6+ 1.419 5.797 5.829
7− 1.461 7.407 7.459
8+ 1.502 9.154 9.233
9− 1.541 11.032 11.144

10+ 1.579 13.034 13.187

of L separately the value of the parameter β0 at which
the derivative of the ratio R(L) with respect to β0 has a
sharp maximum. The collection of R(L) values selected in
this way (for the case of φ = 45◦) is shown in Table VII
and Fig. 6, together with the limiting cases of β0 = 0
(a vibrator) and β0 → ∞ (a rigid rotor). It is clear that the
collection created through the variational procedure practically
coincides with the predictions of the present model utilizing
an infinite-well potential, thus indicating that the choice of the
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FIG. 6. (Color online) Energy ratios R(L) = E(L)/E(2) for the
ground-state band and the associated negative-parity band (s = 1) of
the Davidson potentials of Eq. (16), selected through the variational
procedure of Sec. V (labeled var), compared to the ratios provided by
the present work (labeled oct), as a function of angular momentum.
The limiting cases corresponding to Davidson potentials with β0 =
0 (labeled β0 = 0) and β0 → ∞ (labeled rot) are also shown for
comparison. In all cases, φ0 = 45◦ has been used. See Sec. V for
further discussion.
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infinite-well potential indeed correponds to the transition point
between a vibrator (β0 = 0) and a rigid rotor (β0 → ∞), since
it is at the transition point that the rate of change of the R(L)
ratios is expected to become maximum.

VI. DISCUSSION

The AQOA model introduced in this work describes
well the border between octupole deformation and octupole
vibrations in the light actinides, which corresponds to 226Th
and 226Ra in the Th and Ra isotopic chains, respectively.
Some of the main ingredients of the present model, such as
the infinite-well potential and the approximate separation of
variables, strongly resemble the ones used in the X(5) model,
describing the critical point of the shape phase transition
from vibrational to axially deformed rotational nuclei [14],
determined through the study of potential energy surfaces
derived from the Hamiltonian of the IBM [46]. An interesting
task is the study of the potential energy surfaces resulting in the

spdf-IBM [9,10], the version of IBM including the octupole
degree of freedom in addition to the quadrupole one, which can
possibly lead to the determination of a shape phase transition
from octupole deformation to octupole vibrations, in a manner
similar to the determination of the critical point between the
spherical and triaxial shapes found recently through the study
of the potential energy surfaces resulting from an IBM-2
Hamiltonian [47,48]. Although some early results are given
in Ref. [10], this task is far from complete. The persistence of
axial symmetry, as well as the importance of parity projection
in this context, has been emphasized [49,50]. The inclusion
of staggering in the present model, and its application to the
rare earth region near A = 150, where octupole deformation
is known to occur [4,5], are also of interest.
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