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Relativistic mean field study of clustering in light nuclei
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The clustering phenomenon in light, stable and exotic nuclei is studied within the relativistic mean field
(RMF) approach. Numerical calculations are done by using the axially deformed harmonic oscillator basis.
The calculated nucleon density distributions and deformation parameters are analyzed to look for the cluster
configurations. The calculations explain many of the well-established cluster structures in both the ground and
intrinsic excited states. Comparisons of our results with other model calculations and the available experimental
information suggest that the RMF theory is well suited for studying clustering in light nuclei. A few discrepancies
and their possible sources are also discussed.
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I. INTRODUCTION

Clustering is a very general phenomenon, which appears
in atomic, nuclear, subnuclear, and the cosmic worlds [1]. In
nuclear dynamics, as seen in light stable nuclei, clustering is
one of the essential features and various cluster structures have
been known even in the low-energy region. Also, in the physics
of unstable nuclei, clustering features comprise one of the
central subjects. It is already well known [2–7] that clustering
structures appear in the ground states of ordinary light nuclei
with N = Z or in their neighbourhood. Even though this
phenomenon has now been studied for a long time, many things
remain to be learned and some recent experimental activities
focus on this subject [8].

When cluster structures are prominent, the description by
conventional mean-field models based on the shell-model-like
picture becomes insufficient. Fortunately, the properties of
light nuclei with cluster structures have been well studied
with cluster models where the existence of clusters is assumed
a priori. This assumption, however, sets a limitation for ap-
plying the cluster models to “exotic” (unstable) nuclei, where
structural information is rather scanty. Thus, a model that
could explain both the mean-field and clustering properties of
nuclei would be helpful to obtain a systematic understanding of
both the stable and exotic nuclei. Examples of such successful
frameworks are the methods of Fermionic molecular dynamics
(FMD) [9] and antisymmetrized molecular dynamics (AMD)
[6], both of which describe well the structural properties of
several nuclei and their excited states, in the lighter mass
region [7,10–13].

Another model, argued here in this paper for the first time,
that is capable of explaining the clustering shapes in light
nuclei is the relativistic mean field theory (RMFT) [14]. This
theory has been successfully applied to nuclei throughout
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the nuclear chart and, with some extensions [15], also to
nuclear matter and neutron stars. The success of RMFT in the
light-mass regime, however, is limited and several arguments
have been put forth to explain the shortcomings. Some
arguments could be related to the inadequacy of the mean-field
approximation itself, the RMF parameters, the shape degrees
of freedom, and the lack of proper pairing correlations.
Nevertheless, in the present paper, we explore for the first
time the applicability of the RMFT for explaining the possible
cluster structures in lighter mass stable and exotic nuclei.
Specifically, we have considered here the various 6−14Be and
the odd-mass isotopes of 11–19B nuclei and the N = Z α nuclei
from C to S. Since the results of RMFT calculations for most
of these nuclei, explaining structural properties other than
clustering, are already published (see, e.g. [16–21]), here we
discuss only the appearance of cluster states and the versatility
of RMFT in this respect. A brief report of this work is given
in Ref. [22].

II. THEORETICAL FRAMEWORK

The relativistic mean field approach is well known and
the theory is well documented [23–28]. Here we start with
the relativistic Lagrangian density for a nucleon-meson many-
body system [23,24,26–28]:

L = ψi{iγ µ∂µ − M}ψi + 1
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The field for the σ meson is denoted by σ , that for the ω

meson by Vµ, and that for the isovector ρ meson by �Rµ. Aµ

denotes the electromagnetic field. The ψi are the Dirac spinors
for the nucleons whose third component of isospin is denoted
by τ3i . Here gs, gw, and gρ and e2

4π
= 1

137 are the coupling
constants for σ, ω, ρ mesons and photons, respectively. g2, g3

and c3 are the parameters for the nonlinear terms of σ and ω

mesons, respectively. M is the mass of the nucleon and mσ ,mω,
and mρ are the masses of the σ, ω, and ρ mesons, respectively.
�µν, �Bµν , and Fµν are the field tensors for the V µ, �Rµ, and
the photon fields, respectively [24].

From the relativistic Lagrangian we obtain the field equa-
tions for the nucleons and mesons. These equations are solved
by expanding the upper and lower components of the Dirac
spinors and the boson fields in a deformed harmonic oscillator
basis with an initial deformation. The set of coupled equations
is solved numerically by a self-consistent iteration method.
The baryon (vector), scalar, isovector, and proton densities
are, respectively,

ρ(r) =
∑

α

ϕ†
α(r)ϕα(r), (2)

ρs(r) =
∑

α

ϕ†
α(r)βϕα(r), (3)

ρ3(r) =
∑

α

ϕ†
α(r)τ3ϕα(r), (4)

ρp(r) =
∑

α

ϕ†
α(r)

(
1 + τ3

2

)
ϕα(r). (5)

The centre-of-mass motion is estimated by the usual harmonic
oscillator formula Ec.m. = 3

4 (41A−1/3). The quadrupole defor-
mation parameter β2 is evaluated from the resulting quadrupole
moment [24]. The total binding energy and other observables
are also obtained by using the standard relations, given in
[14,24].

III. DETAILS OF THE CALCULATIONS

In our present calculations, we have used the NL3 parameter
set for all the nuclei, except for 12C. The NL3 and NL2
parameter sets do not give proper convergence for the ground
state of 12C and hence the next best parameter set NL-SH
is used in this case. For lighter mass nuclei, the results of
RMF calculations are insensitive to the pairing gap parameter
� [16], and hence the contribution of pairing is not significant
for the chosen light nuclei. This is expected from the small
density of states near the Fermi surface for light nuclei. Hence,
we present the results of our calculation without considering
pairing correlations.

We have solved the mean-field equations self-consistently,
taking different inputs of the initial deformation β0. The
quadrupole deformation parameter β2 is obtained from the
calculated quadrupole moments for the protons and neutrons,
through

Q = Qn + Qp =
√

9

5π
AR2β2, (6)

where R = 1.2A1/3 fm and the Q’s are the quadrupole
moments. Calculations are done in an axially deformed
harmonic oscillator basis with 14 shells, both for bosons as
well as fermions. The nuclei considered in the present paper
deal with rather large deformed states; even the chainlike
structures are known. Also, to get a self-consistently converged
solution, one may need a large model space for both the
fermions and bosons oscillator shells. For the calculation of
these considered nuclei, it is practical to use a reasonably
large number for major fermionic and bosonic oscillator shells.
This is illustrated in Fig. 1, where we have presented our
calculations for 32S with NF = NB = 6 to 20, in the interval
of 2, at the initial deformation of β2 = 0.7, using the NL3
parameter set. The physical observables calculated are the total
binding energy, rms radii, and the quadrupole deformation
parameters, which are plotted in Fig. 1 for various values of
the harmonic oscillator quanta Nmax. From the figure it is
clear that the solution for 32S converges at NF = NB = 10.
This means that there is no change in results if the number
of fermionic and bosonic harmonic oscillator basis is greater
than or equal to 10 major shells (i.e., NF = NB ∼ 10). As
another example, we have repeated our calculations for 16O
at β0 = 1.5 and 1.6. In this case, for Nmax � 12, we could
not get the proper solutions. It is evident from the figure
that the physical observables remain unaltered with NF =
NB = 14 to 20. Therefore, in the present calculations, we
have used NF = NB = 14 to get a self-consistently converged
solution.

As outputs, we obtain different potentials, densities, single-
particle energy levels, radii, deformations, and binding ener-
gies. For a given nucleus, the maximum binding energy cor-
responds to the ground state and other solutions are obtained
as various excited intrinsic states. For studying the clustering
aspects, the densities and deformations are more important.
The proton, neutron, and matter densities are obtained in the
positive quadrant of the plane parallel to the symmetry axis.
Because we choose z axis as the symmetry axis, the densities
are evaluated in the zρ plane, where x = y = ρ. Because the
space reflection symmetry about z-axis, as well as the ρ axis, is
conserved in our formalism, the results obtained in the positive
quadrant are suitably reflected in other quadrants, giving a
complete picture in the zρ plane. Such unbroken symmetries
of our numerical procedure lead to several limitations, which
we discuss in the last section.

IV. RESULTS

As already mentioned in the Introduction, RMF calcu-
lations for the various properties of light-mass nuclei have
been exhaustively performed by many authors (see, e.g.,
Refs. [16–21]). However, only a few calculations of the
deformations and binding energies are reported [16] where
the cluster states are speculated to be present at higher
deformations. Here we utilize, for the first time, the density
distributions for studying explicitly the cluster states in both
the ground and excited states of light nuclei, shown in
Figs. 2–10 as filled contour plots. All the density contours
presented here are given in boxes of width 20 fm and height
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FIG. 1. The RMF results with various values
of bosonic (NB ) and fermionic (NF ) major
shells. The binding energy, rms radii, and total
quadrupole deformation parameter are plotted.

18 fm. A uniform contour spacing of 0.01 fm−3 is used
for proton and neutron densities, whereas the spacing
is 0.02 fm−3 for the total density. Full black contours corre-
spond to maximum density and full white ones correspond
to zero-density regions. In the following, we present our
results first for the Be and B isotopes and then for the α

nuclei.

A. Be isotopes

The α-α cluster structure is expected to be well pronounced
in the 8Be nucleus. Consequently, the calculation of the spatial
distribution of nuclear density in this case will serve as a
benchmark of the formalism to explain the cluster structure
in light nuclei. The results of our calculation for even-N Be
isotopes are given in Fig. 2. The contour plots of neutron,
proton ,and total nuclear densities are given in the first, second,
and third columns, respectively. We notice clear evidence for
the α-α structure in 8Be. The two distinct shaded areas in the
figure for 8Be represent the concentration of density being
split into two parts, which can be related to the α-α structure.
This result gives the first justification for an application
of the RMF approach to study clustering structure in light
nuclei.

The binding energies obtained in the present calculations
are compared with the experimental data in Table I, where

TABLE I. Calculated binding energies (B.E.) and deformation
parameters (β2) for the Be and B isotopes, compared with the
experimental data.

Nucleus B.E. (MeV) β2 (Theor.)

Theor. Expt. Neutron Proton Total

6Be 31.28 26.92 0.23 1.15 0.84
7Be 40.69 37.60 0.90 1.20 1.07
8Be 52.76 56.50 1.18 1.20 1.19
9Be 58.02 58.16 0.70 0.90 0.79
10Be 64.87 64.98 0.40 0.67 0.51
11Be 67.74 65.48 0.25 0.58 0.37
12Be 71.80 68.65 0.13 0.48 0.25
13Be 72.28 68.55 0.52 0.62 0.55
14Be 74.37 69.91 0.83 0.74 0.80
11B 76.90 76.20 0.20 0.28 0.23
13B 88.85 84.45 0.05 0.17 0.10
15B 92.48 88.19 0.67 0.44 0.59
17B 94.64 89.53 0.69 0.48 0.62
19B 94.73 90.08 0.43 0.39 0.42
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FIG. 2. Contour plot of neutron, proton, and matter density
distributions in the even-A isotopes of Be. See text for details about
the plotting.

we have presented the corresponding deformations also. To
study the variation of the cluster structure with increase or
decrease of neutron number, we have examined the internal
structure (density distributions) of Be isotopes in Figs. 2 and
3, where Fig. 2 presents our results for even-N Be isotopes
and Fig. 3 for odd-N Be isotopes. We have considered here

FIG. 3. Same as Fig. 2 but for odd-A isotopes.

the Be isotopes with 6 � A � 14 only. In our calculations,
13,14Be are the drip-line nuclei; a detailed discussion on the
stability of these nuclei and the predictions of drip lines
in the lighter mass regions based on RMF calculations can
be found in Ref. [20]. The density distribution of 6Be in
Fig. 2 indicates an α + 2p structure since nuclear matter is
more concentrated in the central region. In other calculations
(see, e.g. [11]), 6Be is found to have an α + diproton
structure, which is forbidden in our calculations because of
the assumption of space-reflection symmetry and the lack
of parity projection. For the same reason, the more standard
prediction of an α + 3He structure in 7Be does not show up in
our results in Fig. 3. Also, the 7Be results do not suggest any
clear cluster structure in comparison to other nuclei, though we
can infer that the protons fall into two groups. As the neutron
concentration increases, for Be-nuclei, which are heavier than
8Be, we find that the clustering in proton matter remains almost
undisturbed. Thus, we can say that the α-α structure of the
core persists with the addition of neutrons to the α-α nucleus
8Be. Furthermore, we notice from the density distributions of
protons that the α clusters for 9,10Be are more closely packed,
as compared to other cases. The smallest distance between two
α clusters occurs for 10Be. Some authors [29] have interpreted
this character to be due to the strong pairing effects. Further
interpretations of this feature can be found in Refs. [30], which
treat the clustering in heavier (A � 9) Be and B isotopes on the
same footing as dimers in molecular physics. The variation of
the distance between the two α clusters and the corresponding
excited states could be related to the nature of the bond (σ, π

bonds). The AMD calculations [6,7,11] also discuss such
results.

As we go to still heavier isotopes of Be, we notice in
Figs. 2 and 3 that another interesting “halo” structure feature
develops for 13,14Be. In the case of 13Be, the proton and
neutron distributions show that the α-α structure remains intact
while the remaining neutrons stay around. In 14Be, from the
neutron distribution, we can see that a few more neutrons stick
to the α-α core and hence the halo should comprise fewer
neutrons (<6 in this case). From the intensity variation in the
plots of neutron densities, one could observe that the neutron
concentration is not evenly spread from the inner to the outer
parts. Hence, one can conjecture that the outer part is not a
thick skin of neutrons but a halo with much fewer neutrons. In
general, the Be isotopes have an α + α + xn structure, with
α + α as the core. The remaining x neutrons are rather sparsely
distributed around the core and constitute a “halo” for these
heavier isotopes of Be.

Figures 2 and 3 also illustrate the variation of deformations
of nuclei with the addition of neutrons. Starting from a
well-creviced (necked) prolate shape in 8Be, the deformation
gradually decreases and the shape becomes almost spherical
in 12Be. Then, a further increase in neutron number induces
prolate deformed shapes in 13,14Be, but now the shapes are
not creviced. This result is also supported by our calculated
deformations in Table I, which agree qualitatively with the
predictions of Ref. [6], though our calculated values are
somewhat larger. Table I also shows that our calculated binding
energies match the experiments within a few million electron
volts.
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FIG. 4. Contour plot of neutron, proton, and matter density
distributions in selected odd-A isotopes of B.

B. B isotopes

The investigations of B isotopes reveal the variation of
clustering structure in the presence of one odd proton added to
the nucleons contributing to the α-α structure. Here we discuss
only the odd-A Boron isotopes and our results are shown in
Fig. 4. The 15,17,19B nuclei are weakly bound [20] and 19B is
the drip-line nucleus in the B isotopic series. In 11B, we see a
halolike structure. However, careful observation of the proton
and neutron densities reveals that they are almost distributed
in the same space. Hence the outer part of 11B originates
from a tail of neutron and proton densities. The creviced α-α
structure in the core develops in 13B and remains intact up to
19B. Comparing the results of B and Be isotopes, we see that
the 8 neutrons in 12Be and 13B are distributed in a very similar
way with distinctly separated parts. Similarly, the 10 neutrons
in 14Be and 15B are distributed in the same way but without
any distinct clustering. The overall structure can be considered
as α + α + p + xn, with α + α + p as the core. The sparsely
distributed x neutrons form a halo in 17,19B but in 11B they may
confined to the skinlike tail.

C. α nuclei

Cluster structures comprising α particles are also ex-
pected to be present in the 4N α nuclei. Subsequently,
the α nuclei could also manifest themselves as clusters in
the relatively heavier nuclei. Furthermore, different cluster
structures become apparent as the excitation energy in the
nucleus increases. This statement [2] includes some rather
unusual shapes for a nucleus, including the extreme “chains”

FIG. 5. Matter density distribution in 12C.

of α particles. In this section we present our results for the
lighter 4N nuclei up to 32S and look for possible α-particle or
α-nucleus clustering.

For a systematic study of the intrinsic excited states, which
differ in deformation, one has to construct the potential energy
surfaces with respect to deformation and look for different
local minima. Such a calculation for lighter mass nuclei can
be found in Ref. [19], where the quadrupole moments are
constrained to give different deformations. In the present
work, as the deformations encountered are very large, getting
self-consistently converged solutions at points other than the
local minima is difficult. Hence, instead of performing the
quadrupole moment constrained calculations, here we tune
the initial guess for deformation (β0) to obtain solutions at
different local minima.

It is known that the persistence or breaking of α clustering
is influenced by the spin-orbit interaction (see, e.g. [31,32]).
Because the spin-orbit interaction is stronger in heavier mass
nuclei, one does not expect these nuclei to be α nucleus-like.
Our calculations for 208Pb and 304120 (not shown here) support
this argument since we could not see any distinct clustering in
these nuclei. It is to be noted here that the spin-orbit interaction
is naturally taken care in the RMF theory through the Dirac
formalism. A new non-α-nucleus clustering could occur in
heavy nuclei (see, e.g. [33]), such as the exotic 14C clustering
in radioactive nuclei [34]. Some authors [35] think of possible
clustering, such as the fullerenes, even in super-heavy excited
compound systems, produced in, say, 244Cm + 244Cm reaction,
where these clusters could be the ones belonging to the center
island of superheavy elements.

1. 12C

Figure 5 shows our results for 12C, where we obtain
three different solutions. The ground state is oblate shaped
and coexists with a spherical shape [see Figs. 5(a) and (b)
and Table II, where the corresponding deformations and
binding energies are given]. The excited state solution exhibits
a high prolate deformation. The ground state of 12C has
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TABLE II. Calculated binding energies and deformation parameters for the α nuclei from 12C to 32S, along with the experimental data.
The probable interpretation for the structures obtained from the theoretically calculated density distributions are also shown, along with the
references where similar structures were predicted earlier. Some of the structures proposed are rather speculative owing to the symmetry
conservation and other limitations involved in our calculations. In such cases our predictions are given in parentheses.

Nucleus B.E. (MeV) β2 Probable structure Similar

Theor. Expt. Theor. Expt. predictions

12C 89.74 92.16 –0.29 0.58 3α—equilateral triangle [5,6,10,36]
89.63 0.00 spherical
72.55 2.33 3α—linear chain [3]

16O 128.84 127.62 0.00 4α—tetrahedron [5,10,37]
112.95 0.95 4α—kite [36]
92.28 3.79 4α—linear chain [3]

20Ne 156.70 160.64 0.54 0.73 5α—trigonal bipyramid [5,7,37]
151.96 –0.24 10B + 10B
108.24 7.76 10B + 10B—(fragments)

24Mg 194.37 198.26 0.50 0.61 12C + 12C—(central bishpenoid) [5]
186.82 –0.26 12C + 12C—trigonal biprism

28Si 232.08 236.54 –0.34 0.41 D3d symmetry [5]
231.18 0.00 hollow sphere—(pentagonal bipyramid)
224.11 0.60 12C + α + 12C—trigonal biprism [5,13,37]

32S 265.96 271.78 0.25 0.31 16O + 16O—(kite)
256.38 1.03 16O + 16O—(tetrahedron)

been universally associated with an equilateral triangle, the
3α-particle structure. This naturally leads to an oblate shape,
which our RMF calculations in Table II also support. The
density distribution in the zρ plane shows a smooth variation
of density from the center to the periphery. However, the
clusters will be distinctly seen only in the plane perpendicular
to the symmetry axis. Also, in a two-dimensional calculation of
Ref. [36], the α clusters do not show up distinctly. At the higher
deformation β = 2.33, the 3α-chain structure clearly shows up
in our calculation presented in Fig. 5(c). This structure is also
well reproduced by many other calculations (e.g., Ref. [3]),
though it is far from clear as to which state the 3α chain might
be connected [4].

2. 16O

Being a doubly magic nucleus, 16O is spherical in shape.
Owing to clustering, the density distribution in this nucleus
becomes inhomogeneous. Our results, shown in Fig. 6(a),
depict hollowness at the center. This means that in a three-
dimensional configuration, the four α particles in 16O form
a regular tetrahedron. This is our ground state of 16O. The
two-dimensional configuration could be of a square, rhombic
(or diamond), or kite structure. Similar to other calculations
[36], our RMF calculations give a kite structure, shown in
Fig. 6(b). This is a highly deformed shape with β = 0.95 (see
Table II). Finally, at the highest deformation β = 3.79, the
RMF solution yields the linear 4α-chain structure for 16O,
which is well depicted in Fig. 6(c).

3. 20Ne

The ground state of 20Ne comes is a trigonal bipyramid in
our RMF calculations, as is clearly seen in Fig. 7(a). This
result agrees well with previous predictions [5,7,37]. The
search for the next solution yielded an oblate configuration
with β = −0.24. The corresponding density distribution is
as shown in Fig. 7(b). The structure depicted in Fig. 7(b),
showing two equally split portions, could not be related to the
α-particle clustering of the type seen previously for 12C and
16O. The only possibility is the 10B + 10B configuration, which
requires the breaking of one α particle. Note that 10B is the most
stable isotope of the observed B nuclei. The work of Ref. [7]
also shows that, in the case of 20Ne, the parity asymmetric

FIG. 6. Matter density distribution in 16O.
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FIG. 7. Matter density distribution in 20Ne.

structures are rather favored. Because we are not performing
any parity projection here, such shapes could not be accounted
for in our calculations. Finally, the RMF calculations at the
next higher deformation gives a stable solution at β = 7.76.
Figure 7(c) shows that this corresponds to a configuration
of two completely separated fragments of equal size (possibly
two 10B nuclei). Any further increase in energy or deformation
will also give the same two fragments, though more separated.
It has to be noted that the harmonic oscillator basis expansion
may be insufficient at very high deformation, especially for
fissioning shapes. Hence, we could not obtain the linear
5α-chain structure in 20Ne, which some experimental studies
claim for this nucleus [4].

4. 24Mg

The 24Mg nucleus has been of central interest in clustering
studies. Several local minima in the potential energy surface
of 24Mg were predicted by Nilsson-Strutinsky calculations
made long ago [38], and the corresponding cluster structures
for stable deformed configurations were analyzed in detail
using the cranked cluster model [39]. Most of the calculations
(see e.g. Refs. [37,39]) predict the ground state of 24Mg as a
α-16O-α structure with β ∼ 0.6 and having triaxiality [38].
Because our present framework does not support triaxial
shapes, we get a different ground-state solution with β = 0.50
(All the calculations in the present work are done assuming
axial symmetry and hence this limits the prediction of a triaxial
configuration.) Also, the internal structure (the clustering
pattern) obtained in our RMF calculations is different, as
shown in Fig. 8(a). Our calculations predict a pattern close

FIG. 8. Matter density distribution in 24Mg.

FIG. 9. Matter density distribution in 28Si.

to the central bisphenoid [5], a combination of two 12C
nuclei leading to prolate deformation. As we see the density
distribution only in the zρ plane, where the complete structure
could not be viewed, the structure assigned here is rather
speculative. The first intrinsic excited-state solution from our
calculation is shown in Fig. 8(b). This is an oblate shape
and can be associated with a 12C + 12C structure where
the overlap is parallel to the plane containing the three α

particles in each 12C. Hence, in 24Mg both states have the 12C +
12C structure, though with different orientations, one prolate
(central bisphenoid) and another oblate (trigonal biprism).

5. 28Si

The ground-state deformation of 28Si is obtained as β =
−0.34. This oblate shape could be associated with the D3d

symmetry of crystalline structure or a trigonal biprism with an
α particle at the center, as illustrated in Fig. 9(a). Similar to the
case of 12C, the distinct clusters could be seen more clearly in
the xy plane. The next stable solution in our RMF calculations
appear at β = 0.0, for which the density distribution is shown
in Fig. 9(b). This structure with a hollow center could be
linked with a pentagonal bipyramid structure, which is known
to result normally in an oblate shape [13]. Given that any
other combinations of 7α clusters could not give arise to a
spherical shape that is hollow at the center, the pentagonal
bipyramid could be the best possible, structure where the
pentagon may be having a distorted orientation. Finally, we
have obtained one more solution with a well-deformed prolate
shape (β = 0.6). The density distribution shown in Fig. 9(c)
reveals that this structure is closely related to the D3h symmetry
of the crystalline structure or to the 12C-α-12C trigonal biprism
[5,13,37].

6. 32S

The ground state of 32S is known to be slightly triaxial [37].
In our calculations the deformation obtained is β = 0.25 and
the density distribution is as shown in Fig. 10(a). One can easily
associate the ground state of 32S to an overlapping of two 16O
clusters wherein the oxygen clusters have a kitelike structure,
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FIG. 10. Matter density distribution in 32S.

finally forming a tetragonal prism. The symmetry of crystalline
structure corresponding to this structure is the C2ν . The stable
solution at a higher deformation is achieved at β = 1.03. From
the density plots in Fig. 10(b), one can infer that this structure
also can be linked to a 16O + 16O configuration, though with a
different orientation. In this configuration the oxygen clusters
are predicted to have a tetragonal structure, similar to what they
possess in the ground state. The results of AMD calculations
[7] also suggest that the superdeformation in 32S is the same
as for the 16O + 16O clustering.

V. SUMMARY AND DISCUSSION

We have seen that the clustering structure of several light-
mass nuclei could be well explained by the RMF theory in its
present framework. Our results are mostly conform with other
theoretical results and experimental information. In Be and
B nuclei, our calculations could explain both the α clustering
and halo structures. In α nuclei from 12C to 32S, several
prominent cluster structures in both the ground and intrinsic
excited states could be well described by the RMF calculations.
Also, most of the structures could be linked to the standard
crystalline structures.

However, several structures could not be explained. For
example, in our calculations, the linear α chain could not
be obtained for nuclei beyond 16O. Study of these structures
requires calculations at large deformations, and our chosen
oscillator basis expansion may not be proper at such asymp-
totic limits. One indication of this behavior is evident from the
monotonic increase of binding energy at larger deformations.
Calculations in deformed coordinate space may solve some of
these issues and will throw more light on the clustering aspects
of light nuclei. The neglect of odd multipole shape degrees
of freedom or the corresponding space reflection symmetry
imposes further serious limitations in explaining nuclei with
odd number of particles. For Be and B isotopes, most of the
shapes are found to be parity asymmetric in the calculations
of Refs. [7,11,12]. Hence, our results for these cases are only

qualitative. For 24Mg and 32S nuclei, triaxial shapes have a
role to play, and these are not incorporated in our calculations,
and may alter the binding energies as well as the ground state
and other excited states (local minima). As a consequence, we
may get an entirely different solution with a different clustering
pattern. The clustering pattern is not distinctively visible in the
zρ plane for 12C and 28Si nuclei, suggesting the requirement
of calculations in three dimensions.

Apart from this set of issues, which are related more
to numerical techniques, some other facts also limit the
success of RMFT for the lighter mass nuclei, as has been
already mentioned in the Introduction. Some hints about it
could be drawn from the discrepancies in calculated binding
energies, listed in Tables I and II. The limitations of mean-
field models in the low-mass region could be interpreted as
the breakdown of the mean-field approximation itself for
few-particle systems that might not have saturated. Simple
mean-field models like the phenomenological independent
particle model could not explain the clustering features.
Because the RMFT comprises finer details of the meson fields,
it could explain well the clustering in the lower mass region.
For instance, the cluster structures in ground states of 8Be,
20Ne, and 28Si are well explained by our RMF calculations, in
spite of the large discrepancies in predicted binding energies.
An improvement of the RMFT parameters, with special
attention paid to the lighter mass nuclei, has been suggested in
Ref. [40].

In spite of all the difficulties just listed, the RMFT could
explain successfully many cluster states in light nuclei. The
RMF model used here can be regarded now as a fundamental
tool of its kind as it explains a variety of phenomena
throughout the known nuclear chart and beyond. Over time,
extensions of RMFT have fetched rich gains in explaining
different phenomenon. For example, halo structures were well
explained with the inclusion of pairing correlations with in the
Hartree-Bogoliubov framework [41]. Incorporating cranking
and correlations such as the random phase approximation
could throw more light on the excited states of nuclei. By
utilizing effective field theory techniques with the addition
of new couplings, the RMFT could be made applicable to
nuclear matter and neutron stars [15]. The excited states of
cluster configurations are well understood as resonance states
and a wealth of experimental data is available. Employing the
projection techniques in RMFT could provide access to those
excited sates. Nevertheless, the present study demonstrates the
applicability of RMFT for studying the clustering phenomenon
and provides the scope for understanding in detail the nuclear
structure in various regimes while highlighting the versatility
of the RMF models.
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